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Emergent stripes of active rotors in shear flows
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The shear-induced self-organization of active rotors into stripy aggregates is studied by carrying out compu-
tational simulations. The rotors, modeled by monolayers of frictional spheres, develop to stripy microstructures
only when they counterrotate with respect to the vorticity of the imposed shear flow. The average width of
the stripes is demonstrated to be linearly dependent on the relative intensity of active torque to the shear
rate. By giving insight into three collective particle behaviors, i.e., shear-induced diffusion, rotation-induced
rearrangement, and edge flows, we explain the mechanisms of formation of the particle stripes. Additionally, the
rheological result shows the dependence of shear and rotational viscosities on the active torque direction and the
oddness of the normal stress response. By exhibiting a collective phenomenon of active rotors, our study paves
the way to understanding chiral active matter.
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I. INTRODUCTION

Nonequilibrium collective motion is one of the most in-
triguing behaviors of active matter [1–3]. For a collection of
rotating active matter, such as spinning biological organisms
[4–6] and artificial rotors driven by external fields [7–12],
their rotational motion can be transferred to translations
through interactive hydrodynamic and/or contact forces, re-
sulting in spontaneous self-organization that favors rotation in
the same direction [13,14]. In the last decade, intensive experi-
mental and numerical works have studied the phase separation
of counterrotating active matter [13–16] and self-organization
of corotating active matter into dynamic crystalline clusters
[6,17–20] in both quiescent liquids and a dry environment.
By applying wall-confined shear flows, prior work [21] has
reported that the rotating particles can hydrodynamically
interact with the walls and self-organize into hexagonally
structured strings. Besides the pattern constructions [21–23],
the existence of boundaries, such as impermeable walls or
interfaces, also causes asymmetric responses and then edge
flows of the rotating active matter [15,24–27]. Studying the
features and mechanisms of collective phenomena of rotating
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active matter cannot only further the understanding of chiral
active systems but also contribute to developing potential ap-
plications and experimental schemes.

In this paper, we show with computational simulations
that a monolayer of spherical rotors, which counterrotate with
respect to the vorticity of applied simple shear flow, can self-
organize to stripelike aggregates that are featured with edge
flows. Besides the hydrodynamic lubrications, the simulations
also take into account the frictional contacts between the par-
ticles, which have been demonstrated to play a significant role
in developing microstructures and non-Newtonian behaviors
of dense passive suspensions [28,29]. The main simulation
methods are detailed in Sec. II. Section III A presents the
phenomenological results of the particle stripes, in terms of
phase diagram and average stripe widths for various simula-
tion conditions. Then we give insight into the mechanisms
of forming the stripes (Sec. III B) and predict the average
stripe width from a theoretical scope (Sec. III C). At last, in
Sec. III D, the influence of the striped microstructures on the
rheological property of the whole systems, involving shear
viscosity, rotational viscosity, and the first normal stress co-
efficient are studied.

II. SIMULATION METHODS

A. Particle dynamics

We assume that a suspension of N spherical particles, with
a uniform radius a, are constrained in a monolayer (x-y plane).
The forces and torques exerted on the particles (i = 1, . . . , N)
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include those due to Stokes drag, FS,i and T S,i, those due
to hydrodynamic (interparticle) interactions, FH,i j and T H,i j ,
those due to frictional contact, FC,i j and T C,i j , and those
applied externally, considered here to be a constant active
torque that drives particle rotations, T A. The neglect of inertia
and thermal agitations is justified for the case that the particle
size is small and the applied shear stress is strong, i.e., the
flow timescale is shorter than the Brownian timescale. Then,
the force and torque balances on one particle are given by

FS,i +
∑
j �=i

(FH,i j + FC,i j ) = 0, (1)

T S,i +
∑
j �=i

(T H,i j + T C,i j ) + T A = 0. (2)

The imposed simple shear flow can be expressed as U∞(x) =
�∞ × x + E∞ · x in terms of the vorticity 2�∞ and rate-of-
strain tensor E∞, where x is the position vector. For a constant
shear rate γ̇ , we have the nonzero elements U ∞

x = γ̇ y, �∞
z =

−γ̇ /2, and E∞
xy = E∞

yx = γ̇ /2.
The Stokes force and torque are given by

FS,i = −6πη0a[U i − U∞(xi )], (3)

T S,i = −8πη0a3[�i − �∞(xi )], (4)

where η0 is the solvent viscosity and U i and �i represent the
velocity and angular velocity of particle i, respectively. For
the interparticle hydrodynamic interactions, we assume they
only come from lubrication effects. This is justified that for
dense suspensions subjected to strong active torques and con-
tact forces, far-field or many-body hydrodynamic interactions
play minor roles. The lubrication force and torque, exerted by
particles j on i, then are given in the coupled form of(

FH,i j

T H,i j

)
= −RL,i j ·

(
U j − U∞(x j )
� j − �∞(x j )

)
+ R′

L,i j : E∞, (5)

where RL,i j and R′
L,i j are the resistance matrices for the hy-

drodynamic lubrication between particles i and j [30]. In the
current paper, they can be simply described by the leading
terms of the pairwise short-range lubrication interaction [31].
We also regularize the lubrication resistance to allow particle
contacts [32].

