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We discuss the locomotion of a three-sphere microswimmer in a viscoelastic medium and propose a new type of
active microrheology. We derive a relation that connects the average swimming velocity and the frequency-dependent
viscosity of the surrounding medium. In this relation, the viscous contribution can exist only when the time-reversal
symmetry is broken, whereas the elastic contribution is present only when the structural symmetry of the swimmer is
broken. Purcell’s scallop theorem breaks down for a three-sphere swimmer in a viscoelastic medium.

Microrheology is one of the most useful techniques for
measuring the rheological properties of soft matter and
various biological materials including cells.1,2) There are two
different methods: passive microrheology and active micro-
rheology. In passive microrheology, both the local and bulk
mechanical properties of a medium can be extracted from
the Brownian motion of a probe particle.3,4) In this method,
the generalized Stokes–Einstein relation (GSER) is used to
analyze thermal diffusive motion. In active microrheology,
on the other hand, the probe is actively pulled through the
fluid with the aims of driving the medium out of equilibrium
and measuring mechanical responses.5,6) Within linear
response theory, the generalized Stokes relation (GSR) is
employed to obtain the frequency-dependent complex shear
modulus.

In this letter, we propose a new type of active micro-
rheology using a microswimmer. Microswimmers are tiny
machines that swim in a fluid such as sperm cells or motile
bacteria, and are expected to be applied to microfluidics and
microsystems.7) As one of the simplest microswimmers, we
consider the Najafi–Golestanian three-sphere swimmer mod-
el,8,9) where three in-line spheres are linked by two arms of
varying length (see Fig. 1). Recently, such a swimmer has
been experimentally realized.10) We investigate its motion in
a general viscoelastic medium, and obtain a relation that
connects the average swimming velocity and the frequency-
dependent complex shear viscosity of the surrounding
viscoelastic medium. We show explicitly that the absence
of the time-reversal symmetry of the swimmer motion leads
to the real part of the viscosity, whereas the absence of the
structural symmetry of the swimmer is reflected in the
imaginary part of the viscosity. Hence, we shall call the
proposed method the “swimmer-microrheology”. Our result
also indicates that Purcell’s scallop theorem,11,12) which
states that time-reversible body motion cannot be used for
locomotion in a Newtonian fluid, breaks down for a three-
sphere swimmer in viscoelastic media if the structural
symmetry is violated.

The general equation that describes the hydrodynamics of
a low-Reynolds-number flow in a viscoelastic medium is
given by the following generalized Stokes equation:13)

0 ¼
Z t

�1
dt0 �ðt � t0Þr2vðr; t0Þ � rpðr; tÞ: ð1Þ

Here �ðtÞ is the time-dependent shear viscosity, v is the
velocity field, p is the pressure field, and r stands for a three-

dimensional positional vector. The above equation is further
subjected to the incompressibility condition, r � v ¼ 0. From
these equations, one can obtain a linear relation between the
time-dependent force FðtÞ acting on a hard sphere of radius a
and its time-dependent velocity VðtÞ. In the Fourier domain,
this relation can be represented as

Vð!Þ ¼ 1

6��½!�a Fð!Þ; ð2Þ

where we use a bilateral Fourier transform for Vð!Þ ¼R1
�1 dt VðtÞe�i!t and Fð!Þ, while we employ a unilateral
one for �½!� ¼ R1

0
dt �ðtÞe�i!t. Equation (2) is the GSR,

which has been successfully used in active microrheology
experiments,5) and its mathematical validity has also been
discussed.6)

Next, we briefly explain the three-sphere model for a
minimum swimmer introduced by Najafi and Golestanian.8,9)

As schematically shown in Fig. 1, this model consists of
three spheres of the same radius a that are connected by
two arms of lengths L1ðtÞ and L2ðtÞ, which undergo time-
dependent motion. Their explicit time dependences will be
given later. If we define the velocity of each sphere along the
swimmer axis as ViðtÞ with i ¼ 1; 2; 3, we have

