
PHYSICAL REVIEW E 93, 052407 (2016)

Dynamics of a membrane interacting with an active wall
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Active motions of a biological membrane can be induced by nonthermal fluctuations that occur in the outer
environment of the membrane. We discuss the dynamics of a membrane interacting hydrodynamically with
an active wall that exerts random velocities on the ambient fluid. Solving the hydrodynamic equations of a
bound membrane, we first derive a dynamic equation for the membrane fluctuation amplitude in the presence of
different types of walls. Membrane two-point correlation functions are calculated for three different cases: (i) a
static wall, (ii) an active wall, and (iii) an active wall with an intrinsic time scale. We focus on the mean squared
displacement (MSD) of a tagged membrane describing the Brownian motion of a membrane segment. For the
static wall case, there are two asymptotic regimes of MSD (∼ t2/3 and ∼ t1/3) when the hydrodynamic decay
rate changes monotonically. In the case of an active wall, the MSD grows linearly in time (∼ t) in the early stage,
which is unusual for a membrane segment. This linear-growth region of the MSD is further extended when the
active wall has a finite intrinsic time scale.
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I. INTRODUCTION

The random slow dynamics of fluid membranes visible
as a flickering phenomenon in giant unilamellar vesicles
(GUVs) or red blood cells (RBCs) has attracted many interests
in the last few decades [1]. These thermally excited shape
fluctuations can be essentially understood as a Brownian
motion of a two-dimensional (2D) lipid bilayer membrane in a
three-dimensional (3D) viscous fluid such as water. For spher-
ically closed artificial GUVs, characteristic relaxation times
for shape deformations were calculated analytically [2–5].
Analysis of shape fluctuations can be used for quantitative
measurements of surface tension and/or bending rigidity of
single-component GUVs [6] or GUVs containing bacteri-
orhodopsin pumps [7].

Historically, investigations on fluctuations of cell mem-
branes have started with RBCs whose flickering can be
observed under a microscope [8]. Brochard and Lennon
were among the first to describe quantitatively membrane
fluctuations as thermally excited undulations, mainly governed
by the bending rigidity of the membrane [9]. Later experiments
showed that flickering in RBCs is not purely of thermal
origin but rather corresponds to a nonequilibrium situation
because the fluctuation amplitude decreases upon ATP de-
pletion [10,11]. Here ATP hydrolysis plays an important role
to control membrane-spectrin cytoskeleton interactions [12].
More advanced techniques have demonstrated that, at longer
time scales (small frequencies), a clear difference exists be-
tween the power spectral density of RBC membranes measured
for normal cells and those ATP depleted; the fluctuation
amplitude turns out to be higher in the former [13,14]. At
shorter time scales, on the other hand, membranes fluctuate
as in the thermodynamic equilibrium. It should be noted,
however, that the role of ATP in flickering is still debatable
because Boss et al. have recently claimed that the mean
fluctuation amplitudes of RBC membranes can be described
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by the thermal equilibrium theory, while ATP merely affects
the bending rigidity [15].

In order to understand shape fluctuations of RBCs, one
needs to properly take into account the effects of spectrin cy-
toskeleton network that is connected to the membrane by actin,
glycophorin, and protein 4.1R [1,12]. Gov et al. treated the
cytoskeleton as a rigid wall (shell) located at a fixed distance
from the membrane and assumed that its static and dynamic
fluctuations are confined by the cytoskeleton [16,17]. They
further considered that the sparse connection of membrane
and cytoskeleton gives rise to a finite surface tension for
length scales larger than the membrane persistence length.
The bending free energy for a membrane was extended to
include a surface tension and a confinement potential with
which the effects of ATP on the membrane fluctuations
was described. However, since an active component of the
membrane fluctuations also depend on the fluid viscosity [18],
they cannot be solely attributed to the static parameters such
as the surface tension or the potential. Gov and Safran later
estimated the active contribution to the membrane fluctuations
due to the release of stored tension in the spectrin filament
and membrane in each dissociation event [19,20]. In contrast
to static thermal fluctuations, they showed that the active
cytoskeleton may contribute to the membrane fluctuations at
intermediate length scales.

