Deformations of adhering elastic tubes
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Abstract. Deformation of an elastic tube adhering onto a substrate due to van der Waals attractive ipteraction is investigated
by means of computer simulation and scaling theory. The sum of the stretching, bending, and van der Waals energies of the
tube is numerically minimized using the conjugate gradient method. The onset of the deformation and the total energy can be
scaled with a variable C, /N2, where C,, is the bending constant and N the size of the tube. For a significantly deformed tube,
the scaling relation between the bending energy and the bending constant is explained within the shell theory.

INTRODUCTION

Carbon nanotubes have attracted great interests due not
only to their peculiar structure, but also to the electri-
cal, chemical, and mechanical properties associated with
these structures. Examples of the possible applications
are such as nanowires or electronic devices. The electric
transport through nanotubes is studied after their deposi-
tion on a substrate with which they interact. It is known,
however, that the resistivity of the nanotube is affected
by their elastic deformations. Since there is little control
over the alignment and the shape of adsorbed nanotubes,
it is crucial to know how they deform on the substrate.
There are several works which report on the deforma-
tions of nanotubes due to the van der Waals (vdW) in-
teraction. Multiwalled nanotubes can even fully collapse
along their length [1, 2].

In this paper, we theoretically investigate the deforma-
tion of an elastic nanotube adhering onto a rigid substrate
due to the vdW attractive interaction.

MODEL AND RESULTS

Consider a cross section of an elastic tube interacting
with a rigid substrate. We assume that the axial deforma-
tion is uniform along the tube. The elastic tube is mod-
eled by a circular network of N beads connected by har-
monic springs. The adhesion energy is taken into account
through the vdW interaction between each of the bead
and the substrate.

The discretized stretching energy is given by the sum
over Hooke’s law of each spring:
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FIGURE 1. Equilibrium configurations of the deformed
tubes for various values of the scaled bending constant ¢, =
C,/€. The tube globally flattens for ¢, = 0.1, but hardly de-
forms for ¢, = 1000.

Here, C; is the spring constant, L; is the length of the i-th
spring, and L, is the natural length of the spring taken
here as a constant. The discretized bending energy, on
the other hand, is calculated by
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where C, is the bending constant, #; is the unit normal
vector of the i-th spring, and the sum is taken over
each pair of springs which share a common bead. The
adhesion energy of the tube is taken into account through
the vdW interaction between each of the bead and the
substrate:
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where z; is the height of the i-th bead from the substrate.
When the adhesion energy per bead is plotted against z;,
€ corresponds to the depth of the energy minimum.

The total energy E, = Es+ E, + W is numerically
minimized in the computer using the conjugate gradient
method. As for the initial condition of the simulation,
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FIGURE 2. The bending energy E, as a function of ¢, for
size N = 200,500, 10600. We see two scaling behaviors: Ey ~

¢,/N and E, ~ ¢ for large and small ¢, , respectively.
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each bead is located on a circle with a distance being
equal to the natural length of the spring L. Since there
is no spontaneous curvature in our model, even the unde-
formed tubes cost certain curvature energy.

In equilibrium, each spring relaxes almost at its natural
length. For a large bending constant such as ¢, = 1000,
the tube hardly deforms and keeps its circular shape in
spite of the adhesion. As c, is reduced to ¢, = 10, a con-
siderable deformation occurs and the contact area (line)
increases significantly. Further decrease of c,, results in a
configuration such as ¢, = 0.1 in Fig. 1. Here a flattening
of the tube is observed, and the curvature is localized at
the regions close to the contact line.

For almost undeformed tubes on which the curvature
is uniformly distributed, the bending energy can be read-
ily estimated. Since the radius of curvature is propor-
tional to the number of beads N in such a case, the bend-
ing energy becomes Ey ~ N(C,/N?) ~ C,/N. This linear
dependence of E, on C,, in the undeformed region can be
checked in Fig. 2 where we have plotted E, against C,.
For smaller c,, on the other hand, all the data collapses
on a single straight line regardless of the tube size N. In
this strongly deformed region, we observe a nontrivial
scaling behavior, i.e., E, ~ ¢27>. This nontrivial scaling
can be understood within the shell theory.

When a tube of radius R is largely deformed on a sub-
strate, a contact area develops. For such a deformation,
the elastic energy is localized in the two parallel straight
strips near the edge of the bulge. We apply the argument
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FIGURE 3. The absolute value of the total energy per bead
|Exe|/N as a function of the scaling variable 1 = ¢, /N2. The
scaling E,o,/N ~ ¢t holds in the “bending regime”, whereas
E /N asymptotically approaches to —1 in the “adhesion
regime”.

of Ref. [3] for a tube, and the total elastic energy becomes
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where H is the depth of the bulge being fixed and given.
The scaling relation Eq. (4) accounts for the dependence
of E, on C, as seen in Fig. 2. Notice that, in our simula-
tion results, the contribution of the equilibrated stretch-
ing energy E; is negligibly small compared to that of
other energies, i.e., Es+ E, ® E,.

In Fig. 3, we have plotted the absolute value of the
total energy per bead |E o, | /N as a function of t = ¢, /N?
for three different tube sizes. Notice that E,,, can take
negative value due to the vdW interaction when the tube
is strongly adsorbed. It is remarkable that all the data
collapse onto a single curve irrespective of the tube size
N. Hence the total energy can be scaled with ¢, /N2,
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