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SUMMARY

The nature of two-dimensional melting remains a matter of debate. Based on Langevin dynamics simulation, 
we present a surprising observation that the melting pathway of hard circular-particles/disks is relevant to the 
dynamical properties of particles. Using hard circular-particles/disks, where particle friction is proportional 
to particle size, results show the melting pathway of small size particles obeys two-step scenario, consistent 
with previous reports on melting behavior of hard disks. Conversely, in large size particle systems, we 
observe a one-step melting pathway. Further investigation reveals that the emergent one-step melting 
pathway is non-equilibrium phase transition that relates to cooperative relaxation of cage dynamics. This 
originates from the particularly stable/stiff configuration in large size particle system, which is a metastable 
state arrested by changed dynamics of particles, thus inducing a non-equilibrium melting pathway that dis-
tinguishes from the equilibrium melting behavior. Our findings shed light on the debate on melting behavior of 
hard disks.

INTRODUCTION

The nature of melting in two-dimensional (2D) systems attracts 
significant interest not only for its close connection with the 
fundamental principles of statistical physics but also for its po-
tential applications in the industrial development of micro- 
nano-scale materials. However, our understanding on 2D 
melting remains poor, due to a lack of systematic and compre-
hensive investigation as well as relevant theoretical advance-
ments. Over the past decades, extensive investigations have 
dedicated to 2D melting and revealed that melting of 2D systems 
is closely related to particle shape,1–4 configuration density,5

intermolecular interaction,6,7 and constitute particles in sys-
tem.8,9 These findings reflect a non-trivial behavior of 2D melting, 
consistent with the concept of ‘‘more is different’’.

The specific underlying mechanism of 2D melting hitherto re-
mains elusive due to two key difficulties. The first one is the ex-
isting interplay mechanism among various competing energies, 
which keeps system in a stable/metastable state through a 
complicated but subtle balance, e.g., the competition between 
orientational entropy and positional entropy,1 conflict between 
particle shape and intermolecular interaction,6 correlation be-

tween particle dynamics and phase selection,10 and competition 
between diverse local polymorphic configurations that are 
formed by neighboring particles.11 The other main difficulty 
arises from the problem in determining whether the system is 
at equilibrium or not. This issue is particularly significant in the 
physics of melting. In general, an equilibrium system is in the 
state of minimum free energy, however, how to identify/ 
approach the energy minimum state is a critical issue, depending 
on various degrees of freedom, such as the polydispersity,12

shapes,13,14 and interactions15 of particles, and the dynamical 
processes of systems.16–19

Actually, the equilibrium state of some systems is not always 
realized. Previous investigations revealed that it is possible to 
trap a system at a metastable non-equilibrium state through 
various approaches, which include rapid quench operations,19

introducing a short-range attractions (protein systems), applying 
a small amount of uniaxial stress,20 tuning the size or volume 
fraction of depletion agents18 and shape-designing of constitute 
particle.11 Such techniques can result in a non-equilibrium phase 
transition pathway that distinguishes from the equilibrium phase 
behavior. It is known that the dynamics of particles will not influ-
ence the equilibrium phase behavior of system, but how they 
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affect the relaxation process before system reaches equilibrium 
remains an open question. This issue is crucial not only for un-
derstanding the mechanism of equilibrium/non-equilibrium 
phase transition, but also for improving the efficiency of equilib-
rium process that matters to facilitate industrial applications.

In this work, based on Langevin dynamics simulation, we aim 
to investigate the effect of dynamics on the melting phase tran-
sition in 2D hard circular-particle system. Inspired by the previ-
ous experimental studies21,22 where the motion of particle can 
be controlled by internal activity through a complex (i.e., yolk- 
like) structural design, we try to control the dynamics of hard cir-
cular-particles by adjusting certain degrees of freedom, e.g., 
introducing internal activity of particles, to investigate the melting 
process of system. Specifically, we use Lennard-Jones beads to 
construct a yolk-like particle, which is composed of a radius- 
tunable ring and a constant-radius core. In small size particle 
systems, we observe an equilibrium two-step melting behavior, 
consistent with previous reports on hard disk systems.23–25

Strikingly, in the large size particle systems, we observe a non- 
equilibrium one-step melting pathway. We reveal that the emer-
gent one-step melting pathway in large size particle systems is 
related to a cooperative relaxation of cage dynamics. Further-
more, by using a simple hard disk model, we stress that this 
observation is universal.

Model
We use two kinds of hard Lennard-Jones (LJ) beads with radii of 
R0 = 2(→5/6)σ and Rc = 2R0 to build a yolk-like particle, as shown in 
Figure 1A, where σ is the unit of length in LJ system. The R0- 
radius beads are arranged to form a ring at the radial distance 
of Rr-R0, where Rr is the radius of particle/ring, and Rc-radius 
beads are put inside this ring. We define ζ=(Rr-2R0)/Rc to control 
the particle radius, and particles with various ζ are shown in 
Figure 1A. See details in STAR Methods.

We use a GPU-based molecular dynamics package, the 
GPU-accelerated large-scale molecular simulation toolkit 
(GALAMOST)26,27 to perform Brownian dynamics simulations 
of particles. In principle, the dynamics of particles are modeled 
by Langevin dynamics. The velocity v(t) obeys the following 
equation

m _v↑t↓ = → γv↑t↓+ F↑t↓+ Fr↑t↓; (Equation 1) 

where F(t) is the total force exerted on a particle through the in-
teractions with neighboring particles, and γ is the friction con-
stant of particle. Here, γ = Nbead*γbead with Nbead the number of 
beads on a rigid body and γbead the friction constant per bead. 
Note that the core and the ring are the components of one par-
ticle, but they are treated as independent rigid bodies in simula-

tions. Moreover, Fr↑t↓ =
)))))))))))))))))))))
2γbeadkBT

[ ]Nbead
i = 1 ξi↑t↓ is the random 

force, where ξi↑t↓ is the normalized Gaussian white noise acting 
on bead i, kB is the Boltzmann constant and T is the temperature 
of the system. With an external thermal bath, the ring and core 
fluctuate independently while interact with each other through 
collisions, see Video S1 of a representative motion of ζ = 4.5 
particles.