The interparticle contact force and torque are estimated
using a simple spring-and-dashpot contact model [33,34]. The
force exerted by contacted particles j on i is composed of
normal and tangential components, given by

F (n)
C,i j = H (−hi j )(knhi jni j + γnU (n)

i j ), (6)

F (t)
C,i j = ktξi j, (7)

respectively. Here kn and kt are the normal and tangential
spring constants, respectively, hi j and ni j represent the sur-
face separation and center-to-center unit vector (from i to j)
between the particles, respectively, γn is the damping con-
stant, U (n)

i j ≡ ni jni j · (U j − U i ) is the relative normal velocity,
H (x) is the Heaviside function, and ξi j denotes the tangen-
tial stretch vector. Without contacting (hi j > 0), ξi j = 0. But
after the particles contact at time t0 (hi j � 0), the tangen-
tial stretch vector evolves as ξi j (t ) = ∫ t

t0
U (t)

i j (t ′)dt ′, with the

relative tangential velocity U (t)
i j ≡ (I − ni jni j ) · [U j − U i −

(�i + � j ) × ani j]. For the contact torque, it is obtained as

T C,i j = ani j × F (t)
C,i j . (8)

Such a model exhibits a good description of contacts between
gearlike particles [33,34].

The active torque T A is perpendicular to the monolayer and
uniformly acts on individual particles in the system. For γ̇ �=
0, we introduce a dimensionless measure

T̃A ≡ T A · ez

6πη0a3γ̇
, (9)

where ez denotes the unit vector in the z direction. It is noted
that T̃A is a signed relative intensity of active torque to the
shear rate of the imposed flow. For convenience, we here-
inafter call it the relative torque. The positive and negative
relative torques correspond to the particle rotations in the
opposite and same directions with respect to the vorticity,
respectively.

B. Simulation parameters and conditions

Simulations are carried out for N = 3000 particles that are
sheared with the Lees–Edwards periodic boundary conditions
[35]. We set kn and kt to sufficiently large values that keep
the maximum overlap and tangential displacement are less
than 2% of the particle radius. The relative torque and particle
areal fraction are varied in the ranges of −110 � T̃A � 110
and 0.3 � φ � 0.7, respectively.

C. Rheological characterization

The stress tensor of the active suspension can be obtained
as

σ = 2η0E∞ − 1

V

∑
i> j

ri j (FH,i j + FC,i j )

= 2η0E∞ − 1

V
sym

∑
i> j

ri j (FH,i j + FC,i j )

+ N

V
ε · {

T A − 8πη0a3(〈�〉 − �∞)
}
, (10)

where the symbol of sym represents the symmetric part of
the tensor, V the total volume of the suspension, ri j (≡
x j − xi) the center-to-center vector between particles i and
j, ε the rank-3 Levi-Civita tensor, and 〈�〉 the average an-
gular velocity of the particles. Note that the stress tensor σ

is nonsymmetric when T A �= 8πη0a3(〈�〉 − �∞). Then, the
shear viscosity and the first normal stress coefficient can be
calculated by

η ≡ (sym σ )xy

γ̇
, (11)

�1 ≡ N1

|γ̇ | , (12)

respectively, where N1 ≡ σxx − σyy is the first normal stress
difference. If the microstructure of non-Brownian hard sphere
suspensions does not depend on the shear rate, the normal
stresses are proportional to the shear stress [36]. Thus, �1 is
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defined similarly to η [37] instead of the alternative way, i.e.,
N1/γ̇

2 [38].
The rotational viscosity, which describes the damped trans-

fer of angular momentum from particles to the surrounding
solvent, can be obtained from the asymmetric component of
the stress tensor [39,40], as

ηrot ≡ (asym σ)xy

2(〈�z〉 − �∞
z )

= 2φη0

(
3T̃A

2(〈�̃z〉 − 1)
− 1

)
, (13)

where asym represents the asymmetric part of the tensor and
〈�̃z〉 ≡ 〈�z〉/|�∞

z |. It is noted that the rotational viscosity is
indefinable when the active torque becomes zero and, thus,
〈�̃z〉 = 1. The derivations of the stress tensor and rotational
viscosity can be found in Appendices A and B.

In addition, we introduce the so-called odd viscosity λodd

within the steady shear characterization, which essentially
is relevant to what we defined above. The odd viscosity is
usually addressed as a peculiar rheological nature of chiral
viscous fluids [25,41,42]. In terms of usual definition, it is one
element of tensorial viscosity ηi jkl (in a generalized viscous
model, σi j = ηi jklvkl ) with the base εikδ jl + ε jlδik , where vi j

and δi j are the velocity gradient tensor and Kronecker delta,
respectively [43]. To identify the odd viscosity from rheologi-
cal measurements, we need to evaluate �1 under positive and
negative shear rates and take the odd part of them:

λodd ≡ 1
4 {�1(γ̇ ) − �1(−γ̇ )}. (14)

The remaining even part is then given by

λeven ≡ 1
4 {�1(γ̇ ) + �1(−γ̇ )}. (15)

Both λodd and λeven only measure normal stress anisotropy
[36], but do not associate with energy dissipation. We note
that λeven is equivalent to �1 for nonchiral fluids and not nec-
essarily zero for chiral fluids in general. However, for purely
viscous fluids satisfying objectivity, it should be zero [44].

III. RESULTS

A. Stripes of self-rotating particles

Figure 1(a) shows the fully developed particle configura-
tions for φ = 0.6 and different relative torques. In the figure,
the color of the particle visualizes the relative angular velocity
of the particle to the angular velocity of a single particle
under T̃A (i.e., �0,z). The insets illustrate the direction of
self-rotation of the particles with respect to the simple shear
flow. We observe that the particles driven by the positive
relative torque (T̃A = 60) form prominent stripy aggregates,
with faster-rotating particles on the edges and slower-rotating
particles inside the stripes. A following sudden suppression or
reversal of direction of the torque is able to rerandomize the
particles.

