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ABSTRACT
Onsager’s variational principle is generalized to address the diffusive dynamics of an electrolyte solution composed of charge-regulated
macro-ions and counterions. The free energy entering the Rayleighian corresponds to the Poisson–Boltzmann theory augmented by the
charge-regulation mechanism. The dynamical equations obtained by minimizing the Rayleighian include the classical Poisson–Nernst–Planck
equations, the Debye–Falkenhagen equation, and their modifications in the presence of charge regulation. By analyzing the steady state, we
show that the charge regulation impacts the non-equilibrium macro-ion spatial distribution and their effective charge, deviating significantly
from their equilibrium values. Our model, based on Onsager’s variational principle, offers a unified approach to the diffusive dynamics of
electrolytes containing components that undergo various charge association/dissociation processes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0253637

Charged macro-ions in solution do not keep their charge fixed
but rather respond to the local environment by modifying their sur-
face charge density and surface potential, depending on their local
concentration and the bathing solution conditions.1–3 This con-
ceptual framework is called charge regulation (CR), encompassing
charging equilibria of macromolecules in ionic solutions. It is ubiq-
uitous and governs important aspects of electrostatic interactions in
biological systems.4,5

The CR phenomenon is essential in understanding how pro-
teins and charged biomolecules change their state via charge
association/dissociation processes6 involving ions in solutions.7
In particular, it affects polyelectrolytes that undergo proto-
nation/deprotonation reactions on acidic/basic sites,8,9 protein

complexation,10 polyelectrolyte gel swelling,11 adsorption of charge
particles onto surfaces,12,13 bacterial adhesion,14 viral capsids assem-
bly,15 zwitterionic colloids and nanoparticles,16,17 and many other
bio-processes.

Equilibrium CR effects have been extensively studied by
including the association/dissociation equilibrium into the mean-
field Poisson–Boltzmann (PB) theory.3 However, despite the large
progress in the study of equilibrium CR phenomena,3 starting
from the seminal work of Ninham and Parsegian,18 a theoretical
understanding of dynamical CR behavior is less developed. Never-
theless, the latter has pronounced importance in numerous physical
and chemical processes, such as the kinetics of surfactant adsorp-
tion at the air–water interface;19,20 interactions and dynamics of
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polyelectrolytes, gels, and colloids;21–23 and ionic conductance
through nanotubes24 and nanochannels.25,26

Conventional theoretical studies of charged macro-ion dynam-
ics driven by external electric fields are typically based on the
Poisson–Nernst–Planck (PNP) theory.27 This theory is a diffusive
kinetic extension of the PB formulation of electrostatics. It has
been generalized to include ion–ion interactions and steric effects.28

However, a complete theory of CR dynamics would need even fur-
ther modifications. It should include a description of the charge
dissociation processes,21,29,30 either on the system bounding sur-
faces31 or on the surface of the mobile macro-ions32 containing
the dissociable moieties. To formulate these ideas into a consis-
tent theoretical description, we select the framework outlined by
Onsager’s variational principle (OVP).33–35 The OVP provides an
elegant foundation for addressing non-equilibrium processes in soft
matter systems. It is a useful framework because it offers signifi-
cant flexibility in choosing appropriate pairs of state variables and
velocities based on Rayleigh’s principle of least energy dissipation.
This crucial aspect tackles the main challenges in formulating kinetic
descriptions of Onsager’s theory and deriving thermodynamically
consistent dynamical equations. Consequently, many established
kinetic equations describing various soft matter systems can be
systematically derived within this framework.36–38

OVP allows us to combine the CR theory already studied in
thermodynamic equilibrium3 with the non-equilibrium dissipation
phenomenology, as represented by diffusion currents,39 charge cur-
rents,40 and chemical reaction kinetics.41 By generalizing OVP even
further and including the CR equilibrium free energy and its cor-
responding diffusive-current densities, we derive the Rayleighian
that contains the CR diffusive components. Furthermore, our aug-
mented theory yields a set of diffusive dynamic equations. They
reduce, in the limit of fixed ionic charge, to the PNP21,42 and
Debye–Falkenhagen43 equations. We explicitly solve these modi-
fied PNP diffusive-dynamic equations in the steady-state limit44

and show that the CR significantly influences the spatial distribu-
tion and charge density in externally driven systems. There is a
clear advantage in formulating the CR dynamics based on OVP. It
presents a universal approach for deriving the CR diffusive dynamics
directly from the equilibrium free energy while making it applica-
ble to various CR models with potential implications for biological
systems.