RESULTS

Single particle dynamics and collective melting 
behaviors
We focus on the behavior of the particle ring (hard circular-parti-
cle) in current investigation. To analyze the single particle dy-
namics, we calculate the mean-square displacement (MSD), 
and obtain the diffusion constant as well as the probability distri-
bution of displacement for each ζ particle. The diffusion constant 
is derived from 〈Δr2↑t↓σ2 =R2

0〉 = 4Dt. Additionally, considering 

Figure 1. Sketch of yolk-like particle and its 
single-particle dynamics properties 
(A) The yolk-like particle is composed of two parts: 

a constant-radius (Rc) core and a radius-tunable 

(Rr) ring. The core is a hard disk (blue) with radius 

of Rc = 2R0, where R0 = 2(→5/6)σ. The ring consists 

of hard Lennard-Jones beads (gold) with radius of 

R0. These beads are put on a radius of Rr-R0, and 

the radius of ring Rr is controlled by ζ=(Rr-2R0)/Rc. 

The particles with different ζ used in simulations 

are shown in the right panel of (a). 

(B) The relative diffusion constants (normalized by 

ζ = 1.0 case) as a function of ζ, the diffusion con-

stant obtained from single-particle mean-square 

displacement (MSD). The green dashed line is the 

theoretical prediction obtained from Einstein 

relation. 

(C) The distribution probability of displacement on 

x axis of each ζ particle at t = τ0. τ0 is the timescale 

that a particle diffuses one particle length scale, 

i.e., 〈Δr2↑τ0↓〉 = 4R2
r . The solid lines are Gaussian 

fittings. Insets are the average value and variance 

of distribution.
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the size of each ζ particle, the effective diffusion constant is 
calculated by using 〈Δr2↑t↓σ2 =R2

r 〉 = 4Defft, which will be dis-
cussed further. Figure 1B shows the relative diffusion constant 
(normalized by that of ζ = 1.0 case) as a function of ζ. In principle, 
the diffusion constant obeys the Einstein relation, D = kBT/γ. 
Given that γ is the summation of all beads, D is inversely propor-
tional to Nbead (red line in Figure 1B, also see Nbead for each ζ par-
ticle in Table S1 in supplemental information (SI)). Further, since 
the beads are distributed on particle evenly with the distance be-
tween two adjacent beads fixed at approximately 0.5σ, the fric-
tion constant of particle is roughly proportional to its radius. 
Consequently, the relative diffusion constant also follows the 
prediction D=D1:0 = ↑Rr↓1:0 =Rr = 2 =↑ζ + 1↓, where D1.0 and 
(Rr)1.0 are the diffusion constant and radius of ζ = 1.0 particle, 
respectively. The displacement distributions along x axis at t = 
τ0 (the timescale for a particle diffusing over its own length scale, 
see τ0 of each ζ particle in Table S2) are shown in Figure 1C, 
following a Gaussian distribution with the average value 0 (upper 
inset) and a similar variance (lower inset). These tests demon-
strate the particles meet the reality: the friction constant is pro-
portional to the particle radius and their single particle diffusion 
behaviors show a similar feature due to isotropic nature (hard- 
disk-like) of particles.

Although all particles show a similar single particle diffusion 
behavior, we observe distinct melting pathways in high and 
low ζ systems after an adequate relaxation of systems (6↔107/ 
1.5↔108 MD steps run, more than 270 times of the characteristic 
timescale τ0). Figure 2 presents the observed melting pathways 
for particles with ζ = 1.0 (Figures 2A–2D) and ζ = 4.5 (Figures 2E– 
2H). For ζ = 1.0 particles, the melting process follows a two-step 
pathway. System first melts from a hexagonal crystal (HX) 
phase to an intermediate hexatic (H) phase continuously, and 
subsequently from H to isotropic fluid (I) phase by a first-order 
transition, characterized by a coexistence (CE) window 

(0.709<ϕA < 0.727, Figure 2A, ϕA = NAp/Lx/Ly, where Ap is the 
area of particle, Lx and Ly are the lengths of box along x axis 
and y axis, respectively). In contrast, the observed melting 
pathway of ζ = 4.5 particles exhibits a first-order one-step 
melting scenario, changing from HX phase to I phase directly. 
This is confirmed by the evidences of CE of HX and I 
(0.701<ϕA < 0.719, Figure 2F) as well as the Mayer-Wood 
loop28 in the equation of state (EOS, Figure 2E). In both sys-
tems, the quasi-long-range order of HX phase obeys the predic-
tion of Berezinskii-Kosterlitz-Thouless-Helperin-Nelson-Young 
(BKTHNY) theory.29–35 The spatial correlation of positional order 
gHX(r) shows a power-law decay with gHX(r)↗r→1/3 corresponding 
to the stability criterion of HX phase. Similarly, the decays of 
bond-orientational correlation shows three regimes: long-range 
order in HX phase (g6(r)↗constant), quasi-long-range order in 
H phase (power-law decay) and short-range order in I phase 
(exponential decay).

Cooperative relaxation related melting pathway
Based on the BKTHNY theory, we investigate the mechanism of 
the melting pathways in ζ = 1.0 and 4.5 systems through the evo-
lution of topological defects during melting process.1,2 For ζ = 
1.0 system (Figure 3A), within high density region in HX regime, 
only the neutral defect is observed, which does not destroy the 
quasi-long-range order of HX phase. System melts to the H 
phase until the appearance of dislocation as density decreases 
(ϕA ↗ 0.733). By further decreasing the density, the amount of 
dislocation grows and disclination starts to appear around the 
peak of neutral defects (ϕA ↗ 0.727), leading the system into 
the CE regime. After an almost linear growth in CE window, accu-
mulated disclinations drive the system to melt into the I phase. 
The melting pathway of ζ = 1.0 particles is closely related to 
the evolution of dislocations and disclinations. Conversely, the 
ζ = 4.5 system shows a distinct relationship between melting 

Figure 2. The melting pathways of ζ = 1.0 and ζ = 4.5 particles 
Results are obtained after 6↔107 and 1.5↔108 MD steps for ζ = 1.0 and ζ = 4.5 systems, respectively. The equation of state (EOS) (A and E), local density 

distribution P(ϕ) (B and F), 6-fold bond-orientational correlation function g6(r) (C and G), and spatial correlation function of hexagonal order gHX(r) (D and H) of ζ = 

