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Abstract. Models of self-avoiding polymerized and fluid vesicles are investigated
by Monte Carlo simulations. Polymerized vesicles are not crumpled and the mean
squared radius of gyration is proportional to the number of monomers on the surface,
ie., R? ~ NY with v = 1.0. Fluid vesicles, on the other hand, exhibit crumpled
shapes with v = 0.8. Polymerized vesicles under constant pressure difference § between
inside and outside are also studied. Shape transformation to inflated vesicles (5 > 0)
and to deflated vesicles (5 < 0) is analyzed by means of finite size crossover scaling
assumptions. The crossover to inflated vesicles is governed by the reduction of the
roughness on the surface. The crossover to deflated vesicles is ruled by the change of
their sizes, i.e., from v = 1.0 to v = 0.66.

1. Introduction.

Properties of flexible sheet polymer networks have received great attention in connec-
tion with both biophysics of membranes and statistical mechanics of random surfaces
1].

A spherically closed membrane is called “vesicle” and is exemplified by red blood
cells. This type of thin-walled vesicles are of current interest as models of cell mem-
branes which exhibit many different shapes {2]. This shape transformation is caused by
changing, e.g., the osmotic conditions, the composition of the lipid or the temperature.
One of the advantages of simulating vesicles instead of open membranes is to remove
uncertainties with respect to the boundary effects of open membranes.

In the present proceeding, we report on Monte Carlo studies of polymerized [3,4]
and fluid [5-7] vesicles. Polymerized membranes are realized not only in biological
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systems, such as, the spectrin protein skeleton of eurythrocytes, but also in artificial
membranes, for example, by polymerizing amphiphilic bilayers. In contrast to linear
polymer chains, polymerized membranes may exhibit a low temperature flat phase due
to phonon-mediated long-range interactions in spite of their two-dimensional character.
On the other hand, most of the membranes known in life sciences are fluid. There the
configurational arrangement of the monomers represents a distorted surface on which
monomers can be able to diffuse freely among each other. We have also investigated
polymerized vesicles subjected to osmotic pressure differences

Ap = pin — Pout» (1)

measured between inside and outside [8].

Our simulation has been performed in (d = 3)-dimensional space, using vesicles
which have (D = d —1 = 2)-dimensional surfaces (three-dimensional vesicles) as in the
real world. The self-avoidance of the surface is also taken into account.

The outline of this article is as following. First we explain the models of polymer-
ized and fluid vesicles and the simulation techniques. In section 3 and 4, we present the
results for flaccid polymerized and fluid vesicles, respectively. In section 5, the scaling
analysis for polymerized vesicles under constant pressure difference is described.

2. Models and Simulation Techniques

The initial configuration of vesicles in (d = 3)-dimensional space consists of a triangular
mesh as a simplest approximation for (D = 2)-dimensional membrane [5,7]. Starting
from an icosahedron as the original network, we add new points on each triangle
followed by a subsequent rescaling of all bonds to the desired length. This procedure
insures that most of the grid points have 6 neighbors and each bond has approximately
the same length. In the present simulation we studied vesicles consisting of N =
10 x 3* + 2 monomers with k =1,2,3, 4.

Each Monte Carlo step for vesicles consists of randomly selecting a monomer and
displacing it to a nearby location which is chosen also randomly. The energy assigned
to a particular configuration of monomers with positions {7} in (d = 3)-dimensional
space 1s

E=7Y ol -7 (2)
(i,J)
Here the summation is over all neighboring pairs of monomers (i, j) interacting by a

square-well potential, i.e.,

- 0 a <r < lmax
o(r) co otherwise. (3)

The parameter a represents the diameter of a hard sphere introduced on each grid point
and lmax the maximum length of the tether (“tethered” or “polymerized” membrane
[3,4]). The self-avoidance of the network and the finite extensibility of the tethers
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are maintained by this tethering potential. Furthermore, if a/lmax > 1/ V3, self-
interpenetration of the surface is safely prohibited [3]. In our simulation, a =1 and
Imax = V2a are used. Each attempted move of a monomer is set to be 0.1a for which
about 70% of trials are accepted.

So far we have explained polymerized vesicles and corresponding models for open
polymerized membranes have been intensively investigated [9-13]. The connectivity at
each monomer is fixed for polymerized vesicles. For fluid vesicles, however, we relax
the restriction on the fixed connectivity; we allow the monomers to exchange their
neighbors, but still keeping the rule that the topology and integrity of the structure
should be preserved.