Effects of membrane confinement are important not only
for shape fluctuations of RBCs but also for a hydrody-
namic coupling between closely apposed lipid bilayer mem-
branes [21,22], and dynamical transitions occurring in lamellar
membranes under shear flow [23,24]. After the seminal works
by Kramer [25] and by Brochard and Lennon [9], the wave-
number-dependent decay rate for the bending modes of a
membrane bound to a wall was calculated by Seifert [26]
and Gov et al. [17]. In particular, Seifert showed that the
scale separation between the membrane-wall distance and the
correlation length determined by the confinement potential can
lead to various crossover behaviors of the decay rate. In these
hydrodynamic calculations, however, the wall that interacts
with the membrane was treated as a static object and does not
play any active role.
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FIG. 1. A fluctuating membrane interacting with an active wall.
The membrane separated by a distance ℓ(ρ) from the wall feels
a potential V (ℓ) per unit area. The average of ℓ(ρ) is ℓ̄, and the
membrane fluctuation is defined by h(ρ) = ℓ(ρ) − ℓ̄. Between the
membrane and the wall as well as above the membrane are filled with
a fluid of viscosity η. Red arrows on the wall indicate active velocities
exerted on the fluid by the wall.

Quite generally, active motions of a membrane can be
induced by nonthermal fluctuations that occur in the outer
environment of the membrane such as cytoskeleton or cyto-
plasm. In this paper, we consider the dynamics of a membrane
interacting with an active wall that generates random velocities
in the ambient fluid. These random velocities at the wall
can be naturally taken into account through the boundary
conditions of the fluid. We first derive a dynamic equation
for the membrane fluctuation amplitude in the presence of
hydrodynamic interactions. Then we calculate the membrane
two-point correlation functions for three different cases: (i) a
static wall, (ii) an active wall, and (iii) an active wall with an
intrinsic time scale. We especially focus on the mean squared
displacement (MSD) of a tagged membrane segment and
discuss its asymptotic time dependencies for the above cases.
For the static wall case, the membrane fluctuates due to thermal
agitations, and there are two asymptotic regimes of MSD
(∼ t2/3 and ∼ t1/3) if the hydrodynamic decay rate changes
monotonically as a function of the wave number. When the wall
is active, there is a region during which the MSD grows linearly
with time (∼ t), which is unusual for a membrane segment.
If the active wall has a finite intrinsic time scale, the above
linear-growth regime of the MSD is further extended. As a
whole, active fluctuations at the wall propagate through the sur-
rounding fluid and greatly affects the membrane fluctuations.

This paper is organized as follows. In the next section, we
discuss the hydrodynamics of a bound membrane that interacts
with an active wall. We also derive a dynamic equation
for the membrane fluctuation amplitude in the presence of
hydrodynamic interactions. In Sec. III, we calculate the
membrane two-point correlation functions for three different
cases of the wall as mentioned above. We investigate various
asymptotic behaviors of the MSD of a tagged membrane
in both the static and the active wall cases. Some further
discussions are provided in Sec. IV.

II. HYDRODYNAMICS OF A BOUND MEMBRANE

A. Free energy of a bound membrane

As depicted in Fig. 1, we consider a fluid membrane bound
at an average distance ℓ̄ from a wall which defines the xy

plane. Within the Monge representation, which is valid for
nearly flat surfaces, the membrane shape is specified by the
distance ℓ(ρ) = ℓ(x,y) between the membrane and the wall.
The free energy F of a tensionless membrane in a potential
V (ℓ) per unit area reads [27,28]

F =
∫

d2ρ
[κ

2
(∇2ℓ)2 + V (ℓ)

]
, (1)

where κ is the bending rigidity and d2ρ = dx dy. We use
a harmonic approximation for fluctuations h(ρ) = ℓ(ρ) − ℓ̄
around the minimum of the potential at ℓ = ℓ̄ and obtain the
approximated form

F ≈ κ

2

∫
d2ρ [(∇2h)2 + ξ−4h2], (2)

where ξ = [κ/(d2V/dℓ2)ℓ=ℓ̄]1/4 is the correlation length due
to the potential. Later we use a dimensionless quantity defined
by & ≡ ξ/ℓ̄ in order to discuss different cases.