Such an intriguing phenomenon, however, is not seen for
the case of zero or negative relative torque, where the par-
ticles are randomly distributed throughout. Additionally, we
examine the configuration of self-rotating particles in planar
extensional flows. The result, as shown in Fig. 7 of Ap-
pendix D, suggests that the pure shear flow cannot induce any
particle aggregates. Since the simple shear flow is a superpo-
sition of pure shear and vortical flows and the latter one is

FIG. 1. (a) Representative snapshots of configuration of particles
subjected to zero, positive, and negative relative torques. The parti-
cles subjected to the positive torque also experience following zero
and negative torques. Here the particle areal fraction φ = 0.6. The
color of the particle denotes the relative angular velocity of the par-
ticle to the angular velocity of a single particle under T̃A. The insets
denote the direction of self-rotation of the particles (represented by
the arrow within the circle) with respect to the imposed simple shear
flow. The circle without an arrow represents the passive particle.
(b) Nonequilibrium phase diagram for positive relative torques. The
red line represents the phase boundary, which is predicted based
on the fitted linear equation from (c) and the assumptions that the
particle areal fraction within the stripes and average interstripe sep-
aration are 0.8 and 2a, respectively. (c) Average width of particle
stripes as a function of intensity of relative torque for various particle
areal fractions. The simulation data is exhibited with error bars.
The dashed line is a linear equation that is fitted from the data for
0.3 � φ � 0.5

difficult to be modeled in simulations, we then infer that the
vortical component should be necessary for constructing the
particle stripes. More particle configurations in simple shear
flows and for various values of φ and T̃A can be found in
Figs. 8 and 10 of Appendix D.

By taking an overview of particle configurations under
positive relative torques, we obtain the nonequilibrium phase
diagram as shown in Fig. 1(b). In the figure, the black crosses
denote the configurations featured by randomly distributed
particles, whereas the blue squares denote the configurations
consisting of particle stripes. The result shows that the par-
ticle stripes only appear when the value of T̃A is greater than
certain φ-dependent thresholds. In addition, further increasing
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the value of T̃A leads to a transfer of particle structure from
crystalline to uncrystalline states (see Fig. 8 of Appendix D).

Focusing on the configurations consisting of fully devel-
oped particle stripes, we study the average stripe width L̃s

(scaled by the particle radius) as a function of intensity of
the relative torque. As seen in Fig. 1(c), when 0.3 � φ � 0.5,
the dependence of L̃s on T̃A follows a linear equation of
L̃s ≈ 0.22T̃A + 3.92, which is independent of φ. Increasing
the value of φ only results in the decrease of stripe number
and inter-stripe gap (see Fig. 12 of Appendix D). When the
gap is smaller than the particle diameter, the preformed stripes
combine in part or throughout the system (see Fig. 13 of
Appendix D). This explains the case of φ = 0.6, where L̃s

undergoes a steplike increase with T̃A and its value is larger
than (even twice of) the prediction of the linear equation.

Moreover, based on the fitted linear equation and as-
sumption that the packing fraction of in-stripe particles is
consistently 0.8, we theoretically predict the phase boundary
in Fig. 1(b) (see the red solid line). Such a prediction shows
good agreement with the simulation results for φ � 0.6 but
deviates when φ � 0.55. This can be explained by the de-
creased packing fraction of the in-stripe particles for the latter
case. Please see Appendix C for the theoretical derivation and
the study of the phase boundary for various packing fractions.

B. Mechanisms of forming particle stripes

In this section, we study three typical collective behaviors
of the self-rotating particles in simple shear flows, i.e., shear-
induced diffusion, rotation-induced rearrangement, and edge
flows. Based on them, we explain how the particle stripes are
formed and the stripe width is determined.

It is known that shear flows can cause interparticle contacts
and even formation of chainlike clusters along the compres-
sive axis for dense and passive particles with rough surfaces
[28,34]. Within such a process, the contact forces break the
reversible nature of the Stokes flows [45]. The clusters rotate
under shear, resulting in the spread and then more uniform
distribution of the particles along the direction of the velocity
gradient. Since the structures of the clusters are irregular, such
an effectively random drift motion of particles is also called
shear-induced diffusion, which has been extensively studied
by prior works [46,47].

However, the chainlike clusters are not commonly seen
for the dense suspensions of frictional self-rotating particles
(except for the situations of very large areal fractions and
small values of |T̃A|, Figs. 9 and 11 of Appendix D). By exam-
ining the average number of particle contact Z [see Fig. 2(a)],
we observe that the self-rotating particles are always less in
contact than the passive particles. Additionally, increasing the
value of |T̃A| leads the contact number to decrease before
particle stripes appear, but to be changeless when the stripes
are emergent. Compared with the particles driven by negative
torques, those within stripes are more in contact.

