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. INTRODUCTION

Membranes that I consider in this chapter are extremely thin and highly flexible
sheets made of amphiphilic molecules. Due to these features, they can deform very
easily from the microscopic small-length scale to macroscopic large-length scale.
Properties of such membranes have attracted great interests in connection with var-
ious fields such as the statistical physics, quantum field theory, physical chemistry
or biophysics [1]. In fact, the behavior of amphiphilic systems exhibits various as-
pects; they behave as biological systems, molecule-aggregates, two-dimensional
systems, elastic sheets or random surfaces. Among these features, attention is paid
to the restricted class of problems which have to do with the energy and the entropy
of the membrane shape—in other words, the statistical mechanics of membranes.

It is widely recognized that the deformation of the membrane is mainly gov-
erned by the elastic bending energy rather than the surface tension which is usu-
ally zero or practically zero [2]. As we notice in the case of thin plates or shells, |
however, amphiphilic systems are not the only systems dominated by the bending
energy. The essential difference between such mechanical plates and membranes
is that the associated bending rigidity of the latter is known to be the order of kpT.
Hence membranes can easily fluctuate due to thermal agitations and one has to
consider this object from the point of view of statistical mechanics. This is the
main spirit of this chapter.

Before going into the details of this central subject, a brief overview on the gen-
eral background of the membrane is given in the following section as well as the
orders of magnitude of related physical quantities. Most of Sec. II follows the un-
published lecture notes by R. Lipowsky, written in German [3]. For more general
and detailed reviews, the readers are referred to Refs. [1, 4-7]. In describing the
conformation of membranes, one has to introduce some theoretical concepts such
as the bending elasticity or curvature. For this purpose, several formulas from dif-
ferential geometry are provided in Sec. III. In Sec. IV, starting from the descrip-
tion of the curvature model, the general shape equation of the fluid vesicles is
discussed. The expected fluctuation amplitudes is calculated under the constraint
of constant enclosed volume. In Sec. V, the shape fluctuations of polymerized vesi-
cles are investigated within the framework of shell theory. The intrinsic curvature
of the vesicle leads to an enhanced coupling between bending and stretching
modes which acts to suppress the shape fluctuations on large scales. This effect is
explicitly calculated for a spherical shape of the vesicle. Section VI is concerned
with the hydrodynamics of compressible fluid vesicles. The compressibility is
taken into account by allowing the molecular density to vary on the surface. We
calculate the sequence of the stress relaxation times for a small deformation. The
diffusion coefficient of the droplet and the complex effective viscosity of the
droplet dispersion are also obtained. In the last section, comparing various char-
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acteristic time scales both for vesicles and microemulsions, we discuss the de-
tectable relaxation modes in the experiments.

. GENERAL PROPERTIES OF MEMBRANES

In this section, some general properties of membranes are roughly surveyed fol-
lowing the unpublished lecture notes by R. Lipowsky [3].

Biological membranes such as plasma membranes are universal structural
components constructing complex cellular architectures of biological systems.
Moreover, most of the cells in plants or animals contain many intracellular
organs inside, such as, cell nuclei or mitochondrias which are also enclosed by
specific membranes. There are indeed many important physiological functions
where biological membranes play important roles, e.g., (i) they operate as a
selective barrier during the exchange of molecules between the inside and out-
side of the cell; (ii) they provide a two-dimensional environment for the catalytic
reactions taking place in macromolecules; (iii) they constitute a two-dimensional
supporter for protein molecules penetrating through the membranes. A rich vari-
ety of macromolecules are assigned to realize these important functions and each
biomembrane can be regarded as a specific complex multicomponent alloy of
different lipids and proteins.

In spite of the complex combinations of the chemical compositions in the real
biomembranes, one can still extract a general common structure which maintains
the essential features of biomembranes. Singer and Nicolson introduced such a
general picture where lipid molecules form a double layer in which protein mole-
cules are embedded like ships floating on the ocean [8,9]. The simplest membrane
without any proteins is a single component lipid bilayer which assembles sponta-
neously from independent lipid molecules dissolved in water. Such a simple model
membrane still posseses the following two fundamental properties. (i) Due to the
hydrophobic effects, membranes tend to form closed shapes which are called vesi-
cles. A simple explanation why membranes form vesicles will be discussed later.
(ii) Lipid molecules can move around (diffuse) rather rapidly and freely within
the membranes since they are usually in the fluid state. Membranes in this state
are called fluid membranes. The measured diffusion constant of a lipid is typically
=10-7-10~8 cm?/s. This implies that a lipid molecule sweeps the area of = 1 pum?
per second which is comparable to the typical biomembrane size.

Lipids are one of the most typical amphiphilic molecules which has two con-
flicting well-defined parts in one molecule. In an aqueous solution of lipids, the
polar head group prefers a highly polarizable water environment (hydrophilic),
whereas two hydrocarbon chains prefer oil (hydrophobic). A typical example of a
lipid is a phospholipid whose head part consists of a phosphate molecule with ionic
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feature. Amphiphilic molecules order in a such a way that the contact area between
hydrocarbon chains and water can be as small as possible. Surface-active materi-
als such as soap or detergent also belong to the family of amphiphilic molecules
and they are called surfactants. Since surfactants are typically smaller than lipids
in size and have only one hydrocarbon chain, they are usually less hydrophobic
than lipids.

Depending on the concentration or the temperature, amphiphilic molecules in
an aqueous solution exhibit a surprisingly rich variety of phases. At extremely low
concentrations, molecules are dispersed in the water independently. When the con-
centration exceeds a certain value called the critical micelle concentration, c*,
molecules start to assemble spontaneously, constructing the macromolecular struc-
ture. Typical values of c* are c* = 1 molecule/pm? for lipids and c* = 10°-107
molecules/pm3 for surfactants [10]. A micelle is a small sac-like aggregate in
spherical form. When the concentration becomes much larger, one can observe var-
ious lyotropic phases such as the hexagonal phase or the lamellar phase.

The aggregation process of amphiphilic molecules takes place due to the hy-
drophobic effect which is purely of entropic origin. The configurational entropy
of water molecules is decreased by the direct contact with hydrocarbon chains.
This situation costs free energy and hence hydrocarbon chains dislike water. It
turns out that the hydrophobic effect induces a strong attractive force between non-
polar hydrocarbon chains.

The reason why bilayer membranes form vesicles is as follows. Consider a
membrane segment of linear size L. If this segment is planar, the membrane costs
the edge energy since the hydrocarbon chains at the edges are forced to come in
direct contact with the neighboring water. The total edge energy is proportional to
L in this case. If we close this membrane into a spherical shape and let the edges
disappear, we have to now take into account the contribution from the curvature
energy (see Sec. IV). Nevertheless, the curvature energy does not depend on the
radius L of the spherical vesicle. Therefore, for large L, membranes can always
lower their shape energy by forming closed surfaces. The above mechanism of
vesicle formation according to the hydrophobic effect is quite general and can be
found in various biological systems as well. The fact that bilayers usually do not
exhibit any holes or pores can also be explained by the same effect. In this chap-
ter, I shall consider mainly spherically closed membranes.

One well-known fact about lipid bilayer systems, related to the internal degrees
of freedom, is the presence of a first-order phase transition associated with the
melting of the hydrocarbon chains, separating a high-temperature disordered fluid
phase called the L, phase and a low-temperature ordered gel phase called the Lg
phase. The fluid membrane mentioned above corresponds to the Ly phase in which
hydrocarbon chains are quite flexible and entropically shortened. In the gel Lg
phase, on the other hand, they are more rigid and longer than in the fluid phase.
This phase is one of the examples of polymerized membranes discussed in Sec. V.
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Between these two flat phases, an intermediate structurally modulated (rippled)
phase has been detected in a few phospholipids. This phase is termed the Pg phase
and has stimulated considerable theoretical interest [11].

lll. PREPARATIONS

First, we will collect some formulas from differential geometry [12]. One can, in
general, parameterize a two-dimensional membrane in a three-dimensional space
by two real inner coordinates s = (s!, s2). The shape of the membrane is then de-
scribed by a three-dimensional vector r = r(s). At each point on the membrane,
there are two tangent vectors r; = dr/ds’ with i = 1,2. The outward unit normal
vector n is perpendicular to these tangent vectors; i.e., # = (r1 X r2)/|r1 X ry.