In the following, we introduce the 2D spatial Fourier
transform of h(ρ) defined as

h(q) =
∫

d2ρ h(ρ)e−iq·ρ, (3)

where q = (qx,qy). Then the static correlation function can be
obtained from Eq. (2) as

⟨h(q)h(−q)⟩ = kBT

κ(q4 + ξ−4)
= kBT

E(q,ξ )
, (4)

where kB is the Boltzmann constant, T the temperature, q =
|q|, and we have introduced the notation E(q,ξ ) ≡ κ(q4 +
ξ−4).

In the present model, we assume that the wall is rigid
and does not deform. Even when the wall, mimicking the
cytoskeleton network, is deformable, the above free energy
[Eq. (1)] would not be changed if we regard ℓ as a local
distance between the membrane and the cytoskeleton. In this
case, however, the bending rigidity κ should be replaced with
an effective one which is also dependent on the bending rigidity
of the cytoskeleton network itself [29].

B. Hydrodynamic equations and boundary conditions

The dynamics of a membrane is dominated by the sur-
rounding fluid, which is assumed to be incompressible and
to obey the Stokes equation. We choose z as the coordinate
perpendicular to the wall located at z = 0 as in Fig. 1. Then
the velocity v(ρ,z) and the pressure p(ρ,z) for z ̸= ℓ̄ satisfy
the following equations:

∇ · v = 0, (5)

η∇2v − ∇p − f = 0, (6)

where η is the viscosity of the surrounding fluid and f (ρ,z)
is any force acting on the fluid. The fluid velocity can be
obtained from the above equations by supplementing them
with proper boundary conditions. In the Appendix, we show
a formal solution appropriate for the membrane-wall system
and obtain the fluid velocity v in terms of the force f . Without
loss of generality, we can choose the x and y coordinates as
the parallel (longitudinal) and the perpendicular (transverse)
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directions to the in-plane vector q, respectively. Since the
transverse y component of the velocity is not coupled to
the other components, we are allowed to set vy = 0 in what
follows.

Let us denote the fluid regions 0 ! z ! ℓ̄ and ℓ̄ ! z with
the superscripts “−” and “+,” respectively. In general, we
consider time-dependent boundary conditions at z = 0 and
time-independent conditions at z → ∞:

v−
x (q,z = 0,t) = Vx0(q,t), (7)

v−
z (q,z = 0,t) = Vz0(q,t), (8)

v+
x (q,z → ∞,t) = v+

z (q,z → ∞,t) = 0. (9)

The statistical properties of Vx0(q,t) and Vz0(q,t) will be
discussed for different types of walls in the next section. As
described in the Appendix, the z component of the velocity is
then obtained as

v−
z (q,z,t) =A[sinh(qz) − qz cosh(qz)] + Bqz sinh(qz)

− iqzVx0(q,t)e−qz + (1 + qz)Vz0(q,t)e−qz,
(10)

v+
z (q,z,t) = Ce−q(z−ℓ̄) + Dq(z − ℓ̄)e−q(z−ℓ̄), (11)

where A, B, C, and D are the coefficients determined by the
other boundary conditions at the membrane z = ℓ̄. Note that
both vx and p can be also expressed in terms of these four
coefficients.

At z = ℓ̄ where the membrane exists, continuity of vx and
vz yields

v−
x (q,z = ℓ̄,t) = v+

x (q,z = ℓ̄,t), (12)

v−
z (q,z = ℓ̄,t) = v+

z (q,z = ℓ̄,t), (13)

and incompressibility of the membrane requires that the in-
plane divergence of vx vanishes:

iqv−
x (q,z = ℓ̄,t) = 0. (14)

Moreover, the forces are required to balance in the normal
direction at z = ℓ̄. This condition is written as

−T +
zz + T −

zz = − δF

δh(q,t)
= −E(q,ξ )h(q,t), (15)

where E(q,ξ ) was defined in Eq. (4). In the above, T ±
zz is the

Fourier transformed zz component of the fluid stress tensor

Tij = −pδij + η(∂ivj + ∂j vi), (16)

evaluated at z = ℓ̄ ± 0 and i,j = x,z. The above four bound-
ary conditions in Eqs. (12)–(15) at z = ℓ̄ determine the solution
of v and p in the entire region of the fluid.