To explain the effect of active torque on the particle con-
tacts, the motion of two interacting particles is investigated,
as shown in Fig. 2(b). Let us consider two corotating par-
ticles, A and B, are placed in a simple shear flow, with
an initial y-directional separation that is equal to the parti-
cle radius. Since along the x direction, particle A translates

FIG. 2. (a) Average contact number Z as a function of relative
torque for various particle areal fractions. (b) Illustration of pairwise
interaction. Sketch I shows the initial particle configuration, whereas
II and III show the particle configurations after the rotation-induced
rearrangement for the cases of positive and negative relative torques,
respectively. The orange dotted and blue dashed lines indicate the
initial y positions of particles A and B, respectively. (c) Relative
trajectories of particle A with respect to particle B for various relative
torques.

faster than particle B, they approach until the interparticle
hydrodynamic lubrication and even frictional contact force
become dominant. Such a moment is illustrated by sketch
I in Fig. 2(b), where the orange dotted and blue dashed
lines indicate the initial y positions of particles A and B,
respectively. Then, due to the tangential contribution of the
interacting force, the particles undergo a rotation-induced re-
arrangement, which relieves the particle contacts and, more
importantly, induces the y-directional effective attraction (see
sketch II) and repulsion (see sketch III) for the particles driven
by the positive and negative relative torques, respectively.
These phenomena are numerically confirmed by the relative
trajectories of particles A to B in Fig. 2(c). Moreover, consid-
ering the shear-induced diffusion can generate a y-directional
effective repulsion, it is competitive and synergistic with
the effective attraction and repulsion by the rotation-induced
rearrangement, respectively. Then the two-dimensional par-
ticle dynamics simply becomes one-dimensional (y direc-
tional), and the motivation of the particles driven by positive
torques to align along the x direction is reasoned. However, to
explore the role of active torque, Fig. 2(b) only exhibits the
case where the rotation-induced rearrangement is dominant
over the shear-induced diffusion.

In Fig. 2(c), it is also observed that effective interactions
are enhanced for large relative torques. Such a result im-
plies the equivalent role of the relative torque to describe the
competition between the rotation-induced rearrangement and
shear-induced diffusion. To give insight into such a compe-
tition, we carry out simulations for the particles driven by
the positive relative torques, where a thick particle stripe is
initially stable under T̃A = 140 and suddenly subjected to
weakened torques, as shown in Fig. 3. In the figure, γ de-
notes the shear strain and the interparticle contacts (or contact
chains) are visualized by the highlighted yellow bonds. We
observe that immediately after weakening the relative torque
(γ = 1), dense contact chains appear within the stripe, al-
though the stripe width hardly changes. This is explained by
the weakened rotation-induced rearrangement, which cannot
efficiently relieve the particle contacts as before and only
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FIG. 3. Representative snapshots of particle configurations showing the relaxation of a thick particle stripe. The thick particle stripe is
initially stable for T̃A = −140 and suddenly subjected to the weakened torques T̃A = −25.12, −10, and −3.98. Here γ represents the shear
strain, which is proportional to the simulation time. The color of the particle denotes the relative angular velocity of the particle to the angular
velocity of a single particle under T̃A. The yellow bonds between the particles indicate the particle contacts (or contact chains).

induces weak effective attractions. As a result, the shear-
induced diffusion impels the particles to expand in the y
direction, where more free space is available, and then or-
ganize into multiple narrow stripes based on the decreased
local density. Compared with the case of T̃A = 25.12, the
weaker positive relative torques lead to stronger shear-induced
diffusion, which gives rise to more crowded contact chains at
the beginning and more and thinner particle stripes eventually.
According to such results, we highlight the importance of
competition between the shear-induced diffusion and rotation-
induced rearrangement on determining the formation and
average width of particle stripes.

A further insight is given into the effect of interaction
forces on the particle configuration. In Fig. 14 of Appendix D,
one can observe that application of only frictional contact
(without hydrodynamic lubrication) contributes to the forma-
tion of crystallized stripes, whereas with only hydrodynamic
lubrication (without frictional contact) the particles construct
uncrystalline stripes. Combining with the observations in
Fig. 8 of Appendix D (that weak and strong relative toques
lead to crystalline and uncrystralline stripes, respectively), we
point out that under the weak and strong relative toques, the
interparticle interaction is dominated by the frictional contact
and hydrodynamic lubrication, respectively.

Figure 4(a) shows two representative x-directional velocity
profiles of fully developed particle stripes for φ = 0.5, where
the black dashed line denotes the velocity of the imposed
flow. The x-directional velocity 〈Ux〉 is estimated by taking
the average of particle velocities within differential y scales.
For T̃A = 10, we see that each stripe translates like a rigid
body, with the flow velocity at the middle height of the stripe.
However, for T̃A = 50 the velocity profiles deform, with the

velocity at the stripe boundary antiparallel to the local flow
velocity.

FIG. 4. (a) Profiles of average x-component velocity of particles
for φ = 0.5 and various values of T̃A. Schematic illustrations of
(b) particle stripe and (c) interaction model of internal and edge par-
ticles (on the top edge for instance). The internal particles, denoted
in grey, are assumed to be a rigid body, translating with the flow
velocity at the middle height of the stripe U ∞

0,x . However, the edge
particles, denoted in blue, experience two x contributions of velocity
that is carried by the background flow U ∞

0,x + γ̇ (Ls/2 − a), and that
is induced by the self-rotation Ur .
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To explain the above phenomena, we divide the in-stripe
particles into two groups: those on the edge of the stripe and
those stay internally, as seen in Fig. 4(b). For simplification,
a single layer of the edge particles is assumed. Because the
internal particles are locally confined (or jammed), they have
reduced rotational mobility and translate like a rigid body,
with the flow velocity at the middle height of the stripe
U ∞