_L1ðtÞ ¼ V2ðtÞ � V1ðtÞ; ð3Þ
_L2ðtÞ ¼ V3ðtÞ � V2ðtÞ; ð4Þ

where _L1 and _L2 indicate time derivatives.
Owing to the hydrodynamic effect, each sphere exerts a

force Fi on the viscoelastic medium and experiences a force
�Fi from it. To relate the forces and the velocities in the
frequency domain, we use the GSR in Eq. (2) and the Oseen
tensor, in which the frequency-dependent viscosity �½!� is
used instead of a constant one.3,4) Assuming that a � L1; L2,
we can write8,9)

a

η[ω]

L2(t)L1(t)

1 2 3

Fig. 1. (Color online) Najafi–Golestanian three-sphere swimmer model.
Three identical spheres of radius a are connected by arms of lengths L1ðtÞ
and L2ðtÞ and undergo time-dependent cyclic motion. The swimmer is
embedded in a viscoelastic medium characterized by a frequency-dependent
complex shear viscosity �½!�.
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V1ð!Þ ¼ F1ð!Þ
6��½!�a þ 1

4��½!�
F2ð!Þ � L�1

1 ð!Þ
2�

þ 1

4��½!�
F3ð!Þ � ðL1 þ L2Þ�1ð!Þ

2�
; ð5Þ

V2ð!Þ ¼ 1

4��½!�
F1ð!Þ � L�1

1 ð!Þ
2�

þ F2ð!Þ
6��½!�a

þ 1

4��½!�
F3ð!Þ � L�1

2 ð!Þ
2�

; ð6Þ

V3ð!Þ ¼ 1

4��½!�
F1ð!Þ � ðL1 þ L2Þ�1ð!Þ

2�

þ 1

4��½!�
F2ð!Þ � L�1

2 ð!Þ
2�

þ F3ð!Þ
6��½!�a ; ð7Þ

where we have used bilateral Fourier transforms such as
L�1
1 ð!Þ ¼ R1

�1 dt ½L1ðtÞ��1e�i!t. Furthermore, the convolu-
tion of two functions is generally defined by g1ð!Þ � g2ð!Þ ¼R1
�1 d!0 g1ð! � !0Þg2ð!0Þ in the above equations.
As in the original study, we are interested in the

autonomous net locomotion of the swimmer, and there are
no external forces acting on the spheres. If the inertia of the
surrounding fluid can be neglected, we have the following
force balance condition:

F1ðtÞ þ F2ðtÞ þ F3ðtÞ ¼ 0: ð8Þ
Since Eqs. (5)–(7) involve convolutions in the frequency

domain, we cannot solve these equations for arbitrary L1ðtÞ
and L2ðtÞ. Here we assume that the two arms undergo the
following periodic motion:

L1ðtÞ ¼ ‘ þ d1 cosð�tÞ; ð9Þ
L2ðtÞ ¼ ‘ þ d2 cosð�t � �Þ: ð10Þ

In the above, ‘ is the constant length, d1 and d2 are the
amplitudes of the oscillatory motion, Ω is the common arm
frequency, and ϕ is the mismatch in the phases between the
two arms. In the following analysis, we generally assume that
d1; d2 � ‘. The time-reversal symmetry of the arm motion is
present when � ¼ 0 and π. Furthermore, we characterize the
structural symmetry of the swimmer by d1 and d2, i.e., the
structure is symmetric when d1 ¼ d2, while it is asymmetric
when d1 ≠ d2.

Since the arm frequency is Ω, we assume that the velocities
and the forces of the three spheres can generally be written
as

Við!Þ ¼ Vi;0 �ð!Þ

þ
X1
n¼1

½Vi;n �ð! þ n�Þ þ Vi;�n �ð! � n�Þ�; ð11Þ

Fið!Þ ¼ Fi;0 �ð!Þ

þ
X1
n¼1

½Fi;n �ð! þ n�Þ þ Fi;�n �ð! � n�Þ�; ð12Þ

where i ¼ 1; 2; 3 for the three spheres. Substituting Eqs. (11)
and (12) into the six coupled Eqs. (3)–(8), we obtain a matrix
equation with infinite dimensions.