C. Dynamic equation of a bound membrane

Next we derive a dynamic equation for the membrane
fluctuation amplitude. The time derivative of the fluctuation
amplitude h(q,t) (membrane velocity) should coincide with
the normal velocity of the fluid at the membrane vz(q,z = ℓ̄,t)
obtained from Eqs. (10) and (11) together with the four
coefficients (see also the Appendix). Using the result of the
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FIG. 2. Dimensionless decay rate γ̃ ≡ γ t̄ [see Eq. (18)] with
t̄ = 4ηℓ̄3/κ as a function of dimensionless wave number qℓ̄. The
solid and dashed lines represent & = ξ/ℓ̄ = 10 and 0.1, respectively.

above hydrodynamic calculation, we can write the dynamic
equation of h(q,t) as follows:

∂h(q,t)
∂t

= − γ (q,ℓ̄,ξ )h(q,t)

+ *x(q,ℓ̄)Vx0(q,t) + *z(q,ℓ̄)Vz0(q,t)

+ ζ (q,t). (17)

In the above, γ (q,ℓ̄,ξ ) is the hydrodynamic decay rate

γ (q,ℓ̄,ξ ) = ,(q,ℓ̄)E(q,ξ ), (18)

where the kinetic coefficient ,(q,ℓ̄) is given by

,(q,ℓ̄) = 1
2ηq

sinh2(qℓ̄) − (qℓ̄)2

sinh2(qℓ̄)−(qℓ̄)2 + sinh(qℓ̄) cosh(qℓ̄) + (qℓ̄)
.

(19)

The same expression was obtained by Seifert [26]. The second
and the third terms on the r.h.s. of Eq. (17) are due to the wall
boundary conditions Eqs. (7) and (8). Our calculation yields

*x(q,ℓ̄) = −iqℓ̄ sinh(qℓ̄)

sinh2(qℓ̄) − (qℓ̄)2 + sinh(qℓ̄) cosh(qℓ̄) + (qℓ̄)
,

(20)

*z(q,ℓ̄) = sinh(qℓ̄) + qℓ̄ cosh(qℓ̄)

sinh2(qℓ̄) − (qℓ̄)2 + sinh(qℓ̄) cosh(qℓ̄) + (qℓ̄)
.

(21)

The last term in Eq. (17) represents the thermal white noise;
its average vanishes ⟨ζ (q,t)⟩ = 0 while its correlation is fixed
by the fluctuation-dissipation theorem (FDT) [30,31]

⟨ζ (q,t)ζ (−q,t ′)⟩ = 2kBT ,(q,ℓ̄)δ(t − t ′). (22)

D. Hydrodynamic decay rate

We first introduce t̄ ≡ 4ηℓ̄3/κ as a characteristic time. In
Fig. 2 we plot the scaled decay rate γ (q,ℓ̄,ξ )t̄ [see Eq. (18)]
as a function of the dimensionless wave number qℓ̄ when
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& = ξ/ℓ̄ = 10 and 0.1. For our later discussion, it is useful
here to discuss its asymptotic behaviors. We first note that the
kinetic coefficient ,(q,ℓ̄) in Eq. (19) behaves as

, ≈
{
ℓ̄3q2/12η, q ≪ 1/ℓ̄
1/4ηq, q ≫ 1/ℓ̄.

(23)

Depending on the relative magnitude between ℓ̄ and ξ , two
different asymptotic behaviors of the decay rate can be
distinguished [26]. For ℓ̄ ≪ ξ (corresponding to & = 10 in
Fig. 2), the decay rate increases monotonically as

γ ≈

⎧
⎨

⎩

κℓ̄3q2/12ηξ 4, q ≪ 1/ξ
κℓ̄3q6/12η, 1/ξ ≪ q ≪ 1/ℓ̄
κq3/4η, 1/ℓ̄ ≪ q.

(24)

The small-q behavior γ ∼ q2 results from the conservation
of the fluid volume between the membrane and the wall [32].
The dependence γ ∼ q6 in the intermediate regime, where
the effect of potential becomes irrelevant, was predicted by
Brochard and Lennon [9]. For large q, we recover the behavior
of a free membrane γ ∼ q3. All these asymptotic behaviors
are observed in Fig. 2.