We consider a positively charged planar boundary placed at
x = 0. This plane induces a static electric field on a semi-infinite ionic
solution, as shown in Fig. 1. The solution is composed of negatively
charged macro-ions of spatially varying concentration n(r) and bulk
value nb, and positively charged counter-ions concentration p(r) of
bulk value pb (denoted as B+). Each macro-ion contains N negatively
charged sites (denoted as A−), and each of the A− sites can change
its charge by an association/dissociation process,

A− + B+ ��⇀���AB. (1)

The dynamical number fraction of A− sites that are neutralized by
B+ is ϕ(r) and it varies from zero (when the macro-ions are fully
charged) to unity (when the macro-ions are completely neutral).

In our model, the overall electro-neutral solution has no co-
ions. This requires that the integrated number of A− sites is equal to
that of B+. The electro-neutrality condition in bulk can be expressed

FIG. 1. Schematic presentation of our CR diffusive dynamical model. A positively
charged wall (red) induces an external electric field and is placed in contact with
a semi-infinite ionic solution. The solution contains negatively charged macro-ions
(green) and monovalent positive counter-ions (B+, red) of bulk concentration nb
and pb, respectively. Each CR macro-ion contains N negatively charged sites (A−,
blue). However, due to the association/dissociation process, the effective macro-
ion charge can vary from −Ne to zero. The yellow semicircular arrow corresponds
to the association/dissociation reaction in Eq. (1).

as pb = nbN(1 − ϕb), where ϕb is the equilibrated number fraction of
neutralized A− sites in the bulk.

Within the mean-field framework, the thermodynamic free
energy F is a sum of the electrostatic free energy, the mobile ion
translational entropy term TS(p, n), and the CR free energy per
macro-ion g(ϕ). Hence, F can be written as29,32

F[ψ, p, n, ϕ] = � f (ψ, p, n, ϕ)d3r

= � �− ε
2
(∇ψ)2 + eψ[p − nN(1 − ϕ)]

+ TS(p, n) + ng(ϕ)�d3r, (2)

where ψ(r) is the electrostatic potential, T is the temperature,
ε = ε0εr is the dielectric constant of the solution, ε0 is the vacuum
permittivity, εr is the relative permittivity, and e is the elementary
charge. Furthermore,

S(p, n) = kB�p�ln �pa3� − 1� + n�ln �na3� − 1�� (3)

is the mixing entropy of counter-ions and macro-ions in the dilute
solution limit, and kB is the Boltzmann constant. For simplicity,
the molecular size difference is ignored, and both macro-ions and
counter-ions are assumed to have the same molecular volume, a3.

To describe the charge association and dissociation processes
governed by Eq. (1), we utilize the standard Langmuir isotherm.
Although one can pursue a conventional kinetic derivation2 start-
ing from Eq. (1), it is more straightforward to employ an equivalent
mean-field formalism based on the CR free energy,31,32 from which
the Langmuir isotherm naturally arises through its minimization.
Within this framework, ϕ is an annealed variable whose equilib-
rium value is determined by free energy minimization. The CR
free-energy density g(ϕ) is given by

g(ϕ) = N(α ϕ + kBT[ϕ ln ϕ + (1 − ϕ) ln (1 − ϕ)]), (4)
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where α is the association/dissociation parameter, and the last two
terms correspond to the mixing entropy of N adsorption sites on
each macro-ion. We note that generalized CR processes (beyond
the Langmuir isotherm)7,30 can be incorporated into our formal-
ism.31 For example, CR processes can entail short-range interactions
between adjacent charged adsorption sites.11,29

Minimization of the free energy F with respect to ψ leads to the
Poisson equation,

∇2ψ = − e
ε
[p − nN(1 − ϕ)], (5)

while the minimization with respect to the other variables p, n, and ϕ
yields the respective chemical potentials. Such thermodynamic equi-
librium equations for a variant of the above model have already been
investigated in Ref. 32 and will not be presented explicitly here.