All properties related to the intrinsic geometry of the membrane are expressed
in terms of the metric tensor defined by the inner product of the tangential vectors:

8 =Ti'Tj (3.1)

Two important quantities are the determinant and the inverse of the metric tensor
which will be denoted by

g =det(gy) and  g¥=(gy~! (3.2)
In addition, one has to consider the (extrinsic) curvature tensor given by
hij=n-rj= —n;-r; (3.3)

where r; = 0%r/dsids/ and n; = dn/ds'. The third expression follows from the par-
tial derivative of n « r; = 0. Similar to Eq. (3.2), the determinant and the inverse
of the curvature tensor are denoted by

h=det(hy) and  hi = (hy)"! (3.4)

The mean curvature H and the Gaussian curvature K are calculated according to

1 1
H= §'g"hij = —5(6‘1 + ¢2) (3.5)
and
h
K=—=coc (3.6)
8

respectively, where ¢ and c¢; are two principle curvatures.
The covariant derivative D; of f and f; are

Difi=oif' +Tiyf*  and  Difi= ofi — Tife (3.7)
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respectively, with the Christoffel symbols I's defined
1"5, =ghlr; - ry (3.8)

and 9; = 9/0s".

The metric and the curvature tensors are determined by the vector r(s) and con-
sist of six independent functions since both tensors are symmetric. In order to
solve the inverse problem, namely, to determine the function r(s) from the funda-
mental tensors, one has to solve the following equations [13];

n;, = '—hijrj (39)
and
rj = l",-’j-rk + hijjn (3.10)

which are called the Weingarten equation and the Gaussian equation, respectively.

IV. FLUID VESICLES
A. Curvature Model

As described in the previous section, lipid bilayers tend to form vesicles in water
and are in the fluid state since the molecules can diffuse freely to adapt themselves
to a particular membrane configuration. Shape transformation among various con-
formations can be caused by changing, e.g., the osmotic conditions, the tempera-
ture or the composition of the lipids. These properties might be closely related to
the physiological functions of biomembranes described in the previous section.
Similar system is also realized in a microemulsion system being homogeneous
mixtures of oil, water and surfactants. In both cases, amphiphilic molecules orient
their polar heads toward water and their aliphatic tails away from it, decreasing the
surface tension drastically to the level of practically zero. In place of the surface
tension, it is widely understood that the deformation of the membrane is mainly
governed by the elastic bending energy. Although microemulsion droplets differ
from vesicles by several decades in length scale (see the discussion in Sec. VII),
the ruling physics behind is expected to be qualitatively similar.

From the theoretical point of view, the features of fluid membranes can be sum-
marized in the following way: (i) since the surface tension is extremely small, the
elastic bending energy determines the membrane shape primarily; (ii) since the
membrane is in the fluid state at room temperature, it supports no in-plane shear
resistivity. (iii) in most cases, one can also assume that the fluid membrane is in-
compressible, although the compressibility can be generally introduced and turns
out to play an important role when we discuss the hydrodynamic effect (see Sec.
VLB). The curvature model was originally proposed for such a membrane by Hel-
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frich according to a phenomenological consideration [2,3]. We shall briefly follow
his argument.

In accordance with the above assumptions, the free energy is considered to be
in the form which depends only on the membrane shape; i.e.,

Hy = § (k) dA @.1)

In the above, dA = Vg ds! ds? is the surface element and fis a scalar function of
matrix elements Ai/. (We use f for the surface integral in order to distinguish from
the volume integral |.) There are only two independent scalars that can be con-
structed from the 2 X 2 matrix A/: the mean curvature and the Gaussian curvature
defined by Egs. (3.5) and (3.6), respectively. Up to second order in the principal
curvatures, the scalar function f can be expanded using the coefficients ao to a3 in
the following way:

f=ao + ai(c1 + c2) + axc) + ¢2)? + ascicr 4.2)

or alternatively, by introducing four new coefficients 3, k, co and kg, we have

f=3+ %K(Cl + ¢2 — ¢0)? + Kgeica 4.3)
This is the curvature model first proposed by Helfrich [2]. The constant 2, is the
lateral surface tension of the membrane and ¢y is called the spontaneous curvature
which is, in general, nonzero whenever both sides of the membrane are not iden-
tical. Two elastic constants k and k¢ are called bending rigidity and Gaussian cur-
vature modulus, respectively. The surface tension 2, can, in general, depend on the
molecular density of the membrane, which leads to the introduction of the mem-
brane compressibility into the model and will be discussed in Sec. VI.B. In this
and next sections, we assume that 2, is a negligibly small constant although it is
left in the subsequent equations.

For a closed surface, the surface integral over the Gaussian curvature, cicz,
turns out to be a constant number which depends only on the topology of the sur-
face or, more precisely, on its Euler characteristic, x. Euler characteristic is an in-
teger number which can be known by breaking up the surface into an arbitrary
polyhedron. Then it is given by x = #(V) — #(E) + #(F) where #(V), #(E) and
#(F) are numbers of vertices, edges and faces of the polyhedron, respectively.
When a given surface is topologically identical to a sphere with G handles (genus),
X = 2 — G. According to the Gauss-Bonnet theorem in differential geometry [12],
the surface integral over the Gaussian curvature simply yields

§c|cz dA = 2wy “4.4)

for a surface without edge. Accordingly, concerning the membrane deforma-
tion that maintains its topology, the term Eq. (4.4) can be usually discarded.
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The equilibrium shape of a fluid vesicle is then determined by the shape energy
such that

Hf=§2dA+Hb=§2dA+j€%K(cl+cz—co)2dA 4.5)

where H, stands for the bending energy.

By calculating the first variation of Eq. (4.5) with respect to an infinitesimal
displacement € normal to the membrane, we obtain the following restoring force
per unit membrane area [14,15]:

OHy
oe
= 25H — k(2H + co)(2H? — 2K — coH) — 2«xVizH (4.6)

Fi=-

where V?Z; is the Laplace-Beltrami operator on the surface given by
Vi = T3gNg3) @)
g

In equilibrium, this restoring force balances with the (osmotic) pressure difference
P — P' between the outside and the inside of the membrane; i.e., P — P’ = Fj.
(Here and below we shall use the prime in order to distinguish the quantities of the
fluid inside of the membrane from the corresponding quantities of the fluid out-
side.) In this way, Zhong-can and Helfrich obtained the following nonlinear equi-
librium shape equation in general coordinates [15]:

(P — P') — 25H + kQH + co)2H? — 2K — coH) + 2kViH =0  (4.8)

In order to make this chapter self-contained, we show a concise derivation of
Eq. (4.6) in Appendix A. Eq. (4.8) reduces to the well-known Laplace formula
when k = 0. The more general case will be discussed in Sec. VL.

Meanwhile P — P’ can be also interpreted as the Lagrange multiplier associ-
ated with the constraint of constant enclosed volume, i.e., 8 dV = 0 where dV is
the volume element. Mathematically, the variation of the energy of the fluid vesi-
cle may be given by

8H;+ [(P — P')8 dV = 8H; + {(P — P')e dA (4.9)
from which Eq. (4.8) can be also obtained.

B. Spherical Fluid Vesicles

For our later purpose, we summarize here several expressions related to a spheri-
cally closed fluid vesicle of radius ro at zero temperature. By specifying the inter-
nal coordinates as (s!, s2) = (0,¢), we introduce the following three unit vectors
as a local basis:
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sin 6 cos ¢ cos 0 cos ¢ —sin ¢
e,=|sinBsind|, eg=|cosOsind|, ey =1{ cosd (4.10)
cos 0 —sinf 0

With these notations, the undeformed reference state is described by
R = ree, (4.11)

Now consider the membrane slightly distorted from the reference state. Any
deformed state of the membrane without any overhangs can then be parameter-
ized by using the normal vector N in the reference state (N = (R, X Ry)/
IR1 X Ro| = e,) in the following way:

r=R+ £€0,b,0N = [ro + €(8,d, )], 4.12)

here the variable €(0, $, f) represents the transverse (out-of-plane) displacement
field which can generally depend on time ¢. A straightforward calculation up to
first order in terms of the out-of-plane displacement € yields the following ex-
pression for the normal vector:

10 1 o€

~e, — — - — ¢4, 4.13
n=e roaee" r031n98¢e¢ ( )
and for twice the mean curvature H and the Gaussian curvature K:
2 1
2H= ——+ <2+ V2)€(0, 4,1 4.14)
ro ro
and
1 1 )
K=— —=@2+V)0b,4,1 (4.15)
rp rp
respectively, where
1 o 0 1 9?2
Vi=———[sin0—| + - 4,
L sin 6 00 (sm 89) sin? 6 a2 (4.16)

For our later calculations, it is convenient to expand the function €(6, ¢, ?) in
terms of the spherical harmonics Y,.(0,):

£0,0,8) = 2 L) Yum(0, d) 4.17)

As usual, we have €5,() = (—1)€, —,(¢) in order to ensure that the displacement
field is real (the asterisk denotes the complex conjugate value) and the summation
runs over n = 0,1,2, ... and |m| < n. Hereafter, the well-known relation

ViYun(8,d) = —n(n + 1)Yum(0, $) (4.18)
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will be used frequently.