0,x. By interacting with such a rigid body, the edge par-
ticle then generate a rotation-induced velocity Ur,x, which
is T̃A dependent and always antiparallel to the local flow
velocity. Additional to the local flow velocity, the resultant
velocity of the top and bottom edge particles are given by
U ∞

0,x + γ̇ (Ls/2 − a) − Ur,x and U ∞
0,x − γ̇ (Ls/2 − a) + Ur,x, re-

spectively. Here γ̇ (Ls/2 − a) represents the difference of the
flow velocity from the edge particle location to the middle
height of the stripe. When Ur,x = γ̇ (Ls/2 − a), the entire
stripe undergoes a rigidlike translation, as the velocity profile
shown in Fig. 4(a) for T̃A = 10. However, Ur,x > γ̇ (Ls/2 − a)
leads to significant edge flows of the particles, as that in the
deformed velocity profile for T̃A = 50. In addition, we observe
that the stripes are stable only when Ur,x � γ̇ (L̃s/2 − a). Oth-
erwise, they deform in the same way as shown in Fig. 3. The
fully developed x-directional velocity profiles for additional
values of φ and T̃A can be found in Fig. 15 of Appendix D.

C. Dependence of stripe width on relative torque

We confirm the linear relation between the average width
of particle stripes and relative torque, by conducting a the-
oretical study based on the particle dynamics. As shown in
Fig. 4(b), we consider that a particle stripe with width Ls

is fully developed in a simple shear flow with shear rate γ̇ .
The internal particles translate at the uniform velocity that is
equal to the flow velocity at the middle height of the stripe
U ∞

0,x, whereas the edge particles have an additional rotationally
induced velocity Ur,x against the local flows.

Since the interactive effects from the neighbor particles in
the x direction are counteracted, the model can be simplified to
the pairwise interaction between one edge (noted by subscript
1) and one internal (noted by subscript 2) particles, as seen in
Fig. 4(c). In addition, an overview of configurations of fully
developed particle stripes suggests that the edge and internal
particles are hardly in contact. Thus, for the edge particle,
Eqs. (1) and (2) reduce to

FS,1 + FH,12 = 0 and T S,1 + T H,12 + T A = 0. (16)

We are only interested in the force balance in the x direc-
tion and torque balance in the z direction,

− 6πη0a
(
U1,x − U ∞

1,x

) + RFU
L (U1,x − U2,x )

+ RF�
L (�1,z − �2,z ) = 0,

(17)

− 8πη0a3
(
�1,z − �∞

1,z

) + RTU
L (U1,x − U2,x )

+ RT �
L (�1,z − �2,z ) + TA,z = 0,

(18)

where U ∞
1,x and �∞

1,z are the x and z components of the velocity
and angular velocity of the imposed flow at the position of
the edge particle, respectively. In Eqs. (17) and (18), RFU

L ,
RF�

L , RTU
L , and RT �

L are the resistance coefficients coupling
force and torque to velocity and angular velocity through the
hydrodynamic lubrication. They are functions of interparticle

separation but not of T̃A or L̃s. For the internal particle, we set
�2,z = 0 and U2,x = U ∞

0,x. The definition of �U ≡ U1,x − U2,x

also leads to

U1,x − U ∞
1,x = U1,x − {U ∞

0,x + γ̇ (Ls/2 − a)}
= �U − γ̇ (Ls/2 − a).

(19)

By substituting Eqs. (18) and (19) into (17), we then eliminate
�1,z and obtain

L̃s = αT̃A + 2(1 − α/3) + β�Ũ , (20)

where �Ũ = �U/aγ̇ ,

α = 2aRF�
L

RT �
L − 8πη0a3

, (21)

β = 2 + αRTU
L − 2aRFU

L

6πη0a2
. (22)

It should be noted that unlike α and β, �Ũ is a function of L̃s

and T̃A.
When the entire stripe is rigidlike [as the case of T̃A = 10

in Fig. 4(a)], the particle velocities satisfy U1,x = U2,x, i.e.,
�Ũ = 0. Thus, Eq. (20) becomes

L̃s = αT̃A + 2(1 − α/3), (23)

which shows the linear relation between L̃s and T̃A. Since
the above theoretical analysis is based on the fully devel-
oped particle stripes, Eqs. (20) and (23) break down for zero
and negative relative torque as well as weak positive relative
torques that cannot cause particle stripes.

D. Effect of particle stripes on rheology

The influence of the shear-induced microstructures on the
(macroscopic) suspension rheology is studied in terms of
shear viscosity η, rotational viscosity ηrot, and the first normal
stress coefficient �1. Each data point in Fig. 5 corresponds
to a single run of different simulation conditions, and is
averaged over certain simulation times after the particle con-
figurations are fully developed. We discuss the results for both
positive relative torques that lead the striped microstructure
and zero and negative relative torques for comparison. As
observed in Fig. 5, increasing the value of |T̃A| leads both
shear and rotational viscosities to decrease, and the decrease
for the negative torques is larger than that for the positive
torques.