For a triangular mesh, this' can be accomplished by the following simple “trian-
gulation” procedure [5-7). Four monomers (labeled by 1, 2, 3, 4) which are ringwise
connected by four bonds are randomly selected out of N monomers on the surface.
Since by construction the surface must be always be covered by triangles, two of the
monomers, say 1 and 3, are connected by an additional bond. A triangulation attempt
consists in removing this bond and implementing a new one between monomers 2 and
4, which is accepted if a < ! < Imax. This triangulation procedure is applied to N
randomly selected bonds after each Monte Carlo step of monomer displacement. It
should be noted that the total numbers of bonds and triangles are always preserved
during this bond-exchanging steps. »

The actual sampling of configurations is made at least every N Monte Carlo time
steps (one Monte Carlo time step corresponds to N attempted moves). Equilibrium
averages are taken over up to 10* configurations for both polymerized and fluid vesicles.

3. Polymerized Vesicles

A typical equilibrated sample of a polymerized vesicle is depicted in Fig.1 (a). The
mean squared radius of gyration, (R?), and the mean volume, (V), of vesicles are
expected to scale with the exponents vg and vy as

(R) ~ W%, (V) ~ N2, 4)

for large N. In general, the exponent vp is not necessarily equal to vy. Note that N
is proportional to the surface area.

Our Monte Carlo results for (R?) and (V) are
vr = 0.95 £ 0.05, vy /2=1.48 £0.04. (5)

These results recover our previous simulation for polymerized vesicles [5,7] and, in par-
ticular, v is in good agreement with other simulations for open tethered membranes
[6,9-12] where vg ~ 1.0. We suspect that the difference between the values of vg and
vy could be due to finite size effects and we expect vg = vy = 1.0 in the asymptotic
limit. The fact that the exponents exhibit their upper limiting value (v < 1) implies
that polymerized vesicles without any applied pressure are essentially ‘expanded.
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(b)

Figure 1. Typical equilibrium configurations of (a) flaccid polymerized vesicle, (b)
flaccid fluid vesicle, (c) inflated (Apa®/ksT = 8.0) polymerized vesicle and (d) deflated
(p = —8.0) polymerized vesicle for N = 272. Size of hard spheres is reduced so that
the connectivity can be easily seen. :

308




Reasons why self-avoiding tethered surfaces are flat have been suggested very re-
cently by Abraham and Nelson {13]. Due to short range repulsive interactions between
adjacent spheres of the membrane, a large bending rigidity is induced in membranes.
They showed that this intrinsic bending rigidity is large enough to produce the flat
phase.

Although vesicles are in the expanded shapes (with weak asphericity), their con-
formations are still flaccid and have not reached the fully inflated size. This implies
that the surface of flaccid vesicles are substantially rough. The roughness of a surface is
generally characterized by the out-of-plane fluctuation h whose squared average scales
with the roughness exponent ¢ as [14]

() ~ 2L ©)
Ko
L is proportional to the linear length scale of the membrane size and o is the bending
rigidity which, in our case, corresponds to the intrinsic bending rigidity induced by
the self-avoidance effect. As mentioned above, tethered surfaces are uncrumpled and
one has L? ~ N. In the case of vesicles, we expect that (h?) is represented by the
fluctuation of the mean square radius of gyration, i.e.,

(B ~ V(ARY) = /(RY) - (R2)2. (1)

The Monte Carlo results for this quantity is ((AR?)?) ~ N1.2%016  Therefore the
roughness exponent is estimated to be { = 0.645 + 0.08 according to Eqs.(6) and (7).
This result is in very good agreement with estimates from previous simulations of open
polymerized membranes [6,9,12,13,15,16].

4. Fluid Vesicles

A typical equilibrated sample of a fluid vesicle is depicted in Fig.1 (b). The corre-
sponding exponents appearing in Eq.(4) for fluid vesicles are now

vp=0.80+£004, 3uy/2=123%0.05 (8)

In contrast to polymerized vesicles, Eq.(8) implies that fluid vesicles exhibit properties
in agreement with the predicted crumpled phase [17,18). Ratios of axes of inertia show
that fluid vesicles seem to have marked anisotropic ellipsoidal shapes.

The triangulation scheme described in section 2 provides for a given monomer to
escape after several bond exchanges from its original neighborhoods of monomers, and
hence represents a “fluid” particles. This view is supported by the time dependent
mean square displacement of a labeled monomer relative to the motion of the center
of mass,

r2(t) = ([7u(0) = Fe.m.(0) — Fx(t) + Fem. (%), (9)

where 7%(t) and 7c.m.(t) are the position vectors of kth monomer and the center of
mass at time ¢, respectively. The behavior of r2(t) is close to ~ %3 for fluid vesicles
while r2(t) ~ t®3 for polymerized vesicles [5].
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5.' Polymerized Vesicles under Constant Pressure Difference

The energy for polymerized vesicles under constant pressure difference is given by

E=-Ap-V+ ) ufi -7, (10)
(i,j)

where Ap and v(r) is given by Eqgs.(1) and (3), respectively (8]. We fix the pressure dif-
ference Ap and let the volume V fluctuate in accordance with the Boltzmann weighting
factor exp(—E/kpT). In other words, we have used the “stress ensemble” [19].