Our system contains negatively charged macro-ions in one of
the i = 0, . . . , N charge states, each with a number density ni, and
counter-ions of density p, where all sites on the macro-ion surface
are assumed to be identical, with no interactions between them. The
velocity of each macro-ion vi with magnitude vi = �vi� depends on its
charge state. Therefore, there are N + 1 possible velocities fields of
the macro-ions, and the velocity of the counter-ions is denoted as vp.
The dissipation function Φ stems from the friction in the diffusive
motion, as the mobile ions migrate with their respective velocities
through the solvent. It is given as

Φ = 1
2 � �

N�
i=0

niξiv2
i + p ξpv2

p�d3r, (6)

where {ξi} and ξp are the corresponding N + 2 friction coefficients .
In the spirit of the mean-field equilibrium theory, we pro-

ceed to simplify the above Φ by the following assumptions: (i) The
macro-ions in any charge state are moving with the same average
velocity vi = v, where v relates to the macroscopic transport under
the external field. (ii) Their friction coefficient is proportional to
the number of B+ absorbed ions. This assumption arises from a
hydrodynamic consideration: a spherical particle moving in a vis-
cous fluid exhibits a friction coefficient proportional to its size. This
proportionality validates the linear size dependence ξi = Nξs + iξw,
i = 0, . . . , N, where Nξs the macro-ion’s friction coefficient has no
absorbed counter-ions and iξw is the added friction for the ith charge
state. It indicates that macro-ions’ friction coefficient in different
charge states results from the macro-ion’s bare friction coefficient
and an additional increment dependent on adsorption, which is
proportional to the number of absorbed counter-ions. Note that∑N

i=0 ni = n as n is the total density of the macro-ions. In addition,
on the mean-field level, we replace∑N

i=0 ini by an average over all the{i} charge states n�i� = nNϕ = w, where w = sϕ and s = nN. In addi-
tion, recall that ϕ is the number fraction of neutralized sites on the
macro-ion. Then, Eq. (6) can be simplified as follows:

Φ = 1
2 � �sξsv2 +wξwv2 + p ξpv2

p�d3r. (7)

On the mean-field level, the above equation implies that it is equiv-
alent to consider that the dissipation comes from three types of
mobile components: macro-ions that have no B+ association with
site density s = Nn, macro-ions with an average of Nϕ associated B+

counter-ions and density w = Nnϕ = sϕ, and free positive counter-
ions of density p. The velocities of the first two mobile components
can, in principle, be defined as vs and vw, respectively. Still, for
simplicity and clarity, we assume the same average velocity v for
macro-ions in different charge states and a different velocity vp
for free mobile counter-ions in the limit of weakly charged
macro-ions and dilute solution.

It is more convenient to express the free energy F, Eq. (2),
as F[ψ, s, w, p]. We now write down the Rayleighian for the three
mobile components and employ Onsager’s variational principle
(OVP) to derive the dynamical equations.34,35 The dissipation func-
tion can now be rewritten in terms of the respective particle current
densities for each mobile component. In terms of the currents
defined by js = svs, jw = wvw, and jp = pvp, we have

Φ = 1
2ζ � � j2

s

s
+ j2

w

w
+ j2

p

p
�d3r, (8)

where ζ is the mobility coefficient, and all three friction coefficients
are assumed to be equal, ξs = ξw = ξp = 1�ζ. Finally, the Rayleighian,
R = Φ + @tF, is composed of the dissipation function Φ plus the
temporal free energy rate @tF = @F�@t, and R is written as

R = Φ + @tF

= Φ +� �@ f
@ψ

@ψ
@t
+ @ f

@s
@s
@t
+ @ f
@w

@w
@t
+ @ f

@p
@p
@t
�d3r. (9)