1.0 and 4.5 systems. Green dashed lines in (C) and (G) represent curves proportional to r→1/4, and cyan dashed lines in (D) and (H) correspond to curves pro-

portional to r→1/3.

iScience 28, 113107, August 15, 2025 3 

iScience
Article

ll
OPEN ACCESS



pathway and defect evolution. Solid starts to melt after the 
appearance of disclinations, which leads the system to the CE 
regime. In CE window, disclination grows nearly linearly, similar 
to the ζ = 1.0 case, and obeys the lever rule.36 As a result, in 
ζ = 4.5 system, with the accumulations of dislocations and discli-
nations, the system loses its long-range bond-orientational order 
and quasi-long-range positional order, leading to a direct transi-
tion from HX to I. We note that the evolution pathway of ζ = 4.5 
system is similar to hard pentagon case, which undergoes a 
one-step melting process.2

The vanishing of H phase is the signal of one-step melting sce-
nario in ζ = 4.5 system. BKTHNY theory assumed that isolated 
dislocations dissociated from neutral dislocation pairs will 
destroy the quasi-long-ranged positional order and long-ranged 
bond-orientational order, driving the solid-to-H transition. This 
assumption is confirmed by previous investigation37 and ζ = 
1.0 case in present work (Figure 3A). However, in ζ = 4.5 system 
(Figure 3C), although dislocations emerge from ϕA = 0.722, con-
figurations still persist a quasi-long-range order of the HX phase 
until system starts to change to the I phase (ϕA = 0.719). This sta-
ble nature of configuration should be the essential reason for the 
emergent one-step melting behavior in ζ = 4.5 system.

Because the particle dynamics is closely correlated with the 
certain state of system, it is convenient to understand collective 
behavior of system through the kinetic information. Previous in-
vestigations10,38–41 revealed that the dynamics of particles 

exhibit a highly cooperative behavior even in hard particle sys-
tems. The main dynamical feature of high-symmetry particle is 
hopping-like motion, which is related to the cage structure 
formed by local environment of moving particles. Note that this 
local environment even includes the space of tens of particle 
length scales. Here, we define the time evolution of Lindemann 
parameter to investigate the dynamical behavior of particles, 

L6↑t↓ = 
〈↘r↑t+t0↓→ 〈r↑t+t0↓〉6↘2〉1=2

a . Here, t0 is the starting time of a 

dynamical sequence, at which the neighbors of the reference 
particle are recognized, r(t+t0) is the position of reference particle 
at time of t+t0, 〈r(t+t0)〉6 is the average position of the first 6 near-
est neighbors of the reference particle (identified at time t0) and a 
is the ideal lattice constant of HX at certain density of configura-
tion. The quantity L6(t) describes the evolution of cage structure 
around a reference moving particle, reflecting the particles’ 
escaping dynamics from its original cage structure. At t = 0, 
L6(0) is the Lindemann parameter that was discussed in the pre-
vious reports.41,42

We take ϕA = 0.730 in ζ = 1.0 system and ϕA = 0.720 in ζ = 4.5 
system for comparison, where their configurations have a similar 
number of defects (see the inset colored configurations in 
Figures 3B and 3D; Table S3) but are in different states. At the 
beginning, L6(t) of ϕA = 0.720 configuration is larger than ϕA = 
0.730 configuration due to its lower density nature (see inset in 
Figure 3E), which provides particles more space to vibrate. As 

Figure 3. Analysis on emerging melting pathways of ζ = 1.0 and ζ = 4.5 particles 
(A and C) Fractions of defects as a function of ϕA in ζ = 1.0 (A) and 4.5 (C) systems. The fractions are calculated by taking the ratio of the number of particles 

involved in each type of defect and the total number of particles of the system. The colored backgrounds indicate the different phase windows. 

(B and D) The spatial correlation functions of bond-orientational order g6(r) and hexagonal crystal order gHX(r) of selected representative configurations in ζ = 1.0 

(B) and 4.5 (D) systems. Insets are the configurations with defects colored: black, neutral; red, dislocation; blue, disclination. 

(E) The time evolution of Lindemann parameter L6(t) of H phase in ζ = 1.0 system (ϕA = 0.730) and HX phase in ζ = 4.5 system (ϕA = 0.720), respectively, which 

represents the cage dynamics in system. Inset: an enlarged view within short timescale. 

(F) Self-part intermediate scattering function (self-ISF) Fs(2π/Rch, t) of H phase in ζ = 1.0 system (ϕA = 0.730) and HX phase in ζ = 4.5 system (ϕA = 0.720), 

respectively, where Rch is the length scale of the first peak of radial distribution function.
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time increases, L6(t) starts to grow, indicating the deformation of 
the cage structure and the preparation for inside particles to 
escape via hopping motion. This hopping behavior is a highly 
cooperative motion. The previous work10 showed that a particle 
migration requires fluctuation to lower the local density sur-
rounding the migrating particle. Thus, the hopping behavior (or 
growth behavior of L6(t)) represents the stability of configuration 
against perturbations. In Figure 3E, though L6(0) of ϕA = 0.730 is 
smaller than L6(0) of ϕA = 0.720, its growth rate is significantly 
larger. Within very short timescale, the value of L6(t) of ϕA = 
0.730 exceeds that of ϕA = 0.720 case and continues to grow 
with a much higher speed. This rapid increase of L6(t) in ϕA = 
0.730 system demonstrates that its cage structure/configuration 
is fragile, which is consistent with its liquid nature. Conversely, 
the growth of L6(t) of ϕA = 0.720 is much slower, and it is hard 
to approach 1.0 (within our simulation time limitation for dy-
namics, 1.1↔108 MD steps, about 200 times of characteristic 
timescale τ0). This value represents the event that particles 
executed their first hopping activities. The previous trends in 
L6(t) evolution are consistent with the structural relaxation behav-
iors of two configurations, shown in Figure 3F, where the relaxa-
tion of ϕA = 0.720 is much slower than ϕA = 0.730, showing a 
more stable property. Qi et al.43 revealed that increasing stiffness 
of crystal will lead the crossover from a two-step transition to a 
first-order one-step transition in hard disk system, which sup-
ports our observations.