5.1. Inflated Regime

When positive or negative constant pressure difference is applied, the shapes of vesicles
deviate from flaccid configurations. The related crossover scaling forms are expected
to be the analog to those for planar vesicles proposed by Leibler, Singh and Fisher
[20,21] and their coworkers 22,23}, i.e.,

(R} = N*X(z), (V)= N¥/?Y(z), (11)
where v = 1.0 and z is the scaled pressure variable

Apa®

z=ﬁN“”'/3, with p-E-k-;-'f"

(12)

The crossover exponent ¢ is determined by the fluctuation of the volume at p = 0
[20,21] and is provided according to the linear response theorem,

(@vPoe (B)  ~nvor, (13)
8? =0

By putting » = 1.0 and using the Monte Carlo result for the fluctuation of the volume

which behaves like ((AV)3?) ~ N2-4420.13 one has ¢ = 1.88 = 0.26.

For large 5 > 0, one expects that the inflated vesicle approaches its sphere-like
limiting shape (see Fig.1 (c)). In Fig.2, X = (R?)/N"® and Y = (V)/N*V/? are
plotted according to the crossover scaling form Eq.(11) as a function of z = pN*¥/2.
Using the estimated crossover exponent ¢ = 1.88, one observes the collapsing of all
the data to a single curve. This result supports the scaling forms Eq.(11).

It is intuitively clear that the roughness due to the fluctuations of the surface is
decreased by increasing the internal pressure. In fact, according to our data ((A R?)?)
becomes independent of N with increasing p. Instead of presenting these raw data, we
analyzed the fluctuation of the mean squared radius of gyration for various 5 > 0 by
the crossover scaling form

((AR?)?) = N*f (BN **C). (14)

310




(=)
(o)}

o
>
|
B
ta
=
N
o
o

»,
>
1

logyg [2X(z)], logig [V (=)]

004 32|~
Yolume ,.°" 920
04 ., onu.°bo°.n9°‘°°-ﬂ°’°°’“ 2720 B
812]»
I | | j | ] 1
-2 -1 0 1 2 3 4
logma:

Figure 2. Scaling plots of the mean square radius of gyration and the volume for
the inflated (5 > 0) polymerized vesicles. Here z = pNevi? X = (R?)/NVR and
Y = (V)/N3v/? with ¢ = 1.88, vg = 0.95 and vy = 0.99 are used. X (z) is shifted to
avoid the overlap of two curves.

Here f(y) is a scaling function with f(y) = const. for y < 1. In this limit ((AR?)?)
reduces to flaccid vesicles. Fixing ¢ = 0.645, we obtained the best overlap of data if
¢ = 0.05 = 0.03. This is presented in Fig.3, where f = ((AR?)?)/N % is shown as a
function of y = gN#+(. Our results yield a power law behavior of the scaling function
according to f(y) ~ 1/y® for y > 1.

5.2. Deflated Regime

Monte Carlo results for deflated vesicles with # < 0 are analyzed by the same crossover
scaling forms as given in Eq.(11). However it was necessary to employ a different
crossover exponent ¢' = 4.40 £ 0.20 in order to obtain a collapse of all the data on a
single curve. We estimated this value from several attempts to obtain optimal overlap
of the curves for all values of N. Scaling plots with ¢’ = 4.40 is depicted in Fig.4. One
observes power laws for |z| > 104

X_ Y_

=P’ Y(z) = P (15)

with p = 0.140 & 0.007 and = = 0.185 = 0.008. These results imply that (R?) ~ N¥r
and (V) ~ N¥v/? with vg = vgr(1 — ¢'p/2) = 0.66 £ 0.08 and 3vy /2 = (3w /2)(1 -
¢'7/3) = 1.08 + 0.08.

Our result for vy is very close to the lower limiting value for the exponent v,
corresponding to the “fully collapsed” configuration (see Fig.1 (d)). It is known that

X(z) =
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Figure 3. Scaling plot of the fluctuation of mean square radius of gyration for the
inflated (5 > 0) polymerized vesicles. Here y = N*+¢ and f = ((AR?)?)/N*C with
¢ = 0.05 and ¢ = 0.645 are used.

the exponent v for a self-avoiding D-dimensional surface in d-dimensional space should
generally satisfy D/d < v < 1 which isin our case 2/3 < ¥ < 1. This compact structure
is also observed by the exponent for the volume, 31 /2, since (V) ~ Na3 is expected
for this configuration.

It should be noted that the difference between ¢’ = 4.4 and ¢ ~ 1.88 determining
crossovers in the deflated and inflated regimes, respectively, is due to the difference in
the concerning crossover phenomena; while ¢’ is related to the change of » = 1.0 to
v~ = 0.66, the exponent ¢ is related to the change of { =~ 0.65 to { = 0.
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