Under the conditions d1; d2 � ‘ and a � ‘, we are
allowed to consider only n ¼ �1; 0; 1 and we further use the
approximation Fi;�2 � 0. Then we can solve for the six
unknown functions Við!Þ and Fið!Þ, and also calculate the

total swimming velocity V ¼ ðV1 þ V2 þ V3Þ=3. Up to the
lowest order terms in a, the average swimming velocity over
one cycle of motion becomes14)

V � 7d1d2a�

24‘2

�0½��
�0

sin� � 5ðd2
1 � d2

2 Þa�
48‘2

�00½��
�0

; ð13Þ

where �0½�� and �00½�� are the real and imaginary parts of the
complex shear viscosity, respectively, and �0 ¼ �½� ! 0� is
the constant zero-frequency viscosity.

The first term in Eq. (13) can be regarded as the viscous
contribution and is present only if the time-reversal symmetry
of the swimmer motion is broken, i.e., � ≠ 0; �. The second
term, on the other hand, corresponds to the elastic
contribution, and exists only when the structural symmetry
of the swimmer is broken, i.e., d1 ≠ d2. If we are able to
control d1, d2, and Ω of the swimmer, we can first obtain
�0½�� by measuring V as a function of Ω by setting d1 ¼ d2.
Then we make a difference between d1 and d2 to examine the
change in V, which then yields �00½��. The corresponding
complex shear modulus is simply obtained by G½�� ¼
i��½��. This is a new type of active microrheology that we
propose in this letter.

For a purely Newtonian fluid, namely, for a medium
characterized by a constant viscosity, the second term in
Eq. (13) vanishes, and the first term coincides with the
expression obtained by Golestanian and Ajdari.9) It should be
noted here, however, that the velocity V in this case no longer
depends on the constant viscosity (because �0½��=�0 ¼ 1)
and we cannot measure it from V. Equation (13) also implies
that the swimmer cannot move in a purely elastic medium,
for which we have �0 ! 1. Importantly, owing to the
presence of the second term, Purcell’s scallop theorem breaks
down for a three-sphere swimmer in a viscoelastic medium.
Namely, even if the time-reversal symmetry of the swimmer
motion is not broken, i.e., � ¼ 0; �, the present swimmer can
still move in a viscoelastic medium due to the second term as
long as its structural symmetry is broken, i.e., d1 ≠ d2. On
the basis of Eq. (13), we have summarized in Table I the
motion of a three-sphere swimmer in a viscoelastic medium
and the relevant rheological information.

To further illustrate our result, we first assume that the
surrounding viscoelastic medium is described by a simple
Maxwell model. In this case, the frequency-dependent
viscosity can be written as

�½!� ¼ �0
1 � i!�M
1 þ !2�2M

; ð14Þ

where �M is the characteristic time scale. Within this model,
the medium behaves as a viscous fluid for !�M � 1, while it
becomes elastic for !�M 	 1. Using Eq. (14), we can easily
obtain the average swimming velocity in Eq. (13) as

Table I. Locomotion of a three-sphere swimmer in a viscoelastic medium
and the relevant rheological information.

Medium Viscous Viscoelastic

Time-reversal symmetry Y N Y N
Structural symmetry Y N Y N Y N Y N

Swimmer motion N N Y Y N Y Y Y
Rheological information — — N N — �00 �0 �0; �00
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V ¼ 7d1d2a�

24‘2

1

1 þ�2�2M
sin�

þ 5ðd2
1 � d2

2 Þa�
48‘2

��M
1 þ�2�2M

: ð15Þ

The first viscous term increases as V 
 � for ��M � 1,
while it decreases as V 
 ��1 for ��M 	 1. This is a unique
feature of the viscoelasticity,7,15,16) but such a reduction
occurs simply because the medium responds elastically in the
high-frequency regime. On the other hand, the second elastic
term increases as V 
 �2 for ��M � 1, and it approaches
a constant for ��M 	 1. In Fig. 2(a), we plot the average
swimming velocity V as a function of the dimensionless arm
frequency ��M when � ¼ �=2 and d1 ¼ d2. This plot
corresponds to the first term in Eq. (15). As a reference,
the behavior of V 
 � for a purely viscous fluid is also
plotted. Figure 2(b) is a similar plot when � ¼ 0 and
d1 ≠ d2, and corresponds to the second term in Eq. (15).