The change in the bending energy H,, (see Eq. (4.5)) and the area A due to the
deformation Eq. (4.12) have been calculated by several authors [14-18]. Up to
second order in terms of €., the results are summarized as

Hp, = 2mx(coro — 2)? + \[ZEKCOI’()(C()I’O — 2)@
ro

2
+ 2 %K{[n(n + DP - (2 + 2coro — %c%r%) n(n + 1) + c%r(z)} Iemz"|

ro
(4.19)
and
A =~ Ao + 2V4mroloo + 2. [1 + %n(n + 1)] o (4.20)
where Ao = 4wr3. On the other hand, the volume V is given by
V =~ VO + mrozeoo + o z |’enm‘2 (4'21)

with Vo = (4n/3)r3.

Although many arguments concerning the constraint will be discussed in
Sec. VI.A, we shall consider here the case where the total volume is kept constant
during the shape deformation. This can be easily incorporated by using Eq. (4.21)
for the volume, where we require V — Vo = 0. Then we have

' 2
NS 5] i 422)

nm 10

where the prime in the summation indicates that (n, m) = (0,0)-mode is excluded.
Hence the constant volume constraint leads to the elimination of the €oo-terms. In-
serting this into Eqgs. (4.19) and (4.20), the shape energy Eq. (4.5) can be calcu-
lated apart from the constant terms as [19]

I{fz Z %‘(n - 1) (n + 2)Snm|‘enm|2 (4.23)
where
1 24
Sym = 2, + :—2[n(n + 1) — 2¢coro + 'Z—C%rg:l (4.24)
0

is the effective surface tension and will be more generally introduced in Sec. VL.B.
Since Eq. (4.23) depends only on » but not on m, the shape energy has (2n + 1)-
fold degeneracy.
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With the use of equipartition theorem (or straightforward Gaussian integra-

tions), the average fluctuation amplitudes are easily estimated from Eq. (4.23) as
ksT

n— 1@+ 2)Sum

((€um) = ( (4.25)
where kg is the Boltzmann constant and T is the temperature. It is important to re-
alize that Eq. (4.25) is valid only for n = 2, since n = 1 corresponds to the simple
translational sideways displacement of the droplet as a whole requiring no energy.
This mode is essentially related to the Brownian motion of the vesicle and will be
discussed in Sec. VLE.

V. POLYMERIZED VESICLES
A. Polymerized Membranes

Recently, the properties of polymerized membranes have attracted a lot of atten-
tion. In these membranes, the molecules form a two-dimensional network of fixed
connectivity. In biomembranes, these networks often consist of semiflexible poly-
mers and then have a relatively large mesh size. One example is the network of
spectrin molecules which is attached to the plasma membrane of erythrocytes; the
latter network has a mesh size of 160—200 nm [20]. A polymerized network with
a much smaller mesh size is contained in the cell wall of bacterial cells. These net-
works are composed of peptidoglycan molecules and are capable of resisting great
stress since bacteria exhibit an internal turgor pressure [21]. Artificial polymerized
membranes can be also synthesized from bilayers of polymerizable lipids by irra-
diating ultraviolet light [22]. This technique typically produces network patches
whose lateral extension is the order of 10-20 nm.

So far, the theoretical work has focused on polymerized membranes which
are flat in their undeformed state. It has been found that, in spite of their two-
dimensional character, these membranes exhibit a low temperature phase which is
rough but not crumpled [23]. The energy of an undulation mode with wave vector
q is expected to scale as g*~" with m > 0. The existence of such an uncrumpled
phase has been confirmed by many computer simulations for open polymerized
membranes [24-27]. The value of r is still a matter of some controversy [28-30].
Likewise, Monte Carlo simulations of polymerized vesicles showed that flaccid
vesicles exhibit uncrumpled configurations and the mean-squared radius of gyra-
tion is proportional to the number of monomers on the membrane [31,32].

In the present section, we investigate the shape fluctuations of polymerized
vesicles (or shells) which are curved in the undeformed state. For such a shell, the
stretching deformation which accompanies the bending deformation is a first-
order effect while it is only a second-order effect for a flat plate. Thus, for a dis-
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placement € along the normal direction, the strain tensor is proportional to € and
€2 for shells and plates, respectively. Therefore, one expects that the shape fluctu-
ations of polymerized vesicles will be effectively suppressed. For mathematical
simplicity, we investigate this coupling between bending and stretching modes pri-
marily for the case of spherical vesicles. However, one should keep in mind that
this coupling is present for arbitrarily curved polymerized membranes.

It has been argued that a polymerized or solidlike membrane with a relatively
small shear modulus or a relatively large bending rigidity should exhibit a pro-
nounced crossover between fluidlike behavior on small scales to solidlike behav-
ior on large scales [28]. For membranes which are flat in their undeformed state,
this crossover is again a consequence of the nonlinear terms in the strain tensor.
Here we will show that, for curved shells, such a crossover behavior arises already
within the linearized theory.

B. Stretching Energy

By regarding the polymerized membrane as an elastic shell, its elastic deforma-
tion energy is derived here in accordance with classical shell theory [13,33,34].

At zero temperature, the membrane is supposed to be in the (undeformed) ref-
erence state described by r = R. If the membrane is stretched, the distance be-
tween two neighboring points in the membrane is changed. This change can be
expressed by the strain tensor u;; defined by

l .
uj = E(gij - Gy) (5.1

where G;; represent the metric tensor in the reference state; i.e., G;j = R; - R;. The
mixed strain tensor is obtained by raising one of the indices according to

uil = upgh (5.2)

According to the elasticity theory of thin elastic sheets conventionally known
as shell theory, the deformation energy of an isotropic sheet is given by

H, = Hy + H; (5.3)
where
1
H; = {[—2- ANui)? + ;Lu,-fu,-'] dA 5.4)

is the stretching energy. The parameters A and . are two-dimensional Lamé coef-
ficients. As a generalization of Eq. (4.12), the deformed state of the shell can be
parameterized in general by

r =R + ui(s)R; + £{(s)N (5.5
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The variables ui(s) represent two lateral (in-plane) displacement fields and €(s)
represents the transverse (out-of-plane) displacement field as before. The strain
tensor can be expressed in terms of the components of these displacement fields.
Up to first order in the displacement » — R, the mixed strain tensor turns out to
be [13].

1
uj = E(Dfu,- + DuJ) — €H;J (5.6)

where H;/ is the mixed curvature tensor in the reference state; i.e., HiJ =
N - RixG%. Here we see that the strain tensor is proportional to € provided H;/ # 0.

C. Spherical Polymerized Vesicles

We now consider spherical vesicles as one of the simplest nontrivial examples
which exhibit the intrinsic curvature effect. The case of cylindrical polymerized
vesicles was discussed by Komura and Lipowsky, and they derived essentially the
same results as here [35].

Let the radius of a polymerized sphere ro. Equation (4.10) is again employed as
a local basis. The stress tensor for a sphere is known as [13,36]

R Py . £
uij = —=(Diu; + DuJ) + 8{— (5.7
2 ro

where 8{ is the Kronecker delta. In calculating the stretching energy H, it is con-
venient to use the decomposed form of the in-plane displacement such that [13]

ui = DV + e;DiY (5.8)

where ¥ and Y are scalar functions and g is the alternating tensor. It is defined
through the alternating symbol e;; as

& = Vge; (5.9)
whereas e;j 1s
e = —eyn =1, en=en=0 (5.10)

Using Eq. (5.8), Zhang, Davis and Kroll calculated the stretching energy in the
form [36]

H, = H{¢{, ¥V} + H{Y}

ﬂz(x W, 20+ ”)e(V;Ir) LA 2u

ro "o

=R gy 4 «wmr)]

M o2 o 2
+ ﬂzrg (VI + Y(VLY)] dA (5.11)
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It is important to realize here that there is no coupling term between {£,¥'} and Y
while € and ¥ couples through the term €(Vi¥), which vanishes in the limit of
ro — oo. This reflects the intrinsic curvature effect.

On the other hand, as far as bending energy is concerned, we assume that the
spontaneous curvature takes the value co = 2/ro for the sake of the simplicity in
the following argument. In this case, although we start from Eq. (5.5), only out-
of-plane displacement £ is relevant within the linear approximation. Hence, from
Eq. (4.19) the bending energy Hp is

Hy=~> %K[(n -+ 2)]2|f'%|‘2 (5.12)

nm o

Also by using Eq. (5.8), the area A and the volume V of the deformed sphere are
expressed as

A=Ay + AL, T} + A{Y)

ro r3

2
~ A + } [2—6 Lo %e(vie) +;2;e(viqr) —%\II(VE\P)] dA
0 0

1 .
Y Q— 2 .
{rf') Y(V?Y) dA (5.13)

and

V=V, + V£, T} + V{Y}

: 2
~Vo+ { [e + 25 Lo - %xlr(vi«lr)] dA
ro rg 2rp

~ {—%Y(VEY) dA (5.14)
2"0

up to second order in the displacement fields. Again there is no coupling term be-
tween {£, ¥} and Y, so we shall ignore the terms including Y hereafter.