We assume that the electrostatic potential ψ is a fast dynamical vari-
able, as it responds much faster than the diffusion of the macro-ion.
The characteristic time scale is related to the build-up of a diffu-
sive double layer (the Debye relaxation time) τD = λ2

D�D, where the
Debye length λD (defined later) is about 1 nm, and D (the diffu-
sion constant) is about 10−9 m2�s. Clearly, as τD is on the order of
nanoseconds, it is much faster than the typical dynamic diffusion
timescale for macro-ions, which is in the order of milliseconds. This
assumption justifies the validity of the Poisson equation, Eq. (5),
δF�δψ = 0. We further assume that the continuity relations always
hold for the density variables s, w, and p. They connect the time
derivative with the divergence of the respective current density,

@tk = −∇ ⋅ jk for k = s, w, p. (10)

Thus, the terms in the volume integral of the Rayleighian R in Eq. (9)
can be transformed into purely spatial derivatives. The variation of R
with respect to the current density variables, δR�δjk = 0, then yields

js = −ζ�−es∇ψ + kBT∇n − kBTs
1 −w�s∇�w

s
��,

jw = −ζ�ew∇ψ + kBTs
1 −w�s∇�w

s
��,

jp = −ζ[ep∇ψ + kBT∇p].
(11)

Note that the CR parameter α does not appear in the ionic currents
as detailed in the above equations. This is because the CR parameter
α lacks spatial dependence, resulting in a zero gradient in the term∇(δg(ϕ)�δϕ). However, α still determines the equilibrated number
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fraction of neutralized A+ sites and influences the CR strength. Cur-
rents of more general CR models11,29 can be derived within the OVP
framework and will explicitly include the CR parameter.

A few special cases derived from Eq. (11) are of interest. In ther-
modynamic equilibrium, the time derivatives in Eq. (10) vanish, and
we recover the equilibrium distribution of ions as was analyzed in
Ref. 32. In addition, Eq. (11) can also be described as steady-state
situation, which differs from the equilibrium one as it allows for
a non-vanishing, spatially uniform charge current density,44 as is
discussed below.

Furthermore, in the limit of ϕ = 0 and N = 1 (meaning
s = n), the system contains only monovalent cations and anions.
Equation (11) then reduces to the standard PNP equations,

jn = −ζ(−en∇ψ + kBT∇n),
jp = −ζ(ep∇ψ + kBT∇p). (12)

In addition, for the fixed charge (non-CR) case, the charge density
is q = e(p − n), and the number density is ρ = p + n. Then, Eqs. (10)
and (12) simplify to

@tq = ζ�kBT ∇2q +∇ ⋅ (e2ρ∇ψ)�. (13)

We compute the product divergence in the second term of Eq. (13)
and use the Poisson Eq. (5) for ∇2ψ. To the lowest order in the

electrostatic potential with λ2
D = kBTε�[e2(p + n)] = kBTε�(e2ρ), the

above equation becomes @tq = kBTζ(∇2q − λ−2
D q), which is exactly

the Debye–Falkenhagen equation,43 describing the dynamics of the
charge density.

Returning to the CR case, we define the density of the A−
sites combined with the total associated and dissociated B+ par-
ticles as ρ = s +w + p = Nn(1 + ϕ) + p, and the net charge density
as q = e[p − s(1 − ϕ)]. Note that ρ should not be confused with the
local number density, p + n, and only in the fixed single charge
(non-CR and N = 1) case, ρ = p + n as discussed above. In addi-
tion, we define the ρ and q conjugate currents: jρ = js + jw + jp and
jq = e(−js + jw + jp).

We examine the CR effect in the steady state by setting the
time derivatives in Eqs. (10) and (11) to zero and assuming spa-
tial dependence only in the direction parallel to the external field
(x axis). This effectively reduces the problem to a one-dimensional
one. To maintain a steady state, we assume that the total flux of
the number density vanishes jρ = 0, while the net charge fluxes,
jq = jb

q and jw = jb
w, are constant. Hereafter, we use the electric field

E(x) = −@xψ instead of ψ, and the two ordinary differential equa-
tions for E(x) and ϕ(x) can be derived (more details are provided in
the supplementary material).

