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ABSTRACT
We discuss the dynamics of a bilayer membrane with partial slip boundary conditions between
the monolayers and the bulk fluid. Using Onsager’s variational principle to account for the
associated dissipations, we derive the coupled dynamic equations for the membrane height
and the excess lipid density. The newly introduced friction coefficients appear in the renormalized
fluid viscosities. For ordinary lipid bilayer membranes, we find that it is generally justified to
ignore the effects of permeation and parallel slip at the membrane surface.
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Much attention has been paid to artificial lipid bilayer
membranes as model systems of biological cell mem-
branes (1). The fluidity of biomembranes is guaranteed
mainly by the lipid molecules, which are in the liquid
crystalline state at physiological temperatures.
Biomembranes exhibit a wide variety of complex phe-
nomena, in both statics and dynamics, since lipid den-
sities, membrane deformation and surrounding fluids
are coupled to each other. In early theoretical studies,
the relaxation rate of a lipid membrane was discussed
by regarding it as a tensionless elastic sheet undergoing
out-of-plane fluctuations (2). The membrane relaxation
was then shown to be dominated by the bending rigid-
ity and the viscosity of the surrounding bulk fluid.

Later on, Merkel et al. (3) and Seifert and Langer (4)
considered both the inter-monolayer friction and the 2D
hydrodynamics of each monolayer. Importantly, they
obtained another relaxation mode which is associated
with the density difference between the two monolayers
and is further coupled to the bending mode. Such a
relaxation of the density fluctuation is dominated by the
inter-monolayer friction. The existence of the predicted
compressional mode has been confirmed in the recent
experiment (5). After the work by Seifert and Langer, the
bilayer nature of lipid membranes has been explicitly
considered for two-component bilayer membranes (6)
and spherically closed bilayer vesicles (7–9). More
recently, the present authors have discussed the dynamics
of a bilayer membrane coupled to a 2D cytoskeleton (10).

In all of these works, a partial slip boundary condition
between the two monolayers has been employed (4).
Conversely, the associated models have always assumed a
no-slip boundary condition between themonolayer and the
outer bulk fluid (solvent). Precisely speaking, this no-slip
boundary condition requires that the velocity of the bulk
fluid has the following properties at themonolayer surfaces:
(i) the velocity component normal to the membrane coin-
cides with the change rate of the out-of-plane membrane
displacement, so that the bulk fluid cannot permeate
through themembrane, and (ii) the lateral velocity compo-
nent coincides with the fluid velocity of the monolayer.

In this paper, we discuss the dynamics of a bilayer
membrane with partial slip boundary conditions
between the monolayers and the bulk fluid, i.e., we
study the case when the above conditions (i) and (ii)
are violated. It is of importance to know which of the
slipping modes (inter-monolayer or monolayer-solvent)
dominates the membrane dynamics at large-wavenum-
ber excitations. We use the framework of Onsager’s
variational principle (11) to obtain the governing hydro-
dynamic equations (12). In particular, the friction
between the monolayer and the bulk fluid is taken into
account through newly introduced dissipation functions.
In order to highlight the effects of the monolayer-solvent
partial slip boundary condition, we shall closely follow
the notations in Ref. (12).

As shown in Fig. 1, we describe the membrane shape by
a height function hðr; tÞ, where the 2D vector r ¼ ðx; yÞ is
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a generic point in a reference plane. We use ρþðr; tÞ and
ρ�ðr; tÞ to describe relative excess mass densities of the
upper and the lower monolayers, respectively. The two
lipid monolayers are regarded as 2D fluid sheets with a
shear viscosity η2 and a dilatational viscosity λ2. The lateral
velocity of each monolayer is denoted v�i ðr; tÞ, with
i 2 x; yf g. The outer bulk fluids are assumed identical on
both sides of the membrane and are characterized by the
bulk fluid viscosity η, the pressure P�ðR; tÞ, and the
velocity V�

α ðR; tÞ, where α 2 x; y; zf g and R ¼ ðr; zÞ is a
3D vector.