In order to decompose the displacements in terms of appropriate eigenmodes,
we use the following expansion of ¥ in addition to Eq. (4.17):

11}(99 (b) = Z \IrnerYnm(e, d)) (5 15)

If the stretching energy as given by Eq. (5.11) is expressed in terms of €, and Wom,
one obtains

+ %n(n + D[N+ 2pn(n + 1) — 2] |\I'nm|2} (5.16)
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In this expression, the Woo-mode does not enter since the corresponding energy is
identically zero (in field-theoretic language, this mode is called “zero mode”). This
implies that the €oo-mode is completely decoupled from all other modes. Likewise,
the area A and volume V are expressed as

A=A+ 2\/_ro€oo

+ Z {[l + —n(n + 1)] nmf2 — 2n(n + 1) €% Wum + n(n + 1)|‘I’nm|2}

5.17
o (5.17)
V= Vo + Vdmrioo
+ ry Z {lf,,,,,|2 —nn+ D)€W + = n(n + l)I‘I’nmIZ} (5.18)

respectively. Notice that these two equations reduce to Egs. (4.20) and (4.21), re-
spectively, when ¥ = 0.

Notice that Hj, is quadratic in the field ¥ corresponding to the phonon-like field.
Performing the Gaussian functional integrations over all (n,m)-modes of ¥ with
(n, m) # (0, 0), one obtains

[ D (W) expl—H, (€, ¥}/ksT] = exp[—Het{€}/ksT] (5.19)

where the new effective configuration energy Hes now depends only on the trans-
verse mode ¢:

Heff{e} =
1 4\ + p)?[n(n + 1)]2
nzmz [(" T D E 25 AN ) I+ 2mnn + 1) = 2 ]|e,,,,,|2
(5.20)
where
nm 2 + 2(n - 1)(”[ + 2) (521)

In the above, we have incorporated the constraint of constant volume; i.e.,
V — Vo = 0. Similar to Eq. (4.22), this is essentially equivalent to the elimination
of €oo-terms as seen from Eq. (5.18). In addition, we do not include the €o-term
since it corresponds to a simple translational motion of the sphere requiring no en-
ergy; i.e., Heg{€ = €10} = 0

For large n, Eq. (5.20) takes the simple form [36]

14

Hel€) = > %[(n — D@ + 2)Sum + Y]}mnf? (5.22)

n,m
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where the parameter

_4p(h )

A+ 2m (523)

is the two-dimensional Young modulus. This modulus describes the elastic re-
sponse of the two-dimensional sheet when subjected to an uniaxial tension. It is
interesting to note that the same modulus is also relevant if one considers a flat ref-
erence state and includes the leading nonlinear term in the strain tensor [23]. Again
by using the equipartition theorem, the average mean-squared mode amplitude is

ksT

Hmnl’) = Ty n + DS + ¥ (5-24)

The case of zero shear modulus or ¥ = 0 corresponds to fluid membranes as
studied previously. It follows from Eq. (5.24) that the presence of a finite shear
modulus or ¥ > 0 reduces the amplitude of all shape fluctuations as expected.
Hence, Y plays the role of the mass term. In the case of 3, = 0, the shape fluctua-
tions exhibit the crossover scale

2..\l/4
[* = (C%'E) (5.25)

according to Eq. (5.24). For L < L*, the fluctuations are fluid-like but are strongly
suppressed for L > L*.

As shown in Ref. 28, the crossover length for plates arising from the nonlinear
terms of the strain tensor depends on temperature. If the critical exponentism = 1
as concluded from the Monte Carlo simulations in Ref. 28, the latter crossover
length is given by L* = «/(kgTY)"2. In contrast, the crossover length for shells as
given by Eq. (5.25) is independent of temperature but depends explicitly on the
curvature radius ro.

In the rest of this section, we estimate the typical value of L* for various cases.
First, consider a polymerized membrane consisting of a thin solidlike sheet. In this
case, the elastic moduli of the membrane can be estimated starting from the elas-
tic properties of the bulk material. For an isotropic material in three dimensions,
one has two three-dimensional Lamé coefficients A3 and p3. For a membrane of
thickness a, one finds that the Lamé coefficients are

2N\3p3

N=qg—t2
% T 25

and W= aps (5.26)

while its bending rigidity « is given by

_ aba(atps) A 2p
K —_— = At

~ 300 + 20) 12 (5.27)
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This implies that
%_ a2 and L* = (roa)llz (5.28)

These estimates should apply, for example, to the cell wall of bacteria. If the ra-
dius of the sphere is ro = 1 pm and the thickness of the membrane is a = 5 nm,
one has (70a?)!2 = 70 nm which sets the scale for the crossover length L*.

Next, consider the tethered membranes which have been studied in many com-
puter simulations. For example, the networks studied in Ref. 24 are characterized
by the values Ya?/kpT = 20 and «/kgT = 1, where a is the mesh size of the net-
work. This implies that

2 1
%: ;—O and  L* =~ (na)'? (5.29)

Thus, for the accessible sizes of networks with ro = 3a — 6a, the crossover
scale L* is of the order of a, and all fluctuations will be suppressed by the
polymerization. ‘

Finally, it is instructive to consider the plasma membrane of red blood cells.
The elastic moduli of this membrane are estimated to be k = 3 X 1020 J and
Y =2 X 1073 J/m? [37-39]. This leads to ¥/k = 0.7 X 10!5 m~2, Using an effec-
tive radius ro = 1 m, one obtains the crossover length L* = 0.2 wm. The latter
length scale is comparable to the mesh size of the spectrin network and somewhat
smaller than the crossover length arising from the nonlinear terms of the strain
tensor as estimated in Ref. 28.

Recently, Sackmann and co-workers have made a detailed comparison be-
tween experiment and theory for the flickering of red blood cells which have the
shape of discocytes [40]. Somewhat surprisingly, they conclude that the experi-
mentally observed flickering shows no effect of the small but finite shear modu-
lus proportional to Y arising from the spectrin network. This is difficult to
understand especially because the discocyte shape itself should be determined by
this network.

V. HYDRODYNAMIC EFFECTS
A. Dynamics of Membranes

In order to make our understanding of the bending energy more deeply, not only
static measurements but also dynamical measurements of the membrane system
are quite important. In fact, there have been several dynamical measurements
of vesicles (fluorescence microscopy [14], optical videomicroscopy [41-47], re-
flection interference contrast microscopy [38,48,49] and microemulsions (neu-
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tron scattering [50-52], dynamical Kerr effect [53]). By knowing the relaxation
time of a small deformation of a droplet, one can determine the bending rigidity
quantitatively.

Along with these experiments, several people calculated the time correlation
function of the out-of-plane displacement for spherically closed fluid mem-
branes. The first work by Shneider, Jenkins and Webb [14] was generalized by
Milner and Safran to the case of nonzero spontaneous curvature [18]. The impor-
tant assumption in their calculations is that the total area is a conserved quantity
as well as the total volume both for vesicles and microemulsion droplets. In order
to incorporate these two constraints simultaneously, they introduced the notion of
“constant excess area” using the unknown Lagrange multiplier. They also as-
sumed that the membrane is incompressible. On the other hand, Van der Linden,
Bedeaux and Borkovec insisted that only the area should be kept constant for
vesicles, whereas only the volume constraint is necessary for microemulsion
droplets since the supply and the loss of surfactants from the bulk phase would
take place in a short enough time scale compared to the deformation of droplets
[19]. Van der Linden et al. or Komura and Seki [54] obtained different dynami-
cal correlation functions from the previous result by assuming that only the total
volume should be kept constant. Their calculations, however, correspond to the
case of zero compressibility (fully compressible). Several others calculated the
stress relaxation time upon taking the compressibility of the membrane into
account [55-60].

Recently, Smeulders, Blom and Mellema performed a viscoelastic measure-
ment on an emulsion of relatively small vesicles, ro = 40—100 nm [61-63]. A dis-
tinct feature of their observation is that there exist two relaxation processes: one
related to the translational ordering of the vesicles that are subjected to a shear
flow, and the other, appearing at higher frequencies, has been attributed to the
membrane deformation. From the characteristic time of the latter relaxation
process, they determined several elastic constants and viscosities of the mem-
brane as well as the bending rigidity by changing the size of the droplets. Their
experimental data has been analyzed according to the theoretical prediction by
Oldroyd with a modified relaxation time including the bending rigidity [64,65].
One of their interesting findings is the deformation mode dependent on the shear
modulus, although Helfrich assumed vanishing of it in his original model (see
Sec. IV.A). Viscosity of the Ls-phase in amphiphilic systems has been also re-
ported [66,67].