Size-dependent melting process
Through a systematic investigation, we summarize the observed 
melting pathways of model particles in Figure 4. Particles with 
ζ ≃ 3.5 show a two-step melting scenario, including a continuous 
HX-to-H transition and a subsequent first-order H-to-I transition. 
Conversely, the particles of ζ ⇐ 4.0 show a first-order HX-to-I 
transition. We notice that, in ζ = 3.5 system (see Figure S3), 
when the relaxation time of system is not long, e.g., 6↔107 and 

1.0↔108 MD steps, its melting pathway is first-order HX-to-I 
transition. However, with a sufficient relaxation time, e.g., 
1.5↔108 MD steps, melting behavior of system alters to the 
two-step scenario. This observation makes us consider that 
the observed first-order one-step transition is a non-equilibrium 
phase transition because though the model particle is yolk-like, 
the activity of internal core does not seem to influence the phase 
behavior of particles (see the tests on the particles without inter-
nal core of ζ = 1.0 and 4.5 in Figures S1 and S4 in SI), implying 
that the previous observation is a hard circular-particle based 
behavior, which should give a same melting behavior with hard 
disks in 2D due to it exhibits a similar excluded volume effect 
with hard disk. Moreover, the equilibrium melting behavior of 
hard disks is well-established as the two-step scenario.23–25

This emergent first-order one-step transition closely relates to 
the particularly stable nature of the structure, which represents 
a metastable state arrested by dynamics of large size particles 
in Langevin systems. We highlight that the duration time of 
observed one-step scenario in large size systems is due to our 
simulation time limitation (6.0↔107↗1.5↔108 MD steps in ζ = 
4.5 system in our simulation, which is about 150 times of charac-
teristic timescale of τ0).

DISCUSSION

Given that the interaction between model hard circular particles 
(the excluded volume effect) is similar to the interaction between 
hard disks, we investigate the universality of the dynamic-effect 
on hard-disk particles in 2D melting by performing additional in-
dependent Langevin dynamics simulations on simple hard disks. 
For each disk in simulation, its friction constant is set to be pro-
portional to the radius. The results for particles with radii of R0 

and 20R0 are shown in Figure 5, and they confirm that the dy-
namic-effect still works in these simple hard disk systems. The 
melting pathway of R0 particles is two-step scenario whereas 
the 20R0 particles is one-step, being consistent with our above 
coarse-grained model particle case. Here, the 20R0 case also 
shows a robust behavior, its one-step melting scenario observa-
tion is stable from 5.0↔107 to 2.0↔108 MD steps and even longer 
(beyond 310 times of characteristic timescale τ0, Figure S6).

The energy dissipation plays a crucial role in the emergence of 
one-step melting pathway of hard circular-particles/disks. For 
particles without energy dissipation, e.g., NVT ensembles using 
Andersen thermostat, tests show that the melting behavior of 
particles is independent of the particle size (see Figures S7
and S8). This result is consistent with the previous Monte 
Carlo23,24 and event-driven molecular dynamics24,37 simula-
tions. Though the energy dissipation can induce the coexistence 
of HX and I phases of hard disks in non-equilibrium stationary 
state system,36 the mechanism of emerging HX and I coexis-
tence in Langevin systems is different. In non-equilibrium sta-
tionary state system,36 the dissipation of particle between two 
external energy injections is the main source of the phase sepa-
ration. However, in Langevin systems, under the limitation of 
fluctuation-dissipation theorem, the attached heat bath will 
continuously provide energy for each particle to compensate 
its dissipation. This suggests the occurrence of HX and I coexis-
tence in Langevin systems is not solely due to the effect of 

Figure 4. Summary of observed melting pathways of yolk-like par-
ticles 
Simulations are executed under temperature of 1.0 (ε/kB), the results of ζ ≃ 3.0 

are obtained after 6↔107 MD steps, and results of ζ ⇐ 3.5 are obtained after 

1.5↔108 MD steps. HX, hexagonal crystal; H, hexatic phase; CE, coexistence; 

I, isotropic fluid.
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energy dissipation but instead originates from the cooperative 
dynamical behavior of particles as discussed previously. 
Considering that increasing inertia (elastic collision) can effec-
tively weaken the dissipation of the particles, it is also interesting 
to test the influence of inertia (elastic collision) on the dynamical 
behavior/phase transition of the system in the future.

In reality, the frictional force exerted on moving objects by the 
environment (e.g., air and water, etc.) are typically size-depen-
dent. Thus, the effect discussed previously should be under 
consideration when analyzing their collective dynamics. This is 
particularly relevant for particles with size ranging from 10→7 to 
10→5 meters, which undergo Brownian motion driven by thermal 
perturbations. This size range is significant, as it includes various 
elements essential to life activities (e.g., proteins, nucleic 
acids)44 and industrial production of low-dimensional micro- 
and nano-scale materials.45 Our findings are applicable to these 
fields.

Our further tests show that the emergence of one-step melting 
pathway depends critically on both particle size and system tem-
perature. Smaller particle, such as ζ = 1.5 particle, still follows a 
two-step scenario even its friction constant is set to be as large 
as ζ = 4.5 particle (see Figure S2), while lower system tempera-
ture will induce the non-equilibrium one-step melting pathway 
(see Figure S1). These observations suggest an effective diffu-
sion-dependent (i.e., Deff, or dynamic-effect) melting pathway 
of hard disks in Langevin systems.

Conclusion
In conclusion, in Langevin system, we reveal that the observing 
melting transition of hard circular-particles/disks is dynamical 
relevant. In small size particle system, melting pathway obeys 
two-step scenario, including a continuous HX-to-H transition 
and a first-order H-to-I transition. In contrast, in large size parti-
cle system, we observe a non-equilibrium first-order HX-to-I 
transition. Further investigation reveals the emergent first-order 
melting pathway relates to the cooperative (cage) dynamics of 

particles, which can be induced in Langevin systems by 
increasing the size of particle and/or reducing the temperature 
of the system to slow down the effective diffusion behavior of 
particles. In larger size particle system, cage dynamics relax 
more slowly and configuration becomes stiffer. These findings 
reveal a novel melting phenomenon that a system might be trap-
ped into a metastable state showing a non-equilibrium melting 
pathway, which distinguishes from the equilibrium melting 
behavior. The phase behavior of hard disks is a long-term debate 
until its determination ten years ago, due to the various melting 
transitions had been observed in investigations. Present work re-
veals that, during a melting process, system may show a non- 
equilibrium melting pathway that differs from equilibrium melting 
behavior, which provides a reasonable explanation for this long- 
running debate.