For ξ ≪ ℓ̄ (corresponding to & = 0.1 in Fig. 2), on the
other hand, γ changes nonmonotonically as [26]

γ ≈

⎧
⎨

⎩

κℓ̄3q2/12ηξ 4, q ≪ 1/ℓ̄
κ/4ηξ 4q, 1/ℓ̄ ≪ q ≪ 1/ξ
κq3/4η. 1/ξ ≪ q.

(25)

While the small-q and large-q behaviors are unchanged from
Eq. (24), here the decay rate decreases with increasing q in the
intermediate range. This unusual decrease of the decay rate
clearly appears for 1 < qℓ̄ < 10 in Fig. 2. Such an anomalous
behavior occurs due to the fact that the potential confines
the mean squared fluctuation amplitudes to ⟨h2⟩ ≈ kBT ξ 4/κ
independently of q [see Eq. (4)], while hydrodynamic damping
becomes less effective with increasing q [26]. We also note
that the absolute value of γ in the small-q region is sensitive
to the value of &, while it is independent of & in the large-q
region.

III. MEMBRANE TWO-POINT CORRELATION
FUNCTIONS

Using the result of the hydrodynamic calculation, we shall
discuss in this section the two-point correlation functions of
bound membrane [33,34]. We separately investigate the cases
of (i) a static wall, (ii) an active wall, and (iii) an active wall
with an intrinsic time scale.

A. Static wall

In the case of a static wall, the velocities at the wall vanish in
Eqs. (7) and (8), i.e., Vx0(q,t) = Vz0(q,t) = 0. Hence Eq. (17)
reduces to

∂h(q,t)
∂t

= −γ (q,ℓ̄,ξ )h(q,t) + ζ (q,t), (26)
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FIG. 3. Dimensionless static correlator -̃ ≡ (4κ/kBT ξ 2)- in the
presence of a static wall [see Eq. (31)] as a function of dimensionless
distance ρ/ξ . Notice that -̃ takes a maximum value at ρ/ξ = 4.93.

and one can easily solve for h(q,t) as

h(q,t) =h(q,0)e−γ (q,ℓ̄,ξ )t

+
∫ t

0
dt1 ζ (q,t1)e−γ (q,ℓ̄,ξ )(t−t1). (27)

Using the above solution and Eq. (22), we calculate the mem-
brane two-point correlation function which can be separated
into two parts [33,34]:

⟨[h(ρ,t) − h(ρ ′,0)]2⟩ = -(ρ − ρ ′) + φ(ρ − ρ ′,t), (28)

where the translational invariance of the system has been
assumed. In the above, the first term is a purely static correlator,

-(ρ − ρ ′) = ⟨[h(ρ) − h(ρ ′)]2⟩

= 2
∫

d2q

(2π )2
⟨h(q)h(−q)⟩[1 − eiq·(ρ−ρ ′)], (29)

describing the static membrane roughness, while the second
term is a dynamical correlator,

φ(ρ − ρ ′,t) =2
∫

d2q

(2π )2
⟨h(q)h(−q)⟩eiq·(ρ−ρ ′)

× [1 − e−γ (q,ℓ̄,ξ )t ], (30)

describing the propagation of fluctuations with a distance |ρ −
ρ ′|.

Using the static correlation function for h(q) in Eq. (4), we
first calculate the static correlator

-(ρ − ρ ′) = kBT

πκ

∫ ∞

0
dq

q

q4 + ξ−4
[1 − J0(q|ρ − ρ ′|)]

= kBT ξ 2

4κ

[
1 − 1

π
G3,0

0,4

(
(|ρ − ρ ′|/ξ )4

256

∣∣∣0,
1
2
,
1
2
,0

)]
, (31)

where J0(z) is the zero-order Bessel function of the first kind,
and the Meijer G function is used in the last expression [35].
In Fig. 3 we plot the scaled static correlator -(ρ − ρ ′) as a
function of ρ/ξ where ρ = |ρ − ρ ′|. Only in this plot, we use
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ξ to scale the length because the above static correlator is
solely determined by the free energy in Eq. (2), and Eq. (31)
does not depend on ℓ̄. In the large distance ρ/ξ ≫ 1, the
(route mean square) height difference between two points on
the bound membrane is proportional to ξ . It is interesting to
note that -(ρ − ρ ′) changes nonmonotonically and shows a
maximum around ρ/ξ ≈ 4.93. A similar overshoot behavior
of the membrane profile was reported previously [36].