In this section, we give a description of the compressible fluid membrane and
the mechanical boundary condition at the interface. We show the sequence of the
stress relaxation times for several limiting cases. These relaxation times show up
in the real system as the diffusion coefficient of the droplet or complex effective
viscosity of dispersions.
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B. Compressible Fluid Membranes

Following the argument by Onuki and Kawasaki [68], the compressibility of the
fluid membrane can be implicitly taken into account through the change of the
areal density ps of amphiphilic molecules on the membrane. As the generalization
of Eq. (4.5), we start from the following shape energy:

Hy= jgo(ps) dA + j{%K(cl + c2 — co)?2dA 6.1)

where o(p;s) is the bare surface tension.

It is important to mention that due to the incompressible assumption for the am-
bient fluids (see later Eq. (6.13)), the shape energy Eq. (6.1) should be minimized
under the constraint of constant enclosed volume as before. (The ambient fluids
can be, in general, compressible; see for instance Ref. 57.) In principle, one can
also consider the situation in which k and/or ¢ depend also on p,. However, this
effect is expected to be negligibly small compared to the bare surface tension, and
we shall put these quantities as constants [55].

Exchange of molecules between the membrane and the ambient fluid takes
place through desorption and adsorption. Desorption is a thermally activated
process. The characteristic time for a molecule to remain in the membrane is pro-
portional to exp(AE/ksT), where AE is the energy barrier per molecule associated
with the desorption process. For a phospholipid in the bilayer membrane, the es-
timated typical sticking time (at room temperature) ranges from several hours to
a couple of days, i.e., = 105 s, which provides a measure of the time scale within
which a new chemical equilibrium can be attained. This estimation implies that
such a relaxation process takes rather long time in the case of bilayers made of
lipids such as red blood cells. Hence one can assume that the number of molecules
in the membrane remains almost constant during the time scale of the experiments
which is much shorter than the sticking time [69,70]. Keeping these facts in mind,
we assume throughout this chapter that the total number of amphiphilic molecules
N is a conserved quantity. Here N is given by the integral of ps over the whole sur-
face of the membrane; i.e.,

N={p,dA 6.2)

Several comments are necessary for the above assumption. Typical sticking
time scale for a single-chain surfactant in micelles is much shorter compared to
the lipids and is the order of 10-5-10-3 s. Hence, for a supramolecular structure of
surfactants, Eq. (6.2) holds only for a short time scale. One should note that there
exists also an open system, such as black films, where the lipid bilayer exchanges
molecules with the outer system. In this case, N is no longer a constant while Ps
remains unchanged with respect to the small change in the total area [69].



216 Komura

Similar to Eq. (4.6), the normal restoring force due to the membrane under the
constraint of fixed N is now given by

Fy = 23(ps)H — «(2H + co)(2H? — 2K — coH) — 2k VZH (6.3)
where 2(ps) is the apparent surface tension defined by [68]
a0 (ps
300 = 0(p) — P52 (64

The second term on the r.h.s. of Eq. (6.4) represents the reduction of the surface
tension [70].

Due to the fluctuation of the local density 8p; of amphiphilic molecules around
the equilibrium (or mean) value of p; denoted as pso, the apparent surface tension
Eq. (6.4) can be different from point to point on the surface being expressed as
2(ps) = 2(ps0) + 32(ps), where [55,68,71,72]

B azo'(ps)
_ B . — 2
SZ(PS) = Ps0 Ops with B PsO( ap% )P;=Pso

In the above, B is called the two-dimensional (in-plane) compression modulus and
is put hereafter as a constant. The former relation in Eq. (6.5) can be also regarded
as an equation of state of the membrane as a two-dimensional fluid [59].

It is known that the compressible nature of the membrane leads to a consider-
able effect on the hydrodynamical properties of the interface [73]. The change in
the membrane shape due to the motion of the surrounding fluid is coupled to the
change in p;, which in turn affects the surface tension as seen by Eq. (6.5). If ps
varies over the surface, the apparent surface tension Eq. (6.4) is not constant as
well and this fact gives rise to the tangential restoring force due to the membrane
such that [74]

Fio = gradia 3(ps) (6.6)

(6.5)

where grad,, is the a-component of the gradient operator on the surface given by

d ad

I'adJ_ =T T Mg T—
g * axa * BaxB

6.7)

while n, are components of the normal vector which should not be confused with
n; = on/ds'. (We shall use Greek indices for the range 1, 2 and 3.)

In order to construct the boundary condition that must be satisfied at the inter-
face between two viscous fluids in motion, we follow the discussion by Landau
and Lifshitz [73]. According to Egs. (6.3) and (6.6), the balance of force per unit
membrane area is expressed as

(Ileg — Iig)ng + Fijng + Fia =0 (6.8)
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or more explicitly

(g — Map)ng + gradia3(ps)
+ [23(po)H — k(2H + co)(2H? — 2K — coH) — 2kV3zHIn, =0  (6.9)

where, as given in Sec. VI.C, Il is the fluid stress tensor outside of the mem-
brane and Il is that inside of the membrane.

In addition to the equation of motion for the ambient fluids subjected to the
boundary condition Eq. (6.9), we need another equation since the variable p; has
been introduced in our problem. This is an equation of continuity of amphiphilic
molecules, expressing the conservation of the local number of molecules. Ac-
cording to the hydrodynamics of two-dimensional fluids [59,75,76], this can be
written in general as

%? + divi(psvs) + 2%% =
See Eq. (3.2) for g and v; is the velocity of amphiphilic molecules composing the
membrane and will be put equal to those of ambient fluids. (The allowance of the
slippage between the membrane and the fluids was considered by Oldroyd [65]
and recently by Onuki [58,75].) The precise mathematical definition of the term
div.(psvs) in the language of differential geometry is given in Appendix B. The last
term in Eq. (6.10) simply expresses the density fluctuation due to the local areal
change.

We comment that another way of incorporating the membrane compressibility
is to add a compressional energy term such as

H _le L P 6.11
C_2 P50 (' )

0 (6.10)

to Eq. (6.1) if the surface tension o(p;) in the first term is put as a constant (zero)
[77-80]. However, the compressibility is more generally taken into account in Eq.
(6.1) than by Eq. (6.11).

C. Hydrodynamic Equations

Here we shall give the hydrodynamic equations describing the motion of the sur-
rounding fluids. Denoting the fluid velocity around the droplet by v(), the flow
field is assumed to be the creeping flow which satisfies the stationary Stokes equa-
tion [14,18,19,81]

NV = grad PO (6.12)
together with the incompressibility condition

divv() =0 (6.13)
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Again quantities with prime refer to those of inside of the droplets while quanti-
ties without prime correspond to those of outside. In the above equations, both flu-
ids are assumed to be Newtonian in its stress behavior and Eq. (6.13) yields

o) avg))

[T = —PO8sp + 03 = —PO8ep + MO (_ +

6.14
axB OX« ( )

where () are the dynamic viscosities.

The solution of Egs. (6.12) and (6.13) in spherical coordinates is expressed in
terms of three scalar functions; y(r, £), x(r,?) and P(r,t) where { and x give solu-
tions to the homogeneous equation V2v = 0. Since all of these functions satisfy the
Laplace equation (obviously V2P = 0), they can be expanded in terms of solid
spherical harmonics:

1) = Zm Youm(?) (;ro) Yun(6, ) (6.15)

X' = nzm Xnm(2) (;r;) Yun(8, $) (6.16)

P'(r,0) = 2 Ph(t) (ri) Yum(0, &) (6.17)
n,m 0

and

/ n+l ’

lli(l', t) = nzr;l ll’nm(t) (?) Ynm(ey d)) (618)
! ro n+1

X(r’ t) = %’ Xnm(t) (7) Ynm(e, d)) (6 19)

n+l1
P(r,1) = Z Poun(2) (r_:) Yum(0, b) (6.20)

describing inside and outside of the fluid, respectively. For the pressure fields P’
and P, we included (n, m) = (0,0) mode (without prime in the summation) due to
the existence of the finite nonfluctuating hydrostatic pressure which satisfies

(Poo — Poo)rg + 23(pso)rd + kcoro(coro —2) =0 (6.21)

This relation is called the capillarity condition [19,54], and comes from the re-
quirement that the undeformed reference sphere Eq. (4.11) is always a solution of
the equilibrium shape equation Eq. (4.8) after setting 3, = 2(ps0).