The dynamical equations can be obtained without any
ambiguity from the extremalization of the Rayleighian
(11) of the whole system, i.e., the bilayer membrane and
the bulk fluid. In general, the Rayleighian consists of a
dissipation function plus the time derivative of a free
energy. The conservation laws and the boundary condi-
tions are taken into account by introducing Lagrange
multipliers. Regarding the bulk solvent as an incompres-
sible fluid, we require @αV�

α ¼ 0, whereas the mass
conservation is expressed by _ρ� þ @iv�i ¼ 0, where _ρ�

indicates the time derivative of ρ�. In this paper, we shall
later introduce new friction coefficients between the
monolayers and the bulk fluid.

Concerning the boundary condition of the normal
component of the velocities, we require that the normal
velocities of the upper and lower monolayers coincide.
However, since we shall use partial slip boundary con-
ditions between the monolayers and the bulk fluid, the
velocities of the membrane and the bulk fluid should be
different in general. Hence we only require the follow-
ing boundary conditions regarding the bulk fluid
velocities:

Vþ
z jz¼0 ¼ V�

z jz¼0; (1)

which ensures that no water is stocked by the
membrane.

Next, we consider the dissipation functions of the
system. The dissipation functions corresponding to the
bulk fluid P�

b and the 2D fluid monolayers P�
s are

given by

P�
b ¼

ð
d3R ηD�

αβD
�
αβ; (2)

where D�
αβ ¼ ð@αV�

β þ @βV�
α Þ=2, and

P�
s ¼

ð
d2r η2d

�
ij d

�
ij þ

λ2
2
d�ii d

�
jj

� �
; (3)

where d�ij ¼ ð@iv�j þ @jv�i Þ=2. Furthermore, the dissipa-
tion due to the inter-monolayer friction is given by

Pi ¼
ð
d2r

b
2
ðvþi � v�i Þ2; (4)

in which the friction coefficient b between the two
monolayers appears.

In contrast to Ref. (12) we shall consider here the dis-
sipationwhich occurs at the boundaries between themono-
layers and the bulk fluid. The friction in the x; y-direction is
proportional to the relative velocity v�i � V�

i jz¼0, whereas

that in the z-direction is determined by _h� Vþ
z jz¼0:Hence

the corresponding dissipation functions can be written as

P�
k ¼

ð
d2r

bk
2
ðv�i � V�

i jz¼0Þ2; (5)

P? ¼
ð
d2r

b?
2
ð _h� Vþ

z jz¼0Þ2; (6)

where bk is the friction coefficient in the parallel direc-
tion, and b? is that in the normal direction. These are
the new dissipation functions that we consider in this
paper. Notice that the inverse of b? is known as the
membrane permeation coefficient (13).

Next we briefly discuss the free energy of a later-
ally compressible bilayer membrane with finite thick-
ness. The elasticity of a flexible membrane is
generally characterized by a surface tension σ and a
bending rigidity κ. Using these quantities, the free
energy per unit area of a membrane is given by
1
2 σð�hÞ2 þ 1

2 κc
2 where c � �2h is twice the mean

curvature. We also consider the coupling between
the membrane curvature and the lipid density in
the monolayers (4). When the membrane has a posi-
tive mean curvature, the upper monolayer is
stretched while the lower one is compressed. The
amount of stretching or compression is simply
given by ec, where e is the distance between the
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Figure 1. Schematic picture of a laterally compressible bilayer
membrane. The deformation of the membrane is described by
the height variable hðrÞ and the excess lipid mass densities of
the upper and the lower monolayers by ρ�ðrÞ. The lateral
velocities of the upper monolayer and the lower monolayer
are v�ðr; tÞ. The velocities of the bulk fluid in the upper and the
lower side of the membrane are V�ðR; tÞ.
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monolayer neutral surface and the membrane mid-
surface (see Figure 1). Introducing the monolayer
stretching coefficient k, one can write down the
total free energy as