Limitations of the study
In our model, we assumed that the friction constant of particle is 
proportional to the particle size (i.e., the radius of circular parti-
cle), such a law works in three-dimensional systems, there 
should be a different relationship between the friction constant 
and particle size in two-dimensional cases. Although the results 
presented in this work were obtained from Langevin dynamics 
simulations, their applicability in reality needs to be further veri-
fied through experimental works. In present work, we just sys-
tematically investigated the size-effect on the melting transition 
of 2D hard circular-particles/disks, their specific melting transi-
tion is also relevant to the temperature of system according to 
our tests (as mentioned in the main text), which is worth investi-
gating in the future works. Moreover, the underlying mechanism 
of such effects is still undisclosed.

RESOURCE AVAILABILITY

Lead contact
Requests for further information and resources should be directed to and will 

be fulfilled by the lead contact, Zhanglin Hou (zl_hou@tju.edu.cn).

Figure 5. The melting pathways of simple hard disks with radii of R0 and 20R0, the friction constant of particle is proportional to its radius 
(A–D) The obseved melting pathway of simple hard disks with radius of R0 obtained from Langevin dynamics simulation after 1.0↔108 MD steps run. 

(E–H) The obseved melting pathway of simple hard disks with radius of 20R0 obtained from Langevin dynamics simulation after 1.0↔108 MD steps run.

6 iScience 28, 113107, August 15, 2025 

iScience
Article

ll
OPEN ACCESS

mailto:zl_hou@tju.edu.cn


Materials availability
This study did not generate new unique reagents.

Data and code availability
Data: All data reported in this paper will be shared by the lead contact upon 

request.

Code: This paper does not report original code.

Additional information: Any additional information required to reanalyze the 

data reported in this paper is available from the lead contact upon request.

ACKNOWLEDGMENTS

We thank Profs. Zhongyuan Lu, Zhaoyan Sun, and Youliang Zhu for the help on 

GALAMOST. Z.H. thanks Profs. Haim Diamant, Jinglei Hu, Mingcheng Yang, 

Dong Zhao, and Huaping Li for useful discussions. Z.H. and B.Z. acknowledge 

Prof. Fangfu Ye for the support on computing resources. This project sup-

ported by the National Natural Science Foundation of China (grant 12104453 

to Z.H.; grant 22273067 to L.H.; and grants 12274098 and 12250710127 to 

S.K.).

AUTHOR CONTRIBUTIONS

Z.H., S.K., and L.H. conceived the project. Y.Z., S.J., and J.W. performed the 

simulations. Y.Z., X.S., and X.H. helped on algorithms and codes. Y.Z., S.K., 

and Z.H. analyzed the data. Y.Z., S.K., L.H., B.Z., and Z.H. interpreted the 

data with help from all other authors. Z.H., Y.Z., L.H., B.Z., X.S., X.H., and S. 

K. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

DECLARATION OF GENERATIVE AI AND AI-ASSISTED 
TECHNOLOGIES IN THE WRITING PROCESS

During the preparation of this work, the author(s) used DeepSeek to improve 

the readability of the English text. After using this tool or service, the author 

(s) reviewed and edited the content as needed and take(s) full responsibility 

for the content of the publication.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include 

the following:

⇒ KEY RESOURCES TABLE

⇒ METHOD DETAILS
○ Simulation details

⇒ QUANTIFICATION AND STATISTICAL ANALYSIS
○ Order parameters and correlation functions

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci. 

2025.113107.

Received: March 4, 2025

Revised: May 19, 2025

Accepted: July 10, 2025

Published: July 12, 2025

REFERENCES

1. Jiang, S., Wang, J., Zeng, Y., Zhao, Z., Huang, X., Komura, S., Ye, F., He, 

L., Zhao, K., and Hou, Z. (2023). Five scenarios revealed by hard truncated 

rhombs for an expanded picture of two-dimensional melting. Cell Rep. 

Phys. Sci. 4, 101627.

2. Anderson, J.A., Antonaglia, J., Millan, J.A., Engel, M., and Glotzer, S.C. 

(2017). Shape and symmetry determine two-dimensional melting transi-

tions of hard regular polygons. Phys. Rev. X 7, 021001.

3. Hou, Z., Zhao, K., Zong, Y., and Mason, T.G. (2019). Phase behavior of 

two-dimensional Brownian systems of corner-rounded hexagons. Phys. 

Rev. Mater. 3, 015601.

4. Hou, Z., Zong, Y., Sun, Z., Ye, F., Mason, T.G., and Zhao, K. (2020). Emer-

gent tetratic order in crowded systems of rotationally asymmetric hard kite 

particles. Nat. Commun. 11, 2064.

5. Zu, M., Liu, J., Tong, H., and Xu, N. (2016). Density affects the nature of the 

hexatic-liquid transition in two-dimensional melting of soft-core systems. 

Phys. Rev. Lett. 117, 085702.

6. Zhu, R., and Wang, Y. (2024). A critical edge number revealed for phase 

stabilities of two-dimensional ball-stick polygons. Nat. Commun. 

15, 6389.

7. Li, Y.-W., and Ciamarra, M.P. (2020). Attraction tames two-dimensional 

melting: From continuous to discontinuous transitions. Phys. Rev. Lett. 

124, 218002.

8. Russo, J., and Wilding, N.B. (2017). Disappearance of the hexatic phase in 

a binary mixture of hard disks. Phys. Rev. Lett. 119, 115702.

9. Li, Y.-W., Yao, Y., and Ciamarra, M.P. (2023). Two-Dimensional Melting of 

two-and three-component mixtures. Phys. Rev. Lett. 130, 258202.

10. Hou, Z., Liu, M., Zong, Y., Ye, F., and Zhao, K. (2022). The cooperative 

migration dynamics of particles correlates to the nature of hexatic– 

isotropic phase transition in 2D systems of corner-rounded hexagons. 

Fundamental Research 4, 284–290.

11. Zhao, K., and Mason, T.G. (2015). Shape-designed frustration by local 

polymorphism in a near-equilibrium colloidal glass. Proc. Natl. Acad. 