The boundary conditions are chosen similarly to those by
Bier.44 In the bulk, we stipulate that the electric field E(∞) = Eb, the

FIG. 2. (a) Schematic presentations of the four charge cases. (b)–(d) The dimensionless electric field Ẽ (in units of eλD�kBT), the dimensionless macro-ion density n�ρb,
and the fraction ϕ, respectively, as a function of x�λD. (e) The dimensionless density of the A− sites combined with the total associated and dissociated B+ particles ρ�ρb,
and (f) the dimensionless charge density q�(eρb) as a function of x�λD, for different values of j̃q = jbqλD�(ekBTζρb) = 0 (pb�ρb = 0.2, CR equilibrium case, black line),
j̃q = 0 (pb�ρb = 0.5, non-CR equilibrium case, black dashed line), j̃q = 6 (pb�ρb = 0.2, CR case, red line), and j̃q = 6 (pb�ρb = 0.5, non-CR case, red dashed line). Other
parameters are N = 10, ρb = 2 × 10−7M, and σ�σsat = 2.5, where σsat = 4kBTε�(eλD) is the saturation charge density on the wall.
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number density ρ(∞) = ρb, p(∞) = pb and from charge neutrality,
ϕ(∞) = ϕb = 1 − 2pb�ρb. For the boundary condition at x = 0, we
choose eE(0)λD�kBT = 4σ�σsat, where σ is the surface charge density
and σsat = 4εkBT�(eλD) is the saturation charge density as defined in
Ref. 45. Note that a related steady-state case without CR effect was
recently analyzed analytically in Ref. 44; however, the CR model can
only be analyzed numerically.

Thermodynamic equilibrium is characterized by jb
q = 0, as

shown by the solid and dashed black lines in Fig. 2. For non-zero
but constant jb

q , the system deviates from equilibrium into a steady
state (the solid and dashed red lines). In addition, the CR process
can also be controlled through the bulk value ϕb, governed by the CR
parameter α and the charge neutrality relation ϕb = 1 − 2pb�ρb. Note
that ϕb = 0 or pb = ρb�2 corresponds to a constant maximum charge
density on the macro-ion surface. Equivalently, it corresponds to the
fixed charge (non-CR) case (dashed red and black lines). Therefore,
we present four cases with the equilibrium/steady state and CR/non-
CR state combinations in Fig. 2. These four schematic presentations
are shown in Fig. 2(a), respectively. Figure 2(b) demonstrates that
the electric field E = −@xψ for the steady state decreases from its sur-
face value to its bulk value for large x�λD. Hence, the CR process
displays small differences compared to the non-CR case [solid vs
dashed red line in Fig. 2(b)].

However, a significant CR effect in the steady state is seen for
both the macro-ion concentration profile n(x) and the dimension-
less density of the A− sites combined with the total associated and
dissociated B+ particles ρ(x), as shown in Figs. 2(c) and 2(e). More
negatively charged macro-ions migrate toward the wall due to the
electrostatic attraction, as shown in Fig. 2(c). The CR curve (red solid
line) shifts significantly to the right, toward larger distances from
the wall. Thus, the macro-ion density at the same distance from the
wall is smaller in the CR steady state than in the equilibrium cases
(solid/dashed black lines) but is larger than in the non-CR case. In
addition, as the macro-ions migrate closer to the wall, more counter-
ions dissociate from their surfaces, decreasing ϕ(x), as shown in
Fig. 2(d). This difference amounts to almost 50% in the CR steady
state.

For the non-CR case, we recall that the macro-ions trivially
keep a constant charge, i.e., ϕ = 0 (dashed red line in Fig. 2). The

ρ and q plots in Figs. 2(e) and 2(f) follow similar tendencies as in
n when comparing the four cases. In the counter-ion-only case, the
distribution of the charge and particle densities are dominated by
spatial dependence of macro-ions.