H ¼
ð
d2r

σ

2
ð�hÞ2 þ κ

2
ð�2hÞ2

h

þ k
2
ðρþ þ e�2hÞ2 þ k

2
ðρ� � e�2hÞ2

�
: (7)

The whole set of dynamical equations can be
obtained by extremalizing the Rayleighian with respect
to all of the dynamical variables (11). The Rayleighian
is given by the sum of all the dissipation functions and
the time derivative of the free energy, i.e., R ¼ Pþ

b þ
P�

b þ Pþ
s þP�

s þPi þ Pþ
jj þ P�

jj þ P? þ _H: The

incompressibility condition and the mass conservation
condition, as shown before, are taken into account by
the method of Lagrange multiplier. Extremalizing R
with respect to the fields v�, V�, _h, _ρ� and the
Lagrange multiplier fields, we finally obtain the dyna-
mical equations for a compressible bilayer membrane
with partial slip boundary conditions between the
monolayers and the bulk fluids.

The equations for the outer bulk fluid are the
Stokes equation and the incompressibility condition
which are given by � η�2V�

α þ @αP� ¼ 0 and
@αV�

α ¼ 0, respectively. Solving these equations with
the use of a 2D Fourier transform of the variables
such as

Xðq; zÞ ¼
ð
d2rXðRÞe�iq�r; (8)

we obtain the bulk fluid velocity as

V�
z ðq; zÞ ¼ ðA� þ B�zÞe�qz; (9)

V�
k ðq; zÞ ¼ iðB�=q� A� � B�zÞe�qz; (10)

where V�
k ðq; zÞ is the component of the bulk fluid

velocity parallel to the direction of q, while A� and
B� are coefficients yet to be determined. In the above,
we have assumed that V�

α ! 0 for z ! �1. In addi-
tion, the pressure is given by P�ðq; zÞ ¼ 2ηB�e�qz.
Notice that the component of the bulk fluid velocity
perpendicular to q, denoted by V�

?ðq; zÞ, is completely
decoupled from the other components.

The boundary conditions at the membrane, z ¼ 0,
are Eq. (1) and

� ηð@zV�
i þ @iV

�
z Þ � bkðv�i � V�

i Þ ¼ 0; (11)

� 2ηð@zVþ
z � @zV

�
z Þ þ Pþ � P� � b?ð _h� Vþ

z Þ ¼ 0; (12)

which are the force balance equations in the perpendi-
cular and parallel directions to the membrane, respec-
tively, in the presence of partial slip effects. These
boundary conditions are now used to obtain the
unknown coefficients as

A� ¼ b?
b? þ 4ηq

_hðqÞ; (13)

B� ¼ �q
b?

b? þ 4ηq
_hðqÞ � iq

bk
bk þ 2ηq

v�k ðqÞ: (14)

Note that v�k ðqÞ in Eq. (14) is the component of the
membrane velocity parallel to q.

The force balance equations for the membrane itself
are given by

~κ�4h� σ�2hþ ke�2ðρþ � ρ�Þ þ Pþ � 2η@zV
þ
z

� P� þ 2η@zV
�
z ¼ 0;

(15)

where ~κ ¼ kþ 2ke2 and

� η2�
2v�i � ðη2 þ λ2Þ@i� � v� þ bðv�i � v�i Þ

þ k@iðρ� � e�2hÞ � ηð@zV�
i þ @iV

�
z Þ ¼ 0:

(16)

Using the solutions for the bulk fluid as calculated
above, we finally obtain the dynamical equations for
the membrane height h and the density difference ρ ¼
ρþ � ρ� as

_hðq; tÞ
_ρðq; tÞ

� �
¼ �MðqÞ hðq; tÞ

ρðq; tÞ
� �

; (17)

where

MðqÞ ¼
σqþ ~κq3

4η?ðqÞ
� keq
4η?ðqÞ

� keq4

bþ ηkðqÞqþ ηsq
2

kq2

2½bþ ηkðqÞqþ ηsq
2�

0
BBB@

1
CCCA: (18)

In the above matrix, we have defined the effective sur-
face viscosity as

ηs ¼ η2 þ
λ2
2
; (19)

whereas the wavenumber dependent renormalized visc-
osities are

η?ðqÞ ¼
ηb?