According to the general solution of the Stokes equation given by Lamb [82],
the velocity field inside of the droplet is given by [81]
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3! n+3
! — ! + ! t + PI 2 d
v'(r, 1) %1 Y, (Dgrad + x,,.(Orot r 2+ D@n + 3) am(E)régra
n ry
- P, Or{l— ) Y0, 6.22
while the corresponding solution for the outside the droplet is
! n—
v(r,©) — ve(r,t) = > Unm()grad + Xpm()rot r — ——————— B(t)r2grad
nm 2nn(2n — 1)
+1 n+1
L Pur|[2) (@, ) (6.23)
nn(2n — 1) r

where v=(r, f) is the unperturbed flow given by the boundary condition at infinite
distance from the droplet and will be set equal to zero here. In Eqs. (6.22) and
(6.23), both the gradient and rotation operators act on the solid spherical har-
monics outside the large parentheses as well. Lamb showed that the radial compo-
nent of the velocity involves ¢ and P while r - rot v is only a function of x [81,82]
and the terms involving x always separate out in the course of the calculation.
Hence, as far as our present purpose is concerned, we can ignore x{? without loss
of generality and this simplifies the problem to some extent [14,18,19,81].

D. Stress Relaxation Time

In this subsection, we calculate the sequence of the stress relaxation times for
spherical fluid vesicles within which the motion of the membrane surface is over-
damped. The restoring force of the membrane balances with the viscous resistance
force due to the surrounding fluid after a short initial period of motion. In this case,
the components of the out-of-plane displacement € obey the equation

” o Cm(2) (6.24)

Hence all the time dependence will be taken into account through the factor of
exp(—t/Tnm).

As for the boundary condition, we employ the stick boundary condition which
was used by several authors before [19,54,59]. This condition requires that the
velocity of the molecules composing the membrane and the fluid velocity on
both sides of the membrane are equal. Hence, from Eq. (4.12), the condition is
written as

N

=V =V = 6.25
v=y 14 » ( )
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at the surface. Since the velocity field is linear in the fluctuating amplitude €, one
can impose the boundary conditions at r = ro. For the purpose of writing down the
boundary conditions explicitly, we should keep in mind that the gradient operator
in Egs. (6.22) and (6.23) in spherical coordinates takes the form
rad"e—+eli+e L9
& "ar °ra0  *rsin0dd
The first set of boundary conditions come from the continuity of the velocity.
In the e,-direction, this is written as

(6.26)

vlr = ro) = ls [mp:,,,, +

r (%P ;IM] Ym(0, d)e " mm
ronm

_n
2n'(2n + 3)
n+1

ron.m 2n2n—1)

= —lz |:(n + l)q»'nm - r(z)an:|Y;1m(e, d))e—'h"’"

= =3 L g Y0, b)etmm (6.27)

n.m Tnm

where the last equation has been obtained by taking the time derivative of
Eq. (4.17). Likewise, the continuity of the velocity in the eg-direction leads to

1< n+3 2y,
= = ""z nm + 3Pum —e !
Ve =) = s e F Dan 1 3) ™| 38 ©
15 i n=2  ,_ |%m
= - nm T o~ . an _t/rr"m 6'2
el Ry w— ] 3 ° (6:28)

The continuity condition in the eg-direction results in the equivalent condition as
Eq. (6.28). From Egs. (6.27) and (6.28), we obtain the following relations among
coefficients of the spherical harmonics:

n+1

n
M + S Gn 1 3)0 (A D & > = 1)
1o
= —_enm (6.29)
and
n+3 n—2
;1m + 2P:lm = nm YN 2 nm .
Y G+ D@n+ ) R e w—— (6.30)
atr = ry.

Additional set of boundary conditions follow from the balance of force on the
membrane presented by Eq. (6.9). By noticing that the Laplace-Beltrami operator
is now the usual Laplacian operator on the sphere
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2
Vi = & (6.31)
ro
the force balance equations in the e, and ep-directions up to first order in terms of
¢ are given by

v, ov'
or or

(P—P') — (2n— — ' =) + 3—82([)5)
0

- }4 [E(pso)ré - K(Vi + 2coro — %c&r&)] (2 + V2)€0,db,1) =0
0
(6.32)

1dv, Jve W 1ov. dve s 1 90
—g(2 L Vo) (L e _ve) 1955y =0 (633
n(ro 90 or ro) 1 (ro 00 or ro) ro 00 (o) ©33)

at r = ro, respectively. In the above, we used the capillarity condition Eq. (6.21).
Notice also that n, = 1 while ng = —(1/rg)(0€/06) which is proportional to £ to
the lowest order.

In order to eliminate 8%(p;) from the above equations, we notice that the lin-
earized equation of continuity can be written from Eq. (6.10) as [59]

—8p; = —pgo diviy; — ——— 34
a P Ps0 CILY ro ot (6.34)
where
divyys = _6 (sin Ovg) + _8 (6.35)
b ro sin 0 {00 9 o Yo '

is the usual two-dimensional divergence of v, in the spherical coordinate. From
Egs. (6.5), (6.25) and (6.34), we have

2 2B
é—tSE(ps) = Bdivwy’ + o

B Z’ n+3
=-= + 1)[bnm + Pt § | Yam(8, d)e/mm
o )[¢ 20'(n + D(2n + 3) r°]Y (©.9)e
2B< 1
— 22— ln¥un(®, b)etlnm (6.36)
rO n.m Tnm

at r = ro. Substitution of Eq. (6.36) into the time derivative of Egs. (6.32) and
(6.33) yields



222 Komura

1 ’ l"‘;lm n'(n + 1) ’
nm = ! -1 + Pum
[ (2“ R T )]

_i lli,,,,, _ nn + 1)
L frn v -2 |

-1 —(n—=1Dn+2) {E(pso)rg + K[(n + 1) — 2¢coro + l—cgr%” Com

Tnm Ty 2

2B n+3 1 4B
—=nn + DG + P3| — — — € =0
r3 n(n )<¢ 2q'(n + 1)(2n + 3) 0) Tnm o
(6.37)

and

e P ll’;zm n(n + 2) ’
Tom [2“ R 3)P”'”]

1 ~ D+ 1
[27'(”2)4,2 (nn(Zn)(j 1) )P"'"]

Tnm

B n+3 1 2B
- 3 +]- :zm+ I):lm2 _'——-—‘enm=0
e )[‘l’ 2'(n + 1)(2n + 3) r°] Tom 73

(6.38)

respectively, for n = 1.
Combining Eqgs. (6.29), (6.30), (6.37) and (6.38), one has five homogeneous
equations for five unknowns P, Urm, Prm, Unm and €,,. The nontrivial solutions

can be found when 1/1,, satisfies the following quadratic equation for each set of
(n, m) [59]:

1\2 1
Anm(—) - Bnm( ) + Cnm =0 (639)
Tnm Tnm

where

=[2(n — 1)(n + 1)E + 2n2 + 1][(2n2 + 4n + 3)E + 2n(n + 2)] (6.40)
Snm
MNro

Buym =—(m — Dn(n + 1)(n + 2)(2n + 1)(E + 1)

+ -Tlin(n + D[(n — 1)(2n2 + 5n + 5E + (n + 2)(2n2 — n + 2)] (6.41)

B nm
Cnm S

(n — Dn2(n + 1)2(n + 2) (6.42)

where E = n’/n and the effective surface tension S, is now
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1
Sim = Z(pso0) + % [n(n + 1) — 2coro + Ec(z)r%] (6.43)
0

Notice that this equation is the generalization of Eq. (4.24).
We list below the limiting expressions of 7. according to the relation between
B and Sy

1. B> Sus > 0: This limit corresponds to the case where the membrane is in-
compressible. Taking the limit of B/S,, —* <, we find

1 Swm (n—Dnn+ 1)n + 2)

Tom - mro(n—1)2n2+5n+5E+ (n+ 2)2n2 —n + 2) (6.44)

2. Sum > B > 0: In the limit of S,,/B — <, we have
B nn+1

i " nro @2n +( 1)E -)|' 1) (6.45)
3. Swx > B = 0: In this limit the membrane is fully compressible:

1 _ Srm (n—Dnrn+ Dn+2)2n+ 1)E+1)

Tam Mo [2(n — D(n + 1)E + 2n2 + 1][(2n2 + 4n + 3)E + 2n(n + 2)]

(6.46)

4. B > S,» = 0: In this case we have

1 B nm+ Di(n—1)2n +5n+5)E + (n+2)(2n2 — n + 2)]
Tam nro [2(n — 1)(n + 1)E + 2n2 + 1][(2n% + 4n + 3)E + 2n(n + 2)]
(6.47)

Equation (6.44) was first derived by Schneider, Jenkins and Webb for ¢o = 0 and
E =1 [14] and generalized to co # 0 by Milner and Safran [18] or by Onuki for
E#1 [58]. The more general case including the membrane viscosity was dis-
cussed by Fujitani [59]. Equation (6.46) was calculated by Lisy [56] or by Komura
and Seki [54].