Sci. USA 112, 12063–12068.

12. Jacobs, W.M., and Frenkel, D. (2013). Predicting phase behavior in multi-

component mixtures. J. Chem. Phys. 139, 024108.

13. Van Damme, R., Coli, G.M., Van Roij, R., and Dijkstra, M. (2020). Classi-

fying crystals of rounded tetrahedra and determining their order parame-

ters using dimensionality reduction. ACS Nano 14, 15144–15153.

14. Damasceno, P.F., Engel, M., and Glotzer, S.C. (2012). Predictive self-as-

sembly of polyhedra into complex structures. Science 337, 453–457.

15. van Roij, R., Dijkstra, M., and Hansen, J.-P. (1999). Phase diagram of 

charge-stabilized colloidal suspensions: van der Waals instability without 

attractive forces. Phys. Rev. E 59, 2010–2025.

16. Paulin, S.E., Ackerson, B.J., and Wolfe, M.S. (1996). Equilibrium and shear 

induced nonequilibrium phase behavior of PMMA microgel spheres. 

J. Colloid Interface Sci. 178, 251–262.

17. Albano, E.V., Bab, M.A., Baglietto, G., Borzi, R.A., Grigera, T.S., Loscar, E. 

S., Rodriguez, D.E., Puzzo, M.L.R., and Saracco, G.P. (2011). Study of 

phase transitions from short-time non-equilibrium behaviour. Rep. Prog. 

Phys. 74, 026501.

18. Anderson, V.J., and Lekkerkerker, H.N.W. (2002). Insights into phase tran-

sition kinetics from colloid science. Nature 416, 811–815.

19. Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L., and van Saarloos, W. 

(2011). Dynamical Heterogeneities in Glasses, Colloids, and Granular Me-

dia (Oxford: OUP).

20. Kegel, W.K. (2000). Crystallization in glassy suspensions of colloidal hard 

spheres. Langmuir 16, 939–941.

21. Watanabe, K., Ishii, H., Konno, M., Imhof, A., Van Blaaderen, A., and Na-

gao, D. (2017). Yolk/shell colloidal crystals incorporating movable cores 

with their motion controlled by an external electric field. Langmuir 33, 

296–302.

22. Welling, T.A.J., Grau-Carbonell, A., Watanabe, K., Nagao, D., de Graaf, J., 

van Huis, M.A., and van Blaaderen, A. (2022). Frequency-controlled elec-

trophoretic mobility of a particle within a porous, hollow shell. J. Colloid 

Interface Sci. 627, 761–773.

iScience 28, 113107, August 15, 2025 7 

iScience
Article

ll
OPEN ACCESS

https://doi.org/10.1016/j.isci.2025.113107
https://doi.org/10.1016/j.isci.2025.113107
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref1
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref1
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref1
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref1
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref2
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref2
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref2
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref3
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref3
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref3
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref4
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref4
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref4
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref5
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref5
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref5
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref6
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref6
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref6
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref7
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref7
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref7
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref8
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref8
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref9
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref9
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref10
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref10
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref10
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref10
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref11
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref11
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref11
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref12
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref12
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref13
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref13
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref13
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref14
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref14
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref15
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref15
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref15
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref16
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref16
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref16
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref17
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref17
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref17
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref17
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref18
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref18
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref19
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref19
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref19
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref20
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref20
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref21
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref21
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref21
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref21
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref22
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref22
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref22
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref22


23. Bernard, E.P., and Krauth, W. (2011). Two-step melting in two dimensions: 

first-order liquid-hexatic transition. Phys. Rev. Lett. 107, 155704.

24. Engel, M., Anderson, J.A., Glotzer, S.C., Isobe, M., Bernard, E.P., and 

Krauth, W. (2013). Hard-disk equation of state: First-order liquid-hexatic 

transition in two dimensions with three simulation methods. Phys. Rev. E 

Stat. Nonlin. Soft Matter Phys. 87, 042134.

25. Thorneywork, A.L., Abbott, J.L., Aarts, D.G.A.L., and Dullens, R.P.A. 

(2017). Two-dimensional melting of colloidal hard spheres. Phys. Rev. 

Lett. 118, 158001.

26. Zhu, Y.L., Liu, H., Li, Z.W., Qian, H.J., Milano, G., and Lu, Z.Y. (2013). 

GALAMOST: GPU-accelerated Large-scale Molecular Simulation Toolkit 

(Wiley Online Library).

27. Zhu, Y.-L., Pan, D., Li, Z.-W., Liu, H., Qian, H.-J., Zhao, Y., Lu, Z.-Y., and 

Sun, Z.-Y. (2018). Employing multi-GPU power for molecular dynamics 

simulation: an extension of GALAMOST. Mol. Phys. 116, 1065–1077.

28. Mayer, J.E., and Wood, W.W. (1965). Interfacial Tension Effects in Finite, 

Periodic, Two-Dimensional Systems. J. Chem. Phys. 42, 4268–4274.

29. Strandburg, K.J. (1988). Two-dimensional melting. Rev. Mod. Phys. 60, 

161–207.

30. Berezinskii, V. (1971). Destruction of long-range order in one-dimensional 

and two-dimensional systems having a continuous symmetry group I. 

Classical systems. Sov. Phys. JETP 32, 493–500.

31. Berezinskii, V. (1972). Destruction of long-range order in one-dimensional 

and two-dimensional systems possessing a continuous symmetry group. 

II. Quantum systems. Sov. Phys. JETP 34, 610–616.

32. Kosterlitz, J.M., and Thouless, D.J. (1973). Ordering, metastability and 

phase transitions in two-dimensional systems. J. Phys. C: Solid State 

Phys. 6, 1181.

33. Nelson, D.R. (1978). Study of melting in two dimensions. Phys. Rev. B 18, 

2318–2338.

34. Halperin, B.I., and Nelson, D.R. (1978). Theory of two-dimensional melting. 

Phys. Rev. Lett. 41, 121–124.

35. Young, A.P. (1979). Melting and the vector Coulomb gas in two dimen-

sions. Phys. Rev. B 19, 1855–1866.