As a different example, we next consider the case in which
the viscoelastic medium is described by a power-law model
such that13,17,18)

�½!� ¼ G0ði!Þ��1; ð16Þ
where the exponent can take values of 0 � � � 1. With this
expression, the complex shear modulus also exhibits a
power-law behavior, G½!� ¼ G0ði!Þ�. The limits of � ¼ 0

and 1 correspond to the purely elastic and the purely viscous
cases, respectively. In the case of a power-law fluid, the
average swimming velocity can be obtained from Eqs. (13)
and (16) as

V ¼ 7d1d2a

24‘2�p
ð��pÞ� sinð��=2Þ sin�

þ 5ðd2
1 � d2

2 Þa
48‘2�p

ð��pÞ� cosð��=2Þ; ð17Þ

where �p ¼ ð�0=G0Þ1=ð1��Þ. Here we have assumed that the
medium behaves as a purely viscous fluid in the low-
frequency limit characterized by a finite viscosity �0.
According to the above expression, the swimming velocity
scales as V 
 �� in both the first and second terms. For the
purely viscous case of � ¼ 1, the first term reduces to the
result by Golestanian and Ajdari,9) while the second term
vanishes. For the purely elastic case of � ¼ 0, on the other
hand, the first term vanishes and the second term remains,
although the latter no longer depends on the arm frequency
Ω. In Figs. 2(a) and 2(b), we have also plotted the average
velocity V as a function of ��p when � ¼ 1=2. In both of
these plots, the scaling behavior V 
 �1=2 is seen.

Lauga considered the axisymmetric squirming motion of a
sphere (squirmer) embedded in an Oldroyd-B fluid, which
represents a typical polymeric fluid.19) He reported that the
scallop theorem in a viscoelastic fluid breaks down if the
squirmer has fore-aft asymmetry in its surface velocity
distribution. For a time-reversal deformation given by a
simple sinusoidal gait, he showed that the average swim-
ming velocity is given by V 
 �De=ð1 þDe2Þ, where the
Deborah number is given by De ¼ ��O with a characteristic
relaxation time �O in the Oldroyd-B model. Such a frequency
dependence of the swimming velocity is identical to the
second term of Eq. (15) obtained for a Maxwell fluid,
although Eq. (13) is more general. On the other hand, our
result is different from that by Curtis and Gaffney,20) because
they showed that the swimming velocity in a viscoelastic
medium is the same as that in a Newtonian fluid.

To summarize, we have proposed a new active micro-
rheology using the Najafi–Golestanian three-sphere
swimmer. The frequency dependence of the average swim-
ming speed provides us with the complex shear viscosity
of the surrounding viscoelastic medium. Here the viscous
contribution can exist only when the time-reversal symmetry
of the swimmer is broken, whereas the elastic contribution is
present only if its structural symmetry is broken.

Even though the argument in this Letter is restricted to the
artificial three-sphere swimmer, we expect that our basic
concept can still be applied to more complex biological
processes such as the motion of bacteria, flagellated cellular
swimming, and the beating of cilia. Since most of these
phenomena take place in a viscoelastic environment, we hope
that the concept of our new active microrheology will be used
in the future to reveal their mechanical and dynamical
properties.
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Fig. 2. (Color online) Average swimming velocity V as a function of ��,
where Ω is the arm frequency and τ represents either �M for a Maxwell fluid
(red lines) or �p for a power-law fluid (green lines). In the power-law model,
we choose � ¼ 1=2. (a) Viscous contribution by setting � ¼ �=2 and d1 ¼
d2. Here V is scaled by 7d2

1a=ð24‘2�Þ. The case for a viscous fluid is plotted
by the black line. (b) Elastic contribution by setting � ¼ 0 and d1 ≠ d2. Here
V is scaled by 5ðd2

1 � d2
2 Þa=ð48‘2�Þ. The case for an elastic medium is

plotted by the black line.
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