As for the dynamical correlator in Eq. (30), we perform the
angular integration and obtain the expression

φ(ρ − ρ ′,t) =kBT

πκ

∫ ∞

0
dq

q

q4 + ξ−4

× [1 − e−γ (q,ℓ̄,ξ )t ]J0(q|ρ − ρ ′|). (32)

We first set ρ = ρ ′ and discuss the MSD of a tagged membrane
segment given by [33,34]

φ0(t) = kBT

πκ

∫ ∞

0
dq

q

q4 + ξ−4
[1 − e−γ (q,ℓ̄,ξ )t ], (33)

where we have used J0(0) = 1. Instead of the correlation
length ξ , we hereafter use ℓ̄ to scale the length. Note that
the hydrodynamic effect is manifested by the appearance of
the length ℓ̄. In Fig. 4 we plot the dimensionless MSD φ0 as a
function of t/t̄ (recall that t̄ = 4ηℓ̄3/κ) for & = 10 (monotonic
damping case) and & = 0.1 (nonmonotonic damping case),
respectively. In order to find out the asymptotic behaviors
clearly, we have also plotted an effective growth exponent α
defined by

α(t) = d ln φ0(t)
d ln t

. (34)

For both & = 10 and 0.1, the MSD increases monotonically
as a function of time. For & = 10 (ℓ̄ ≪ ξ ), there are three
different asymptotic regimes of the time dependence. In the
small time regime (t ≪ t̄), the MSD behaves as φ0 ∼ t2/3,
which corresponds to the diffusion of a free membrane [33,34].
This scaling behavior can be obtained by using the large-q
behavior of the decay rate in Eq. (24):

φ0(t) ≈ kBT

πκ

∫ ∞

0
dq

1
q3

[1 − e−(κq3/4η)t ] ∼ kBT

κ1/3η2/3
t2/3.

(35)

In the intermediate time regime (t̄ ≪ t ≪ &6 t̄), we have φ0 ∼
t1/3, which stems from the intermediate-q behavior of γ in
Eq. (24):

φ0(t) ≈ kBT

πκ

∫ ∞

0
dq

1
q3

[1 − e−(κℓ̄3q6/12η)t ] ∼ kBT ℓ̄

κ2/3η1/3
t1/3.

(36)

In this regime, as discussed by Brochard and Lennon [9], the
conservation of the enclosed incompressible volume between
the membrane and the wall is important, while the effect of
the potential acting between them is irrelevant. The Fourier
transform of the above expression, i.e., the power spectral
density, was previously discussed by Gov et al. in Ref. [16].
In the long time regime (&6 t̄ ≪ t), the MSD saturates at the
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FIG. 4. (a) Dimensionless MSD of a tagged membrane segment
φ̃0 ≡ (πκ/kBT ℓ̄2)φ0 in the presence of a static wall [see Eq. (33)]
as a function of dimensionless time t/t̄ where t̄ = 4ηℓ̄3/κ . The solid
and dashed lines represent & = ξ/ℓ̄ = 10 and 0.1, respectively. (b)
Effective exponent α of the MSDs in (a) as defined in Eq. (34).

value given by

φ0(t → ∞) ≈
[
kBT ℓ̄2

πκ

]
π&2

4
∼ kBT

κ
ξ 2. (37)

For & = 0.1 (ξ ≪ ℓ̄), on the other hand, there are only two
asymptotic regimes. The MSD increases as φ0 ∼ t2/3 in the
small time regime (t ≪ &3 t̄), whereas in the long time regime
(&3 t̄ ≪ t), it saturates at the value given by Eq. (37).