36. Komatsu, Y., and Tanaka, H. (2015). Roles of energy dissipation in a liquid- 

solid transition of out-of-equilibrium systems. Phys. Rev. X 5, 031025.

37. Qi, W., Gantapara, A.P., and Dijkstra, M. (2014). Two-stage melting 

induced by dislocations and grain boundaries in monolayers of hard 

spheres. Soft Matter 10, 5449–5457.

38. Li, B., Lou, K., Kob, W., and Granick, S. (2020). Anatomy of cage formation 

in a two-dimensional glass-forming liquid. Nature 587, 225–229.

39. Zangi, R., and Rice, S.A. (2004). Cooperative dynamics in two dimensions. 

Phys. Rev. Lett. 92, 035502.

40. Kim, J., Kim, C., and Sung, B.J. (2013). Simulation Study of Seemingly 

Fickian but Heterogeneous Dynamics of Two Dimensional Colloids. 

Phys. Rev. Lett. 110, 047801.

41. Hou, Z.-L., Ju, Y., Zong, Y.-W., Ye, F.-F., and Zhao, K. (2018). Molecular 

dynamics simulations on the dynamics of two-dimensional rounded 

squares. Chinese Phys. B 27, 088203.

42. Zheng, X.H., and Earnshaw, J.C. (1998). On the Lindemann criterion in 2D. 

Europhys. Lett. 41, 635–640.

43. Qi, W., and Dijkstra, M. (2015). Destabilisation of the hexatic phase in sys-

tems of hard disks by quenched disorder due to pinning on a lattice. Soft 

Matter 11, 2852–2856.

44. Phillips, R., Kondev, J., Theriot, J., and Garcia, H. (2012). Physical biology 

of the cell (Garland Science).

45. Zhao, K., and Mason, T.G. (2018). Assembly of colloidal particles in solu-

tion. Rep. Prog. Phys. 81, 126601.

46. Kapfer, S.C., and Krauth, W. (2015). Two-dimensional melting: From 

liquid-hexatic coexistence to continuous transitions. Phys. Rev. Lett. 

114, 035702.

47. Allen, M.P., and Tildesley, D.J. (2017). Computer Simulation of Liquids 

(Oxford university press).

8 iScience 28, 113107, August 15, 2025 

iScience
Article

ll
OPEN ACCESS

http://refhub.elsevier.com/S2589-0042(25)01368-9/sref23
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref23
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref24
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref24
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref24
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref24
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref25
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref25
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref25
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref26
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref26
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref26
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref27
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref27
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref27
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref28
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref28
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref29
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref29
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref30
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref30
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref30
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref31
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref31
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref31
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref32a
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref32a
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref32a
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref33
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref33
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref34
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref34
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref35
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref35
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref36
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref36
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref37
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref37
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref37
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref38
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref38
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref39
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref39
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref40
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref40
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref40
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref41
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref41
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref41
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref42
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref42
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref43
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref43
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref43
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref44
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref44
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref45
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref45
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref46
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref46
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref46
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref47
http://refhub.elsevier.com/S2589-0042(25)01368-9/sref47


STAR★METHODS

KEY RESOURCES TABLE

METHOD DETAILS

Simulation details
For yolk-like particles, we build particles using coarse-grained model by putting truncated 12-6 Lennard-Jones beads on the inside 
core and outside hollow ring. The core is constructed by putting the centers of two beads with radius of Rc=2*R0 on the center of mass 
of core. The two beads are overlapped to form a disk-like core, as the requirements on building of rigid body in GALAMOST. The 
hollow ring is built by putting beads on the arc of ring with a distance around 0.5σ between two adjacent beads, i.e., for a hollow 

ring with radius of Rr, the beads are put on the arc of ring with radius of Rr-R0, with distance of 2π↑Rr →R0↓
⇑2π↑Rr →R0↓=0:5σ⇓, where the R0=2-5/6σ 

is the radius of bead on the ring, and the ⎡…⎤ means taking the integer upwards from the float result. The interaction between beads 
are controlled by Weeks-Chandler-Andersen (WCA) potential, which is defined as

u
⌊
rij

⌋
=

⌈
⌉⌉{

⌉⌉}

4ε
〈〉

Aσ
rij

/12

→
〉

Aσ
rij

/6
\

+ ε; rij ≃ 21=6Aσ

0; rij > 21=6Aσ
; (Equation 2) 

where rij is the distance between beads, ε and σ are the characteristic (unit of) energy and distance, respectively. A is control param-
eter due to the different radii of beads on the core and ring, for the interaction between beads on the rings, A=1.0, and for the inter-
action between a bead on the ring and a bead on the core, A=1.5. In order to shorten the buffer distance between beads, we set 
ε=100kBT, which can better model the hard interaction between particles. The masses of ring and core are both set to be 1.0, 
and the friction constant of each bead is set to be 1.0.

For the simulation of simple hard disks, we take a single disk as each particle with interaction of Equation 2 between disks. We 
adjust the radius of particle by tuning the value of A, e.g., for particle with radius of 20R0, A is 20. The mass of each disk is 1.0. 
Here, the friction constant of each disk is set to be A.

Simulations are performed using a GPU-based Molecular Dynamics (MD) package, the GPU-Accelerated Large-scale Molecular 
Simulation Toolkit (GALAMOST) and homemade codes. We use GALAMOST to simulate the Brownian dynamics of yolk-like parti-
cles, and for the simulations of Brownian dynamics and NVT ensembles (using Andersen thermostat) of simple hard disks, we use our 
homemade CPU-based MD codes. Initial configurations are crystalline states, there N=128↔128 (for simple disk systems), 250↔250 
(for yolk-like systems) or 400↔400 (for finite-size-effect test) particles are put in the simulation box on a perfect hexagonal lattice 
structure, whose lattice constants are tunable to match with the box under certain density of system, ϕA=NAp/Lx/Ly, where Ap is 
the area of particle, Lx and Ly are the lengths of box on x-axis and y-axis, respectively. The relationship between Lx and Ly is fixed 
to be Lx=Ly = 2=