E. Diffusion Coefficient

In this subsection, we calculate the diffusion coefficient of a fluid vesicle. We fol-
low the method by Edwards and Schwartz who proposed the theory of stochastic
dynamics of a deformable membrane [83-85].

From Eq. (4.23), the equation for £,,, should be of the form

3 3,
o e 0y —m

= —Kum(n — D@ + 2)Sumloum (6.48)
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in the absence of thermal agitations. Combining this result with Eq. (6.24) and the
expressions of T, in Sec. VLD, one can find K..... One of the important outcomes
of K. is that the diffusion coefficient of the deformable droplet is identified with
n = 1 mode as

3
D= kBT(— Kn=1_m) (649)
47
Corresponding to the case of B > S, > 0 (see Eq. (6.44)), we have
+
Ko = — nin + 1) (6.50)

T - DR+ 5n+SE+ (n+ 2)2n2 —n + 2)
with which the diffusion coefficient is

D= ksT
6mMro

(6.51)

This is the well-known Stokes formula for a solid sphere, and does not depend on

!

n.
On the other hand, corresponding to the case of S, > B = 0 (see Eq. (6.46)),

we see that

K = 1 nn+ 1)2n+ 1)(E+ 1)
"o [2(n — D(n + 1DE + 2n2 + 1][(2n2 + 4n + 3)E + 2n(n + 2)]
(6.52)
and hence
_ keT' E+ 1
b= 27mro 3E + 2 (6.53)

which coincides with the old result by Hadamard [86] and Rybczynski [87], who
did not take into account the deformation of the droplet. Equation (6.52) was ob-
tained by Edwards and Schwartz for E = 1 [85] and generally by Komura and Seki
[54]. Notice also that Eq. (6.53) reduces to Eq. (6.51) when E — oo,

F. Complex Effective Viscosity

Dispersions of small spherical droplets can be regarded as a homogeneous fluid
when we are concerned with the phenomena occurring in much larger length scale
than the average size of the dispersed droplets. One example is the rheological be-
havior of dispersions where one asks the stress needed to cause a given bulk mo-
tion. On measuring the rheological property, a dispersion can be considered as a
“homogeneous” fluid with an effective viscosity. Here we have addressed the term
“homogeneous” in a statistical sense, since the exact position and motion of
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droplets may differ for different realizations of experiments even if the macro-
scopic conditions such as the boundary conditions are prepared in the same man-
ner. Hence we may observe, in principle, the ensemble average of the fluid velocity
(v) instead of its exact value v. However, the ensemble average cannot be calcu-
lated directly and we assume the ergodicity property of the system, namely, the
equality of the ensemble average and the volume average.

In fact, study of the effective viscosity of dispersions has a fairly long history
and its theoretical basis has been well established. The first hydrodynamic calcu-
lation was given by Einstein for suspensions of solid spheres in the steady shear
flow [88]. Taylor extended Einstein’s approach to the liquid droplets in the con-
tinuous aqueous phase [89]. Later Frolich and Sack [90] and Oldroyd [64] argued
the viscoelasticity of suspensions and emulsions, respectively. In this subsection,
we show the results of the complex effective viscosity for an emulsion of fluid
vesicles. Calculations shows that only (n, m) = (2, 0) mode is relevant.

The effective viscosity n* is defined as

dve  Ovg
Iog) =¥ — +=— 6.54
(Tlap) = M <8xg ax.,> (6.54)
where only the anisotropic part of the stress tensor is of our interest (compare with
Eq. (6.14)). Batchelor derived the general constitutive equation in the form [73,
91]

OVe OV
(Ieg) =n{ — + —B) 4 c} [{leyxpny — M(vang + vgne)] dA (6.55)
where c is number of droplets per unit volume. In Eq. (6.55), the second term on
the r.h.s. represents the extra stress due to the presence of the dispersed droplets.
Since the detailed calculation is given in Refs. 60 and 92, we show here only the
final result for dilute limit:
*
™o
mn
24BS + [(23E — 16)B + 4(5E + 2)S1Q) + (E — 1)(19E + 16)()2

48BS + [2(23E + 32)B + 40(E + 1)S)Q) + (2E + 3)(19E + 16)(2?
(6.56)

where E = m'/n), Q = iowronm, S = Sy and ¢ = (4m/3)cr} is the volume fraction of
the total droplets.

The equation which determines the overdamped mode of the membrane defor-
mation can be obtained by putting the denominator of the second term of Eq. (6.56)
equal to zero. When neither B nor § is zero (B # 0 and S # 0), it exhibits, in gen-
eral, two characteristic times. On the other hand, in the case of B = S = 0, we find
a stationary m* given by
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n* S(E — 1)
n_1+2E+3 ¢ (6.57)
which was first derived by Taylor [93]. In such a case there is no force due to the
membrane and the fluid stress tensors balance at the interface. Hence the change
in viscosity is proportional to m} — m' as it should be [74].
When either one of B or S is zero or tends to infinite, only a single characteris-
tic time shows up. This case can be represented in general by the form

G

1+ ioT (6.58)

n* = me +
which coincides with the Maxwell model in the phenomenological rheology. In the
above, 7 is the relaxation time, G the relaxation strength and m.. is the constant vis-
cosity when w — co. T represents the time scale dividing the short-time Hookian
regime and the long time Newtonian regime. We shall collect the results of N, T,
G and no* = m*(w — 0) for several cases depending on the relation between B and S.

1. B>S>0:
e 5(23E — 16)
—— .
v 1 tamET3)? (6.59)
_mro23E + 32
=0 (6.60)
S 2880
T 70 (23E + 3227 (©.61)
and
+
5
Mo_142 (6.62)
M 2

Eq. (6.62) does not depend on the fluid viscosity and coincides with that of
dilute suspensions of rigid particles [88].

2. S»B>0:

Moo SE+2

=1 4 — .

N 2E+ 17 (6.63)

= E+ D (6.64)
B 6
B 9

G=————
roSE + 127 (6.65)
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and v} is identical to Eq. (6.62)

3. S>B=0:
MNeo _ |+ S(E—-1) 0 (6.66)
M 2E+ 3
_mro 2E + 3)(19E + 16) (6.67)
S 40(E + 1)
G= S —L (6.68)

T RQE+3)2°
and

m 5E+2
= =14+ @
0 2AE + 1)

(6.69)

Eq. (6.69) was first derived by Taylor for the dispersions of almost unde-
formable liquid droplets with a large surface tension [89]. The case of E = 1
in Eq. (6.69) was also discussed by Schwartz and Edwards [84].

4. B>S=0:
= f EE+3)2 ¢ (6.72)
and
Mo _ o S23E— 16) (6.73)

M 223E +32) ¢

Notice that all the relaxation times given above are recovered by calculating T2
for the corresponding cases in Sec. VI.D.

Another limit can be taken in the small frequency limit by neglecting the (22
terms in Eq. (6.56). In this case, the effective viscosity can be also expressed in
terms of the Maxwell model, Eq. (6.58), with

M=_ 4 S[(23E — 16)B + 4(5E + 2)S]

N 2[(23E + 32)B + 20(E + 1)5] ¥

(6.74)
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ron (23E + 32)B + 20(E + 1)S
T =

BS 24 (6.75)

o BS 720(4B + S)
7o [(23E + 32)B + 20(E + DSP ¥

(6.76)

and v} is identical to Eq. (6.62).

In all these cases, both M. and } approach to the Einstein’s result by taking the
limit of E = 0. It should be emphasized that as long as the membrane is charac-
terized by the nonzero B and S, the steady-state effective viscosity coincides with
that of a suspension of solid particles [73, 94]. Moreover, neither B nor S appears
in the steady-state viscosity, while the relaxation time and the relaxation strength
depend explicitly on B and S. Hence an appropriate dynamical experiments should
be performed in order to grasp the elastic properties of the membrane. Although
these statements might appear obvious in the early calculations by Oldroyd
[64,65], it should be stressed that he did not take into account the effect of the
bending rigidity k.

VIl. DISCUSSION

In order to estimate the value of the bending rigidity k from the observed charac-
teristic time, we have to eliminate 3(pso) from S in Eq. (6.43). (For the present
discussion, we ignore the spontaneous curvature co.) This can be done by an inde-
pendent observation of 2(ps) according to the capillarity condition Eq. (6.21)
[44]. In practice, however, it is difficult to perform such a measurement in a
sufficient accuracy and many people assumed that 2(ps) = 0. In such a case, it
is possible to estimate k from the measured relaxation time of the membrane
deformation [14,41-47]). Such a simplification can be justified provided
>(pso) < w/r} is satisfied. The quantitative estimation of this condition should be
done separately for bilayer vesicles and for microemulsion droplets since they dif-
fer by several decades in length scale.