Let us consider then the case ρ ̸= ρ ′. In Fig. 5 we plot
the scaled φ(ρ − ρ ′,t) in Eq. (32) as a function of ρ/ℓ̄ for
different times when & = 10. For all the cases, the dynamic
correlator changes nonmonotonically and exhibits a typical
undershoot behavior. The minimum of φ occurs for larger ρ
as time evolves. In the long time limit, t → ∞, φ(ρ − ρ ′,t)
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FIG. 5. Dimensionless dynamical correlator φ̃ ≡ (πκ/kBT ℓ̄2)φ
in the presence of a static wall [see Eq. (32)] as a function of
dimensionless distance ρ/ℓ̄ for t/t̄ = 108 (solid black), 106 (dashed
red), 104 (dotted blue) when & = ξ/ℓ̄ = 10. Here the characteristic
time is t̄ = 4ηℓ̄3/κ .

in Eq. (32) coincides with the second term in Eq. (31) and is
given by the Meijer G function.

B. Active wall

We now investigate the case when the wall is active so that it
exerts random velocities on the ambient fluid. The membrane
dynamics in the presence of an active wall is described by

Eq. (17). This equation can be also solved for h(q,t) as

h(q,t) = h(q,0)e−γ (q,ℓ̄,ξ )t

+*x(q,ℓ̄)
∫ t

0
dt1 Vx0(q,t1)e−γ (q,ℓ̄,ξ )(t−t1)

+*z(q,ℓ̄)
∫ t

0
dt2 Vz0(q,t2)e−γ (q,ℓ̄,ξ )(t−t2)

+
∫ t

0
dt3 ζ (q,t3)e−γ (q,ℓ̄,ξ )(t−t3). (38)

The random velocities generated at the wall are assumed to
have the following statistical properties:

⟨Vx0(ρ,t)⟩ = ⟨Vz0(ρ,t)⟩ = 0, (39)

⟨Vx0(ρ,t)Vx0(ρ ′,t ′)⟩ = 2Sxδ(ρ − ρ ′)δ(t − t ′), (40)

⟨Vz0(ρ,t)Vz0(ρ ′,t ′)⟩ = 2Szδ(ρ − ρ ′)δ(t − t ′), (41)

⟨Vx0(ρ,t)Vz0(ρ ′,t ′)⟩ = 0, (42)

⟨Vx0(ρ,t)ζ (ρ ′,t ′)⟩ = ⟨Vz0(ρ,t)ζ (ρ ′,t ′)⟩ = 0, (43)

where we have introduced the amplitudes Sx and Sz in Eqs. (40)
and (41), respectively. With these statistical properties, we
can calculate the total two-point correlation function, which
consists of the static and the dynamical parts as before:

⟨[h(ρ,t) − h(ρ ′,0)]2⟩tot = -tot(ρ − ρ ′) + φtot(ρ − ρ ′,t).
(44)

In the above total correlation function, the static correlator
in the presence of the active wall becomes

-tot(ρ − ρ ′) = 1
π

∫ ∞

0
dq q

[
kBT

κ(q4 + ξ−4)
+ Sx |*x(q,ℓ̄)|2

γ (q,ℓ̄,ξ )
+ Sz|*z(q,ℓ̄)|2

γ (q,ℓ̄,ξ )

]
[1 − J0(q|ρ − ρ ′|)]

≡ -(ρ − ρ ′) + -x(ρ − ρ ′) + -z(ρ − ρ ′), (45)

where *x and *z were obtained in Eqs. (20) and (21), respectively, while -(ρ − ρ ′) was defined in Eq. (31) for the static wall
case. In the above equations, we have defined two correlators -x and -z. On the other hand, the dynamical correlator in Eq. (44)
is given by

φtot(ρ − ρ ′,t) = 1
π

∫ ∞

0
dq q

[
kBT

κ(q4 + ξ−4)
+ Sx |*x(q,ℓ̄)|2

γ (q,ℓ̄,ξ )
+ Sz|*z(q,ℓ̄)|2

γ (q,ℓ̄,ξ )

]
[1 − e−γ (q,ℓ̄,ξ )t ]J0(q|ρ − ρ ′|). (46)

By setting ρ = ρ ′, the total MSD of a tagged membrane segment in the presence of the active wall becomes

φtot(t) = 1
π

∫ ∞

0
dq q

[
kBT

κ(q4 + ξ−4)
+ Sx |*x(q,ℓ̄)|2

γ (q,ℓ̄,ξ )
+ Sz|*z(q,ℓ̄)|2

γ (q,ℓ̄,ξ )

]
[1 − e−γ (q,ℓ̄,ξ )t ] ≡ φ0(t) + φx0(t) + φz0(t), (47)

where the first term φ0(t) was defined before in Eq. (33)
for the static wall case, while φx0 and φz0 have been newly
defined here.