For a fixed active torque in any directions, Fig. 5(a) indi-
cates the shear thickening of rate dependence. Although the
similar phenomenon of shear viscosity is also seen for dilute
suspensions of Quincke rotors that rotate in the same direction
of imposed vorticity [48], we note their origins are different.
In our system, the phenomenon is explained that for large
values of |T̃A| the enhanced positional rearrangements can
efficiently release particle contacts, and the particles driven
by the positive torques may still contact within the stripes. The
existence of such particle contacts, or resultant shear-induced
microstructures, has been proved to cause the increases of
shear viscosity [28]. This also explains the observation that the
curves of the viscosity [Fig. 5(a)] and particle contact number
[Fig. 2(a)] have the similar shapes for the positive relative
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FIG. 5. (a) Shear viscosity η, (b) rotational viscosity ηrot , and (c) the first normal stress coefficient �1 of the rotor suspension are plotted as
a function of relative torque T̃A for various particle areal fractions φ with γ̇ > 0. To quantify the rheological oddness, (d) the odd viscosity λodd

and (e) even part λeven of the first normal stress coefficient are plotted as a function of the dimensionless shear rate �̃ ≡ γ̇ /(|T A · ez|/6πη0a3)
for T A · ez > 0. Here all the rheological measures are nondimensionalized by the solvent viscosity η0.

torques. However, when the relative torque is negative, it is
seen that the shear viscosity decreases with the increases of
φ. Such an abnormal phenomenon, not seen for the positive
torques, indicates dependence of the viscous response on the
torque (or shear) direction.

Figure 5(c) shows the dependence of the first normal stress
coefficient �1 on T̃A, which follows an imperfect odd func-
tion. A close look at the curves around the origin can be
found in Fig. 16 of Appendix D. The result reveals that the
suspensions of particles self-rotating in the same direction,
i.e., chiral suspensions, are not the same as conventional com-
plex fluids [36–38,49] or chiral viscous fluids [41,42], but
have the mixed feature of the two. From a physical scope,
we explain that such an imperfect oddness has two origins,
i.e., odd responses of the self-rotating particles that break the
parity and time-reversal symmetry of the suspensions, and
shear-induced microstructures. Although mixed, the former
origin is dominant over the latter one.

On the other hand, from a mathematical scope, we de-
compose the first normal stress coefficient into the odd
(corresponding to the odd viscosity λodd) and even (λeven)
parts, and plot them in terms of dimensionless shear rate
�̃ ≡ γ̇ /(|T A · ez|/6πη0a3) for T A · ez > 0 [see Figs. 5(d) and
5(e)]. In the figures, we observe nonvanishing values of λodd

and λeven. In detail, |λodd| decreases with �̃ but increases with
φ, indicating the positive dependence of the odd viscosity
on torque density. For λeven, one can observe that its value
transits from negative to positive as the shear rate increases.
Additionally, as the same feature of passive suspensions [36],
increasing the areal fraction leads the value of λeven to de-
crease first and then increase.

IV. CONCLUSIONS

This paper reports by computational simulations that par-
ticles counterrotating with respect to the vorticity of imposed
shear flows can self-organize into stripes. The mechanisms of
such a phenomenon have been explained by giving insight into
three collective particle behaviors: shear-induced diffusion,
rotation-induced rearrangement, and edge flows. The shear-
induced diffusion leads to y-directional effective repulsion
between the particles, whereas the rotation-induced rearrange-
ment results in y-directional effective attraction for particles
driven by the positive torques. The stripelike aggregates only
appear when the effective attraction is dominant. On the other
hand, zero and reversed particle edge flows within the stripes
guarantee the stability of the stripes. For the areal fraction
0.3 � φ � 0.5, the simulation result suggests that the average
stripe width is independent of the areal fraction but linearly
dependent on the relative torque intensity. By conducting a
theoretical study, we also verify such a result from the scope of
particle dynamics. Moreover, the rheological result suggests
that the rotation of particles and formation of particle stripes
lead to the decrease of shear and rotational viscosities. The
first normal stress coefficient exhibits asymmetric responses
for opposite shears, suggesting the presence of odd viscosity
in the suspension of self-rotating particles. However, unlike
chiral viscous fluids, the chiral suspension also exhibits some
even viscosity responses.

The current paper does not take into account the thermal
agitations or interparticle repulsion, which are sometimes es-
sential for the collective behaviors of rotating active matters.
To realize the above simulation results through experiments,

043229-7



ZHAO, WANG, KOMURA, YANG, YE, AND SETO PHYSICAL REVIEW RESEARCH 3, 043229 (2021)

we suggest producing the stable Taylor-Couette flows of dense
suspension of self-rotating particles. The particles should have
a rough surface and negligible electrostatic interactions and
deposit during the operation process. To undergo the self-
rotating, the particles could be functionalized and driven by
rotating magnetic fields, light fields, and other external re-
sources. For the expectation, concentric particle rings will be
formed in the middle height of the container.

ACKNOWLEDGMENTS

We acknowledge Y. Hosaka and R. Podgornik for valuable
discussion. Z.Z. thanks Z. Hou and the Postdoctor Association
of WIUCAS for helpful discussions. The work was supported
by the startup fund of Wenzhou Institute, University of Chi-
nese Academy of Sciences (No. WIUCASQD2020002) and
National Nature Science Foundation of China (No. 12174390
and No. 12150610463).