For a lipid vesicle of size ro = 10~5 m, various people observed that the bend-
ing rigidity is typically k =1 X 1071 J [14,41-47] and hence we have
k/rd =1 X 1079 N/m. As for the surface tension, some people claim that it is less
than 10-5 [95] or 108 N/m [44] while others insist 2 = 1 X 10~% N/m [45]. For
a microemulsion droplet of size ro = 5 X 10~% m, the measured bending rigidities
are k = 1 X 10-20J by SANS technique [50-52] or k = 1 X 10~2! J by dynamic
Kerr effect measurement [53] yielding k/r§ = 4 X 104 or 10> N/m, respectively.
(See Table 1.) These values can be compared with the relatively small two-di-
mensional pressure 7 X 10~5 N/m [51], although they claim that it is different
from the macroscopic surface tension.
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TABLE 1 Orders of Various Hydrodynamical Time Scales?

Vesicle Microemulsion droplet

ro (m) 10-5 108
B (N/m) 10! 102
k() 10-19 10-20
k/r3 (N/m) 10-9 10—+
wc (1/s) 108 101
/7y (1/s) 104 1010
wg (1/s) 106 1010
1/75 (1/s) 107 10°
ws (1/s) 106 109
ok (1/s) 102 10°
1/7 (1/5) 10! 107

aWe used v, = 103 m/s, p = 103 kg/m3 and 7 = 10~3 Ns/m2.
bSee the text.

In either case, it is somewhat delicate to ignore the apparent tension 2(py) in
Eq. (6.43). For the simplicity of the present argument, however, we assume here
the tensionless case; i.e., 2(ps) = 0. In order to extract the property due to the
bending rigidity in an emphasized way, it is recommended to prepare droplets of
small size. _

As we have done in Sec. VLD, several limiting cases of the relaxation time have
been considered according to the relation between B and S = k/r3. The question
is, to which case does the real system correspond? By a mechanical experiment,
Evans and co-workers found B = 0.14 N/m for egg lecithin bilayers [95-97].
Therefore for a vesicle, we typically have B/S ~ Br3/k = 1.4 X 108, and the mem-
brane can be considered to be almost incompressible. It should be noticed that
even § ~ k/r is negligibly small compared to B; this does not mean S = 0 which
corresponds to the different limiting case.

Another possible argument may be given as follows. Let us regard the mem-
brane as a homogeneous elastic shell with a thickness a. According to the shell
theory [13,33], two-dimensional compression modulus B is given by

—y PR3N3 + 2u3) _

B
A3+ 23

At (7.1)

respectively (see Sec. V.C). Then one can see from Eq. (5.27) that B/S is approxi-
mately determined by B/S = (ro/a)? [46]. For a bilayer membrane, Evans took into
account the fact that membrane is not a continuum in the thickness direction and
obtained different thickness dependence of the bending rigidity as [97-99].
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_ B

K75

(7.2)
In this case we also have the same scaling behavior as B/S = (ro/a)?. For a lipid
vesicle of size ro = 10-5mand a = 4 X 10-9 m [46,62], one finds B/S = 6 X 106
corresponding to the incompressible case B > S # 0 as before. For a microemul-
sion droplet, however, since the size and thickness are typically ro =5 X 10~ m
and a =2 X 10~9 m, B and S take rather comparable values. Thus, we cannot
simply employ the incompressible condition for the interface of microemulsion
droplets and it might be better to take both B and k into account in the considera-
tion of the effective viscosity.

There are several time scales involved in the present problem; each of them re-
flecting the corresponding mode coupled to the ambient fluids. We consider now
whether these time scales can be well separated from each other. As mentioned
above, we ignore the time scales which come from the surface tension 2. In
Sec. VL.C, we used the stationary Stokes equation Eq. (6.12) to describe the creep-
ing motion of the surrounding fluids. This can be justified as long as the Reynolds
number of the fluids R = puro/v is sufficiently small (p is the fluid mass density).
For a given frequency v, Reynolds number can be given in terms of the viscous
diffusion rate 1/7, ~ n/pr3 as R ~ wT,. Hence, the above condition sets the upper
boundary value of the allowed frequency range such that < 1/7,. On the other
hand, the incompressible condition of the fluids Eq. (6.13) requires © < ¢ ~ vd/ro
where v, is the speed of the sound.

For the modes related to the compression modulus B, we have the oscillating
mode wg ~ (B/pr3)”2 and the overdamped decaying mode (or Lucassen mode
[100-102]) 1/18 ~ Blmro. Moreover there exists an additional surface mode con-
nected with the redistribution of ps for compressible membranes. This mode is
known to have an unusual dispersion law [55,56,71,72,75]:

il B\"»
o =2 l(p"qr4) (7.3)
0

For the bending modes, on the other hand, we have the oscillating mode
wx ~ (k/pr3)!?2 and the overdamped mode 1/7. ~ w/mrg. Notice that Eq. (7.3) is
derived in the limit of w > 1/1,, w, and may be irrelevant to the viscosity mea-
surement. Order estimations of these time scales both for vesicles and micro-
emulsion droplets are listed in Table 1. (Since there is no published experimental
value of B for microemulsion droplets, as far as we know, it is roughly estimated
by B ~ k/a? with a = 109 m.) For the estimation of these quantities, we used
ve = 103 m/s, = 10~3 Ns/m? and p = 103 kg/m3.

For vesicles, bending modes are observable since 1/1« < 1/7, while incom-
pressible condition for the membrane is regarded to be reasonable since wg, 1/73,
s > 1/t It can be also seen that the overdamped bending mode 1/1, is well
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separated from oscillating bending mode . In the microemulsion droplet case,
although the allowed frequency range is rather high ® < 1/1, = 1019 s-1, several
modes are in the same order close to 1/1, and might be difficult to separate
from each other. Moreover these frequency lie near the upper limit frequency
which is measurable by mechanical experiments. The longest relaxation time
/7« = 107 s~! turns out be quite large compared to the vesicles and becomes rather
comparable to 1/1p = 10° s=1. Hence, both of the modes should be taken into
account in this case as mentioned before.
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APPENDIX A: DERIVATION OF
MEMBRANE FORCE

In this appendix, we briefly give the derivation of the restoring force due to the
membrane Eq. (4.6), following mainly the calculation by Zhong-can and Helfrich
[15]. We introduce a virtual displacement denoted by €(s!, s2) which is the dif-
ference between a point on the actual surface and some point on the neighboring
varied surface 7

F=r+en (Al)

Notice that r describes not only the undeformed surface but also the deformed
shape and € can be different from the actual displacement ¢ introduced in Eq.
(4.12). Let us use gy, h,,, g and H for the metric tensor, curvature tensor, determi-
nant of the metric tensor and mean curvature of the varied surface, respectively.
The tangent vector of the varied surface is

fi=ri+en+ en; (A2)
with which we find

§ij = 8ij — 2eh; (A3)
Hence

g= g(1 — 4eH) (A4)
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The local areal change is obviously

Vg~ Vg(1 - 2¢H) (AS)
In addition, we have

g =~ gii + 2e(2Hgi — Khi) (A6)

hij = hy + €5 + e(Kgy — 2Hhy) — el (A7)

where the Christoffel symbols I'; are defined in Eq. (3.8). In the above, we have
used the Weingarten equation Eq. (3.9) and the relation

higi*hy = 2Hhia — Kgi (A8)

From Egs. (3.5), (A6) and (A7), one can obtain the mean curvature of the varied
surface as

A 1

H~=H + e¢(2H? — K) + Eg"fD,-ej . (A9)

Next the first variation of Hy (Eq. (6.1)) is given by

SH; = 35 dA + 3H, (A10)
where

SH, = 8}‘21‘K(2H + co)?2 dA

= %K[(zﬂ + €0)28 dA + 4(2H + co)(3H) dA] (Al1)

Using that that the first variation of A is

5§dA = —f 2¢H dA (A12)
and after the integration of €; and €, by parts, we obtain

SH; = § e[—25H + wQH + co)@H? — 2K — coH) + 2kVH]dA  (Al13)

where V%; is defined by Eq. (4.7). Finally the restoring force due to the membrane
is calculated by

SH;

A= 7%

(Al4)

which simply leads to Eq. (4.6).
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APPENDIX B: DEFINITION OF
DIVERGENCE OPERATOR

In this appendix, we give the mathematical definition of the divergence operator
appearing in Eq. (6.10) in the general geometry [76]. First we raise the indices by

ri = gir, (B1)

with which we define —
V= r (B2)

Then the divergence operator stands for
1

oi(Ngpsv! B3
s (Vgpsvy) (B3)

diVJ_( psv_y) =
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