In the steady state, the current density of each component,
denoted as jk(k = s, w, p), has a linear dependency on the bulk value
jb
q as charge neutrality is obeyed. For example, for the CR case,

jp = (pb�eρb)jb
q , and this linear dependence slope is different from

that of the non-CR one, jp = jb
q�(2e).

While the electric current densities jq, jρ, and jp in the steady
state, should be constant, it is interesting to note that each com-
ponent exhibits a pronounced spatial dependence. Specifically, the
charge and particle number currents jq and jρ consist of four com-
ponents, denoted as jq1, jq2, jq3, jq4 and jρ1, jρ2, jρ3, jρ4, whereas the
macro-ion current jp contains only two components jp1 and jp2.
The four components mentioned previously correspond to differ-
ent physical mechanisms driving currents. The first component is
proportional to the electrostatic field E = −@xψ. The three other
components are diffusive and proportional to three concentration
gradients: the free counter-ions (@xp), the total ionic sites (@xρ),
and the net charge (@xq) [see Eq. (13) of the supplementary material
for complete expressions].

The separate spatial dependence of these components is shown
in Figs. 3(a)–3(c). Clearly, each of the components, ( jq1, jq2, jq3, jq4)
and ( jρ1, jρ2, jρ3, jρ4), varies significantly as a function of the distance
from the wall, despite their sum remaining constant. In addition, the
diffusive components jρ3 and jρ4, corresponding to the density of the
A− sites combined with the total associated and dissociated B+ par-
ticles and the net charge density are significantly closer in magnitude
than the jq3 and jq4.

We have generalized Onsager’s variational principle to describe
the diffusive dynamics of an ionic solution containing charge-
regulated (CR) macro-ions. The derived equations represent a con-
sistent generalization of the standard PNP theory that describes fixed
charge particles. By examining the steady state, we find significant
CR effects on the spatial distribution of the macro-ions, particularly
in the vicinity of the surface. Moreover, the electric and diffusive

FIG. 3. (a) j̃q and its four contributions, (b) j̃ρ and its four contributions, and (c) j̃p and its two contributions, where j̃q is the current jq rescaled by λD�(ekBTζρb), whereas jρ
and jp are rescaled by λD�(kBTζρb) and denoted as j̃ρ and j̃p. Other parameters are pb�ρb = 0.2, N = 10, ρb = 2 × 10−7M, σ�σsat = 2.5, and j̃bq = 2. The four contributions
in (a) and (b) denoted as 1, . . . , 4 are the electric component and the three diffusive components, proportional to the electrostatic field −@xψ and concentration gradients
@xp,@xρ, and @xq respectively. Two components in (a) are proportional to −@xψ and @xp [see Eqs. (13)–(15) of the supplementary material]. Note that the insets are
added to show the variation of the curves more clearly over a smaller y-axis range.
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contributions to the current and electric charge densities have pro-
nounced spatial variation, including a significant contribution from
the CR components.

At a fixed distance from the charged surface, the macro-ion
density decreases when compared with the equilibrium CR case
but increases when compared to the steady-state non-CR (fixed
charge) case. Therefore, the CR effects always increase the macro-
ion concentration close to the boundary. In addition, the change
in the number of dissociated ions from the macro-ion surface is
significantly larger in the steady state compared to the equilibrium
one, implying that the CR effect strengthens in the non-equilibrium
steady state. In the steady state, the macro-ions’ distribution is more
compressed. It shifts closer to the charged wall, as shown in Fig. 2(c).
This compression results from the steady-state current. Unlike the
pure electrostatic mechanism in equilibrium systems, the CR effect
in NESS differs from its equilibrium counterpart due to the cou-
pling with the ionic diffusive dynamics. These findings indicate
that the CR effect is more pronounced in experiments under non-
equilibrium conditions. For example, it affects the charge of proteins
as they move in cellular environments, affecting their adsorption or
binding affinity to membranes. Similarly, it influences the stability
of charged nanoparticle suspensions.