)))
3

⇔
due to the hexagonal crystal. In simulations, in yolk-like particle systems, there at least 6↔107 MD steps (with 

unit of 0.005↔(
))))))))))))))
mσ2=ε

[
)) are run and the last 107 MD steps with configurations recorded every 105 MD steps for statistical analysis, 

and in simple disk systems, there totally 108 MD steps are run and the last 107 MD steps with configurations outputted every 105 MD 
steps for statistical analysis, this ensures that each obtained result is calculated by averaging 100 configurations. To analyze the dy-
namics of selected systems, we take the equilibrium structure as initial configuration and run additional 2.1↔107 MD steps with con-
figurations recorded every 104 MD steps, the last 2.0↔107 MD steps will be used for analysis of dynamics. The results presented in 
current work are based on the observations of N=250↔250 (for yolk-like systems) and 128↔128 (for simple disk systems) particles 
systems. We mention that our simulation system is large enough and the finite-size effect is negligible by comparing with previous 
investigations2,5,7 and our tests (Figures S4 and S5).

In simulations, there will be some size-changing effects when we adjust the size of the coarse-grained circular particle and the sim-
ple hard disk. Increasing the size of the coarse-grained circular particle, the outline of particle becomes smoother and the interparticle 
interaction becomes ‘harder’, which leads the particle to be more approximate to a hard disk, while a simple disk will become ‘softer’ 
when its size increases. However, these effects will not influence our conclusion of the present work because the softness of inter-
action between particles will not change the two-step melting scenario nature of hard circular-particles/disks.46

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Galamost4.0.2 Y.-L. Zhu et al.26,27 https://docs.hpc2n.umu.se/software/apps/GALAMOST/

Intel C++ Compiler Intel Corporation https://www.intel.com/content/www/us/en/developer/ 

tools/oneapi/dpc-compiler.html#gs.mz41zg
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QUANTIFICATION AND STATISTICAL ANALYSIS

Order parameters and correlation functions
We determine the melting behavior of systems by a combination of order parameters including 6-fold bond-orientational order and 
positional order with hexagonal lattice, susceptibility of bond-orientational order, local density distributions, as well as spatial corre-
lation functions of bond-orientational order and positional order.

The 6-fold bond-orientational order is defined as

Ψ6eiω = 〈ϕ6

⌊
r j

⌋
〉; (Equation 3) 

where ω denotes global phase, 〈…〉 denotes ensemble average, and ϕ6↑r j↓ = 1
Nj

]Nj

k = 1ei6θjk , here, Nj is the number of neighbors of 
particle j, and θjk is the angle between an arbitrary fixed axis and the line connecting the centers of particles j and k, the Nj and cor-
responding neighbors are obtained through Voronoi construction.

The positional order relates to hexagonal lattice SHX is defined as

SHX =

/////
1

N

\N

j = 1

ξ
⌊
r j

⌋
/////; (Equation 4) 

where ξ
⌊
r j

⌋
= eiG⋅r j with G of the reciprocal lattice of HX crystal.

The susceptibility of 6-fold bond-orientational order is defined as

χ6 = N
⌊
〈Ψ2

6〉 → 〈Ψ6〉2
⌋
; (Equation 5) 

and the spatial correlation function of bond-orientational order/positional order is defined as

g6=HX↑r↓ = Re〈v↖⌊r j

⌋
v
⌊
r j + r

⌋
〉; (Equation 6) 

where Re represents the operator returning the real part of the result value, and v denotes the ϕ6 or ξ.
The self-part intermediate scattering function (self-ISF) is defined as

Fs↑k; t↓ =
1

N
〈
\N

j = 1

e→ ik⋅↑rj↑t↓ → rj↑0↓↓〉; (Equation 7) 

where wave vector k is set to be 2π/Rch with Rch the length scale of the first (maximum) peak of the radial distribution function.
The equation of state of system is determined by calculating the pressure in the system, which consists of an ideal-gas part Pid and 

an ‘‘internal virial’’ part Pin47:

P = Pid + Pin = ρkBT + W
⎛

S; (Equation 8) 

where ρ is the number density of system, S is the area of system (in two dimension), and W = 1
D

]N
i = 1 r i⋅f i with D the dimension of 

system.
For all configurations, the local density distribution is calculated by averaging over a circular region with a radius of 30Rp, where Rp 

represents the radius of particle, e.g., for yolk-like particle, Rp=Rr, and for simple disk particle, Rp=AR0. The Voronoi area of individual 
particle is first calculated, and subsequently the local density is obtained through the ratio between particle area and Voronoi area 
within local region.

We determine the coexistence (CE) windows based on the local density distribution of configurations. For each CE state, we care-
fully checked that there are two distinguishable phases contained in a single configuration, corresponding to a high-density phase 
and a low-density phase. Theoretically, it should be more precise if we determine the CE window using Maxwell construction, how-
ever, its result is sensitive to the size of system that a smaller size system will provide a much wider CE region.23,43 As a consequence, 
considering the size limitation of our systems, we adopt the method described above to determine the boundaries of CE state, the 
more precise boundaries can be obtained in the future using larger size systems through Maxwell construction.

The topological defects including neutral, dislocation and disclination are determined by using Voronoi tessellation of the centers of 
mass of particles, following the operations in previous investigations.1,2 For each particle, we count the number of neighbors that is 
obtained through Voronoi construction to determine its disclination charge by the definition of qj = nj → 6, where nj is the number of 
neighbors of particle j. Charged particles with qj ↙∝ 0 were picked out for further analysis. Considering that they are often not clearly 
separated but agglomerate into clusters, any two charged particles will be treated within a cluster if they are Voronoi neighbors with 
each other. For each defect cluster, if its total disclination charge q =

]
jqj is not 0, we define it as disclination defect, otherwise, if the 

cluster with q = 0, we further calculate its total Burgers vector b = ⎞z ↔
]

jqjr j according to the disclination charges and positions of 
particles within the cluster. Here, ⎞z is the unit vector along the out-of-plane axis and r j is the position vector of particle j. By snapping 
the total Burgers vector to its closest lattice point in a hexagonal lattice, which is the ideal crystalline lattice at certain density of 
configuration, we define the cluster with q = 0 and b ↙∝ 0 as dislocation defect and the one with q = 0 and b = 0 as neutral defect.
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