b? þ 4ηq
; ηkðqÞ ¼

ηbk
bk þ 2ηq

: (20)

(In Ref. (4), the density difference was defined as
ρ ¼ ðρþ � ρ�Þ=2. This leads to a somewhat different
appearance of the corresponding relaxation matrix.) We
do not discuss here the dynamics of the density sum �ρ ¼
ρþ þ ρ� since it is completely decoupled from the other
variables (4). First we note that our result generalizes that of
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Seifert and Langer (4), because the bulk viscosity η is now
replaced either by η?ðqÞ or ηkðqÞ. In other words, both η?
and ηk reduce to ηwhen b? � 4ηq and bk � 2ηq, respec-

tively, corresponding to the previous no-slip boundary
condition. Equations (17) and (18) are the main result of
this paper.

Next we discuss the wavenumber dependence of the
relaxation rates, which are the two eigenvalues of the
matrix in Eq. (18). First of all, one can demonstrate that
the two eigenvalues are real and positive in all situations.
This property is ensured by the positivity of all the
dissipation functions as well as the positivity of the static
parameters such as κ and k. In order to see clearly the
effects of the partial slip boundary conditions, we con-
sider here the tensionless case and set σ ¼ 0. The asymp-
totic analysis of the relaxation matrix yields the following
wavenumber dependences of the two eigenvalues:

γ1 �
ðk=2bÞq2; q 	 q1;
ð~κ=4ηÞq3; q1 	 q 	 q2;
ð~κ=b?Þq4; q2 	 q;

8<
: (21)

γ2 �
ðκ=4ηÞq3; q 	 q1;

ðk=2bÞðκ=~κÞq2; q1 	 q 	 q3;
ðk=2ηsÞðκ=~κÞ; q3 	 q:

8<
: (22)

Here the three crossover wavenumbers are

q1 ¼ 2ηk=ðb~κÞ, q2 ¼ b?=ð4ηÞ, and q3 ¼
ffiffiffiffiffiffiffiffiffi
b=ηs

p
.

Among these, q1 and q3 were discussed before (4), while
q2 introduces a new length scale.

The parameters of ordinary lipid membranes have
the following order of magnitudes: e � 10�9 m, k �
0:1 J/m2, κ � 10�19 J, b � 109 J � s/m4, ηs � 10�9 J � s/
m2, and η � 10�3 J � s/m3 (pure water) (12). Note that
these values are consistent with the relation b � ηs=e

2.
Likewise, it seems reasonable to estimate the friction
coefficient bk between the monolayer and the bulk
fluid by using the water viscosity η and the water
molecular size a � 3
 10�10 m through bk � η=a �
106 J � s/m4. As mentioned before, the friction coeffi-
cient b? is the inverse of the membrane permeation
coefficient; it is known to be b? � 1012 J � s/m4 (13),
which is far larger than bk. With these numerical

values, the three crossover wavenumbers can be
roughly estimated as q1 � 106 m�1, q2 � 1014 m�1,
and q3 � 109 m�1. Therefore, we recognize that q2 is
beyond the appropriate range for the present theory
and that the scaling behavior γ1,q4 for q � q2 should
not be observable.

As for the scale dependent viscosities in Eq. (20), we
expect essentially η? � η because b? is very large.
Besides, ηk is generally dependent on q and becomes

ηk � bk=ð2qÞ when q � q� where q� ¼ bk=ð2ηÞ � 108

m�1 for the above parameter values. Hence, for
q� 	 q 	 q3, the monolayer friction coefficient is
renormalized as b ! bþ bk. However, since bk=b �
10�3 for the above typical parameter values, the mod-
ification of b due to the partial slip boundary condition
may not be observable. We also note that q� is already
close to q3. From these results, one can conclude the
effects of partial slip boundary conditions do not show
up in the relaxation dynamics of a compressible bilayer
membrane. In other words, is it justified to neglect both
permeation and parallel slip at the membrane surface
for ordinary lipid membranes.