APPENDIX A: STRESS TENSOR FOR ACTIVE
SUSPENSIONS

For the stress tensor, its original expression is given by

σ = −p0I + 2η0E∞ − 1

V

∑
i> j

ri jF Int,i j

= −p0I + 2η0E∞

− 1

V

(
sym

∑
i> j

ri jF Int,i j + asym
∑
i> j

ri jF Int,i j

)
, (A1)

where I is an identity matrix, p0 represents the hydrostatic
pressure (in our paper, p0 = 0), F Int,i j is the interaction force
vector acting on i, and the symbols of sym and asym denote
the symmetric and asymmetric parts of the tensor, respec-
tively. Since

asym
∑
i> j

ri jF Int,i j =
∑
i> j

ε · ri j × F Int,i j (A2)

=
∑
i> j

ε · T Int,i j, (A3)

and within our consideration

F Int,i j = FH,i j + FC,i j, (A4)

it is obtained

σ = 2η0E∞ − 1

V
sym

∑
i> j

ri j (FH,i j + FC,i j )

− 1

V

∑
i> j

ε · (T H,i j + T C,i j ),

(A5)

where T Int,i j represents the interaction torque vector from
particles j to i, and the subscripts H and C indicate the
forces/torques due to the hydrodynamic lubrication and fric-
tional contact, respectively. In the overdamped dynamics, the
total torques acting on respective particles satisfies

T S,i +
∑
j �=i

(T H,i j + T C,i j ) + T A,i = 0. (A6)

The stress tensor can be then rewritten as

σ = 2η0E∞ − 1

V
sym

∑
i> j

ri j (FH,i j + FC,i j )

+ 1

V

∑
i

ε · (T A,i + T S,i ).

(A7)

By substituting that T A,i = T A for the uniform active torque
and

∑
i T S,i = −8πη0a3N (〈�〉 − �∞), we finally obtain the

expression shown in Eq. (10).

APPENDIX B: ROTATIONAL VISCOSITY

Rotational viscosity is a rheological property that describes
the damped transfer of angular momentum from the local
element (internal) to the surroundings (external). Such an
element could be suspension, such as in chiral fluids, or a
particle, such as in liquid crystals. According to the definition,
the rotational viscosity, or vortex viscosity, can be obtained
from the asymmetric component of stress tensor

asym(σ) = ηrotε · (2�e − ∇ × U∞), (B1)

where �e represents the angular velocity of the local element
(in our paper, equal to 〈�〉), and the external vorticity ∇ ×
U∞ = 2�∞. Applying Eq. (B1) to our work, the rotational
viscosity is in the form of

ηrot = N

2V

(
T A · ez

(〈�〉 − �∞) · ez
− 8πη0a3

)
, (B2)

where the total volume of the suspension V = 2aA for a
monolayer of particles and A is the area of the monolayer.
Since the particle areal fraction φ = πa2N/A, Eq. (B2) can be
rewritten by

ηrot = 2φη0

(
T A · ez

8πη0a3(〈�〉 − �∞) · ez
− 1

)
. (B3)

It should be noted that for the system consisting of discrete
passive particles and solvent, the rotational friction coeffi-
cient, 8πη0a3, plays a role to balance the angular momentum
between the particles and the solvent. However, the rotational
friction coefficient is an intrinsic property typical of particle-
solvent systems. It cannot conserve the angular momentum

FIG. 6. Nonequilibrium phase diagram with various phase
boundaries that are predicted using various packing fractions of in-
stripe particles.
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FIG. 7. Representative snapshots of fully developed particle con-
figuration for particle areal fraction φ = 0.6, relative torque T̃A = 60,
and in simple shear and pure shear flows. The color of particle
denotes the relative angular velocity of the particle to the angular
velocity of a single particle under T̃A.

when the discrete particles are actively rotating. As a result,
the rotational viscosity is necessary to be additionally consid-
ered. Equations (B2) and (B3) show the rotational viscosity
that describes the nonhydrodynamically damped transfer of
angular momentum from the particle to the surrounding fluid.
By introducing the nondimensionalized variables, we can fi-
nally obtain the expression shown in Eq. (13).

FIG. 8. Representative snapshots of particle configuration for
various positive relative torques and particle areal fractions. The
color of the particle denotes the relative angular velocity of the
particle to the angular velocity of a single particle under T̃A. In the
color bar, b = 1 unless specified in the configurations.

FIG. 9. Representative snapshots of force chain distribution for
various positive relative torques and particle areal fractions.

APPENDIX C: THEORETICAL STUDY
OF PHASE BOUNDARY

Here we show the method of theoretical prediction of the
phase boundary show in Fig. 1(b). Based on the conserva-
tion of total particle volume before and after applying active
torques, one can write

φL̃2
b = φinNsL̃sL̃b, (C1)

where L̃b represents the radius-scaled side length of simula-
tion box, φin the areal fraction of the particles in the stripes (or
the packing fraction in the main text), and Ns the number of
the particle stripes. For the particle configurations consisting
of fully developed stripes, we also have

Ns(L̃s + L̃g) = L̃b, (C2)

where L̃g is the average width of interstripe gaps. Combing
Eqs. (C1) and (C2) results in

L̃s = φL̃g

φin − φ
. (C3)

By substituting the linear equation of L̃s ≈ 0.22T̃A + 3.92,
Eq. (C3) becomes

T̃A = φL̃g

0.22(φin − φ)
− 17.82. (C4)

To describe the phase boundary, we set L̃g to the minimum
critical value, i.e., L̃g = 2. The phase boundary (solid red line)
shown in Fig. 1(b) of the main text is plotted by considering
φin = 0.8. In Fig. 6, we also show the phase boundaries for
various values of φin. When φ = 0.5, we obtain from the
simulation data that φin ≈ 0.7 and L̃g ≈ 2. By substituting
these values into Eq. (C4) and plotting it in the phase dia-
gram, we find it successfully describes the phase boundary for
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FIG. 10. Representative snapshots of particle configuration for
various negative relative torques and particle areal fractions. The
color of the particle denotes the relative angular velocity of the par-
ticle to the angular velocity of a single particle under T̃A. In the color
bar, b = 1 unless specified in the configurations.

