A lattice model of the protein diffusion in membranes
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Abstract. Diffusion of a protein in a biological membrane is studied by Monte Carlo computer simulations. The membrane
is modeled as a two-dimensional lattice in which a protein and lipids diffuse under the action of Brownian motion. We
calculate the diffusion coefficient of the protein as the concentration of lipids and the protein size are changed. These results

are compared with our analytical calculation.

INTRODUCTION

Biological membranes consist of various lipid molecules
and protein molecules, and their fundamental structure is
a lipid bilayer including proteins. Since the “fluid mo-
saic model” was proposed by Singer and Nicolson in
1972, lipids in membranes have been considered that
they are distributed uniformly, and can move almost
freely. Later, dynamical domains which are organized by
sphingolipids and cholesterol were observed in biologi-
cal membranes. These domains are called “rafts”.

Recently, new techniques of microscopy have made it
possible to observe the motion of individual proteins or
small clusters of lipids on the cell surface [1]. In these ex-
periments, proteins or lipids are labeled with a highly flu-
orescent label or with colloidal gold microspheres. The
shape of the trajectories implies various biologically im-
portant processes, such as binding to immobile species,
free diffusion, hindered diffusion, directed transport, and
trapping of particles in bounded microdomains.

In this paper, by using a lattice-model of a biological
membranes, we investigate both numerically and analyt-
ically how the diffusion of a protein depends on its size
and the concentration of lipids. The present study is the
extension of Ref. [2] in which the concentration of lipids
was fixed.

MODEL AND RESULTS

The key assumption embodied in the stochastic model
is that the force exerted by the medium on the diffusing
molecule consists of a stationary, rapidly fluctuating ran-
dom forcg dLie'_to’i'nolecular bombardments which are in-
dependent of the velocity of the diffusing molecule.The
drag force proportional to the velocity is supposed to
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FIGURE 1. A two-dimensional square lattice model of a
biomembrane. The square represents a protein, and white cir-
cles are lipids. The size of a protein is denoted by the number
of sites occupied by it (M2 = 3 x 3 in this case).
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be smeared out, because the water molecules immedi-
ately conduct away the momentum from the diffusing
molecule.

We consider a two-dimensional square lattice model
as shown in Fig. 1. A protein is represented by the
square which covers M x M lattice sites, and lipids are
represented by the small particles which occupy a single
site. We have performed Monte Carlo (MC) computer
simulations for th: stochastic model with a 128 x {28
square lattice. Periodic boundary conditions are used
in the simulations. The lipids, whose concentration is
denoted by c, are initially distributed on the lattice so
that they do not overlap with the M x M square (protein)
or with each other.

In the computer simulation, a lattice site is randomly
chosen initially. When there is a particle on the selected
site, the particle is moved randomly into one of the four
nearest neighbor lattice sites. The movement is executed
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FIGURE 2. The protein diffusion coefficient D as a function
of its size M. The symbols are MC results. The solid, dotted,
and dashed curves represent Eq. (3) for ¢ = 0.1, 0.3, and 0.5,
respectively.

if and only if it does not lead to any overlapping either
among particles or between the square and the particles.
A set of attempts which, on average, covers the entire
lattice defines one Monte Carlo step (1 MCS).

The diffusion coefficient of a kK MCS interval is calcu-
lated by

/
1{r3(k)) ‘ )
4 k
where r(k) is the absolute value of the displacement vec-
tor during an interval of k MCS’s, and the average (- --)
is taken for the displacement data over one simulation.

In the long-time limit (k — o), D(k) converges to a
fixed value. Figure 2 shows the calculated diffusion co-
efficient D as a function of the protein size M, whereas
Fig. 3 gives that as a function of the lipid concentration
c. Note that the case of M = | is identical with self-
diffusion of lipids. We see in Fig. 2 that the size de-
pendence of the diffusion coefficient becomes more pro-
nounced for larger ¢. On the other hand, the lipid concen-
tration dependence of the diftusion coefficient is stronger
for larger M as shown in Fig. 3.

As an analytical approach, we extend the Nakazato-
Kitahara theory [3]. The number of sites is denoted by N,
and the number of sites occupied by lipids is denoted by
N, The average concentration of lipids is then defined as
¢ = Ny/(N — M?). After some calculations, the diffusion

coefficient is written in the form

D(k) =

D(M,c,k) = (1 -c)f(M,c,k)Dy, 2)

where D, is the diffusion coefficient in the case of ¢ =0,
and f(M,c,k) is called as the “correlation factor’. The
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FIGURE 3. The protein diffusion coefficient D as a function
of the lipid concentration c. The symbols are MC results. The
solid. dotted, and dashed curves represent Eq. (3) forM =1, 3,
and 5, respectively.

analytical approximate solution of D is obtained as

D(M,c,k)=%(1-c)M<1--%). (3)

where

A=2ak)) ("f) d(1—eM, (4)

i=]

B= 1+(1—c)M—a(k)[1+(1—c)M
L(m\ ; i
—ZZi(i)c(l—c)M ] (5)

Here, a(k) is the lattice Green’s function. In the long-
time limit (k — oo), a(k) approaches to 0.363. Equation
(3) is plotted in Figs. 2 and 3 by various lines. When
M =1, the analytical result is in complete agreement
with the MC simulation result as seen in Fig. 3. In Fig. 3,
the size dependence is well described by Eq. (3) for
larger c.
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