This study employs four assumptions: (i) We assume that the
Poisson equation also holds for the slow dynamics considered here,
implying that the electrostatic potential is a fast dynamical variable
and is always equilibrated. (ii) The CR process is coupled only to the
ionic diffusive dynamics. (iii) The charged wall maintains a constant
surface charge density, serving as a boundary condition. We focus
on the diffusive process occurring in the intermediate spatial region,
which is neither close to nor far from the wall. This agrees with
experimental situations where the current has not yet neutralized
the charged wall. Hence, we ignore the current absorption kinetics
at the wall. (iv) We utilize the OVP approach within the mean-field
description. This limits the model to cases where fluctuations are
small, and the electrolyte solution is dilute and weakly charged. Our
theory offers a unified and consistent way to deal with CR diffusive
dynamics for systems undergoing charge association/dissociation
processes with the bathing solution. Our results, along with the
generalization of Onsager’s variational principle, provide insights
into understanding diverse experimental systems that involve charge
regulation mechanisms. These systems encompass the electrophore-
sis of DNA/RNA in microfluidic channels, as well as the transport
of biomolecules, such as proteins and other components of living
matter.

The supplementary material encompasses detailed derivation
for equations in the steady state and the list of variables in this work.

We thank M. Doi for his helpful comments and discussions.
B.Z. thanks F.-F. Ye for the support on computing resources,
and acknowledges the National Natural Science Foundation of
China (NSFC) (Grant No. 22203022) and the Scientific Research
Starting Foundation of Wenzhou Institute, UCAS (Grant No.
WIUCASQD2022016). S.K. acknowledges the NSFC Grant (Nos.
12274098 and 12250710127) and the Scientific Research Start-
ing Foundation of Wenzhou Institute, UCAS (Grant No. WIU-
CASQD2021041). D.A. acknowledges the NSFC-ISF Research Pro-
gram, jointly funded by the NSFC under Grant No. 21961142020

and the Israel Science Foundation (ISF) under Grant Nos. 3396/19
and ISF 226/24. R.P. acknowledges funding from the NSFC Key
Project No. 12034019.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Bin Zheng: Conceptualization (equal); Data curation (equal); For-
mal analysis (equal); Investigation (equal); Methodology (equal);
Project administration (equal); Validation (equal); Visualization
(equal); Writing – original draft (equal); Writing – review & editing
(equal). Shigeyuki Komura: Conceptualization (equal); Data cura-
tion (equal); Formal analysis (equal); Funding acquisition (equal);
Investigation (equal); Methodology (equal); Project administration
(equal); Visualization (equal); Writing – original draft (equal); Writ-
ing – review & editing (equal). David Andelman: Conceptualiza-
tion (equal); Formal analysis (equal); Funding acquisition (equal);
Investigation (equal); Methodology (equal); Project administration
(equal); Supervision (equal); Visualization (equal); Writing – origi-
nal draft (equal); Writing – review & editing (equal). Rudolf Pod-
gornik: Conceptualization (equal); Data curation (equal); Formal
analysis (equal); Funding acquisition (equal); Investigation (equal);
Methodology (equal); Project administration (equal); Supervision
(equal); Validation (equal); Visualization (equal); Writing – original
draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY
The data that support the findings of this study are available

within the article and its supplementary material.

REFERENCES
1M. Lund and B. Jönsson, “Charge regulation in biomolecular solution,” Q. Rev.
Biophys. 46, 265–281 (2013).
2T. Markovich, D. Andelman, and R. Podgornik, “Charged membranes:
Poisson–Boltzmann theory, the DLVO paradigm, and beyond,” in Handbook of
Lipid Membranes (CRC Press, 2021), pp. 99–128.
3Y. Avni, D. Andelman, and R. Podgornik, “Charge regulation with fixed and
mobile charged macromolecules,” Curr. Opin. Electrochem. 13, 70–77 (2019).
4H. X. Zhou and X. Pang, “Electrostatic interactions in protein structure, folding,
binding, and condensation,” Chem. Rev. 118, 1691–1741 (2018).
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