φ = 0.5. Similarly, when we substitute the simulation result of
φin ≈ 0.63 and L̃g ≈ 2.5 for φ = 0.4, good agreement is also
achieved.

FIG. 11. Representative snapshots of force chain distribution for
various negative relative torques and particle areal fractions.

FIG. 12. (a) Number of particle stripes and (b) average width of
interparticle gaps as a function of relative torque intensity for various
particle areal fractions.

APPENDIX D: SUPPLEMENTAL FIGURES

Figure 7 shows the representative snapshots of fully devel-
oped particle configuration for particle areal fraction φ = 0.6,
relative torque T̃A = 60, and in simple shear and pure shear
flows. The color of the particle denotes the relative angular
velocity of the particle to the angular velocity of a single
particle under T̃A. The result suggests that the self-rotating
particles can form stripelike aggregates in the simple shear
flow but cannot in the pure shear (or extensional) flow.

Figures 8 and 9 show the representative snapshots of par-
ticle configuration for various positive relative torques and
particle areal fractions. The color of the particle denotes the
relative angular velocity of the particle to the angular velocity
of a single particle under T̃A. In the color bar, b = 1 unless
specified in the configurations. In Fig. 8, it is observed that the
particles self-organize into stripes under selected simulation
conditions, and force chains may exist within the stripes.
The threshold torque intensity to obtain the particle stripes
increases with the particle areal fraction.

Figures 10 and 11 show the representative snapshots of
particle configurations for various negative relative torques
and particle areal fractions. The color of the particle denotes
the relative angular velocity of the particle to the angular
velocity of a single particle under T̃A. In the color bar, b = 1
unless specified in the configurations. In Fig. 10, we observe
that the particles do not form stripes within a wide range of
simulation parameters. Besides, increasing the relative torque
intensity leads the amount of force chains to decrease.

Figure 12 shows (a) the number of particle stripes and (b)
average width of interparticle gaps as a function of relative
torque intensity for various particle areal fractions. In the

FIG. 13. Evolution of particle configuration for the particle areal
fraction φ = 0.6 and relative torque intensity T̃A = 50. The color of
particle denotes the relative angular velocity of the particle to the
angular velocity of a single particle under T̃A. The yellow bonds
between the particles denote the inter-particle contacts.
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FIG. 14. Representative snapshots of particle configuration for
the particle areal fraction φ = 0.6, relative torque intensity T̃A = 50,
and various interaction conditions. The color of the particle denotes
the relative angular velocity of the particle to the angular velocity of
a single particle under T̃A. The yellow bonds between the particles
denote the interparticle contacts.

figure, one can observe that increasing the value of T̃A leads
to the decrease of the stripe amount (NS) and increase of the
average gap width (L̃g). However, large particle areal fractions
give rise to the decrease of the stripe amount and average gap
width.

Figure 13 shows the evolution of particle configuration for
the particle areal fraction φ = 0.6 and relative torque intensity
T̃A = 50. The color of the particle denotes the relative angular

FIG. 15. Profiles of x-component velocity of the in-stripe par-
ticles, for the particle areal fraction φ = 0.5, and various relative
torque intensities.

FIG. 16. Relative first normal stress coefficient as a function of
relative torque intensity for various particle areal fractions and in a
zoomed-in window.

velocity of the particle to the angular velocity of a single
particle under T̃A. The yellow bonds between the particles
denote the interparticle contacts. Such a combination only
happens when the interstripe gap is narrower than the particle
diameter.

Figure 14 shows the representative snapshots of particle
configuration for the particle areal fraction φ = 0.6, relative
torque intensity T̃A = 50 and various interaction conditions.
The color of the particle denotes the relative angular velocity
of the particle to the angular velocity of a single particle under
T̃A. The yellow bonds between the particles denote the inter-
particle contacts. We note that for the case without frictional
contact or hydrodynamic lubrication, the only interparticle
interaction is the excluded-volume interaction, which in our
paper is treated as the normal contact force. For the case with
only frictional contact, we additionally take into account the
tangential contact force between the particles. In the figure, it
is observed that the particles can self-organize into stripelike
aggregates, except for the case with only excluded-volume
interaction. Additionally, as compared with the stripes formed
by the particles with only hydrodynamic lubrication, those
with only frictional contact give rise to more uniform and
hexagonal structures. When both frictional contact and hydro-
dynamic lubrication are taken into account, the particle stripes
show the mixture of features of the stripes with one of the two
interactions.

Figure 15 shows the profiles of x-component velocity of the
in-stripe particles for the particle areal fraction φ = 0.5 and
various relative torque intensities. In the figure, we observe
that for T̃A = 3.98, no particle stripes are constructed and
the particles translate in the same velocity with the imposed
simple shear flow. However, for T̃A = 5 and 10, narrow stripes
emerge and translate as rigid bodies, with the velocity equal
to the flow velocity at the half height of the stripe. A further
increase of the relative torque intensity then results in the
emergence of significant edge flows of the particles, which
are against the imposed flow.

Figure 16 shows the relative first normal stress coefficient
as a function of relative torque intensity for various particle
areal fractions and in a zoomed-in window. In the figure, the
curves show the slightly shifted odd shapes, with the positive
values at zero relative torque.
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