Using the above parameter values, we numerically
calculate the two relaxation rates γ1 and γ2 as shown
in Fig. 2 (solid lines). Although the partial slip boundary
conditions are included here, the result is essentially the
same as that by Seifert and Langer (4) because of the
above-mentioned reasons. The wavenumber dependen-
cies of the relaxation rates are in accordance with the
asymptotic behaviors in Eqs. (21) and (22), although we
do not see the dependence γ1,q4 for q � q2 since q2 is
too large. Just for comparison, we have also plotted in
Fig. 2 the relaxation rates for b? � 106 J � s/m4 (dashed
line) which corresponds to a very permeable membrane.
Here γ1 increases as γ1,q4 for q � 108 m�1. In Fig. 3
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Figure 2. The relaxation rates γ1 and γ2 as a function of the
wavenumber q. Both are normalized by q2. The parameter values,
given in the text, are those of a tensionless ordinary lipid mem-
brane. The solid and dashed lines correspond to b? ¼ 1012 J � s/m4

(ordinary membrane) and b? ¼ 106 J � s/m4 (very permeable
membrane), respectively. The different numbers indicate the slope
representing the exponent of the power-law behaviors.
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we show the effect of a finite membrane tension of the
relaxation rates, as presented by the dashed line.

It is instructive to compare here the different dis-
sipation mechanisms introduced in the Rayleighian.
The dissipation due to the inter-monolayer friction is
given by Eq. (4). In Fourier space, using the mass
conservation law, it can be rewritten as

Pi ¼
ð

d2q

ð2πÞ2
b
2q2

j _ρðqÞj2: (23)

Similarly, one can Fourier transform the dissipation P�
k

[see Eq. (6)] due to the friction between the monolayer
and the bulk fluid:

P�
k ¼

ð
d2q

ð2πÞ2
bk
q2

ηq
bk þ 2ηq

� �2

j _ρðqÞj2: (24)

Looking at the q-dependent coefficient of j _ρðqÞj2 in the
integrand, we see that it decays as q�2 in Eq. (23),
whereas in Eq. (24), it is independent of q when
q 	 q�, while it also decays as q�2 for q � q�. Hence
Pi always dominates for q 	 q�, whereas the sum bþ
bk contributes to the dissipation for q � q�. This is
consistent with the previous argument on the renorma-
lized friction coefficient, but we note again that bk is
typically much smaller than b for ordinary membranes.

In Figs. 2 and 3, we have plotted up to q ¼ 1010 m�1.
Although directly detecting molecular scale dynamics

may not be so easy, we note that a long-wavelength
deformation can excite a collection of modes with
much shorter wavelengths, e.g., when a bilayer mem-
brane is coupled with a cytoskeleton (10). This is
because the lattice structure of a cytoskeleton breaks
lateral continuous translational symmetry and couples
Fourier modes with different wave vectors.

Some years ago, Müller and Müller-Plathe investi-
gated shear viscosity of a lipid bilayer system by using
reverse non-equilibrium molecular dynamics simula-
tions (14). They showed that water molecules are less
mobile near the lipid head groups than in the bulk water,
and the local viscosity of water close to the head group
interface is several times larger than the bulk water
viscosity. This means that the parallel friction coefficient
bk � η=a can be even larger than our estimate (assum-
ing a is the same) because we have used the bulk water
viscosity value for η. In our theory, the increase of bk
leads to the increase of the crossover wavelength q�.

In conclusion, we have studied the effect on mem-
brane dynamics of partial slip boundary conditions at
the monolayers-solvent interface. We found that a new
regime may appear in the spectrum of the relaxation
rates and that the new friction coefficients associated
with the partial slip boundary conditions renormalize
the solvent viscosity. For ordinary lipid bilayer mem-
branes, however, these effects should not be detectable
and it is plainly justified to ignore them. It is none-
theless possible that exotic membranes may someday
display the new regimes that we have calculated.
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