Before showing the result of MSD, we first discuss
the wave-number dependencies of the quantities |*x |2/γ
and |*z|2/γ appearing in Eqs. (45)–(47). These quantities
originating from the active wall are plotted in Fig. 6 as a
function of qℓ̄ for & = 10 and 0.1. Using the asymptotic
behaviors of γ , as shown in Eqs. (24) and (25), we can obtain

the limiting expressions for |*x |2/γ and |*z|2/γ as well.
When ℓ̄ ≪ ξ (corresponding to & = 10), we have

|*x |2/γ ≈

⎧
⎨

⎩

3ηξ 4/κℓ̄, q ≪ 1/ξ
3η/κℓ̄q4, 1/ξ ≪ q ≪ 1/ℓ̄

4ηℓ̄2e−2ℓ̄q/κq, 1/ℓ̄ ≪ q,

(48)

|*z|2/γ ≈

⎧
⎨

⎩

12ηξ 4/κℓ̄3q2, q ≪ 1/ξ
12η/κℓ̄3q6, 1/ξ ≪ q ≪ 1/ℓ̄

4ηℓ̄2e−2ℓ̄q/κq, 1/ℓ̄ ≪ q.

(49)
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FIG. 6. Plots of (a) |*x |2/γ̃ [see Eq. (20)] and (b) |*z|2/γ̃ [see
Eq. (21)] as a function of dimensionless wave number qℓ̄. Here γ̃ ≡
γ t̄ [see Eq. (18)] with t̄ = 4ηℓ̄3/κ is the dimensionless decay rate. The
solid and dashed lines represent & = ξ/ℓ̄ = 10 and 0.1, respectively.

For ξ ≪ ℓ̄ (corresponding to & = 0.1), on the other hand, we
obtain

|*x |2/γ ≈

⎧
⎨

⎩

3ηξ 4/κℓ̄, q ≪ 1/ℓ̄

4ηξ 4ℓ̄2q3e−2ℓ̄q/κ, 1/ℓ̄ ≪ q ≪ 1/ξ

4ηℓ̄2e−2ℓ̄q/κq, 1/ξ ≪ q,

(50)

|*z|2/γ ≈

⎧
⎨

⎩

12ηξ 4/κℓ̄3q2, q ≪ 1/ℓ̄

4ηξ 4ℓ̄2q3e−2ℓ̄q/κ, 1/ℓ̄ ≪ q ≪ 1/ξ

4ηℓ̄2e−2ℓ̄q/κq. 1/ξ ≪ q.

(51)

The static correlators -x and -z defined in Eq. (45) due to
the active wall can now be obtained by performing numerical
integrals. In Fig. 7 we plot the static correlators -x and -z as
a function of ρ/ℓ when & = 10. Here -x and -z are scaled
by 4ηℓ̄Sx/πκ and 4ηℓ̄Sz/πκ , respectively. We notice that -x

behaves similarly to that of the static wall case - given in
Eq. (31) and plotted in Fig. 3. On the other hand, -z diverges
logarithmically for large ρ/ℓ̄ because the integral is found to
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04
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FIG. 7. Dimensionless static correlators (a) -̃x ≡ (πκ/

4ηℓ̄Sx)-x and (a) -̃z ≡ (πκ/4ηℓ̄Sz)-z (divided by 104) in
the presence of an active wall [see Eq. (45)] as a function of
dimensionless distance ρ/ℓ̄ when & = ξ/ℓ̄ = 10.

be infrared divergent. Such a logarithmic divergence is avoided
when we consider a finite membrane size, which gives rise to
a cutoff for small wave numbers in the integral of Eq. (45).
It should be noted that both -x and -z depend on ℓ̄ and ξ ,
while - is solely determined by ξ . This means that -x and -z

include the geometrical as well as the hydrodynamic effects.
In Figs. 8 and 9, we plot the scaled membrane MSD φx0

and φz0 [see Eq. (47)], respectively, as a function of t/t̄ when
& = 10 and 0.1. For ℓ̄ ≪ ξ (corresponding to & = 10), there
are three different asymptotic regimes both for φx0 and φz0. In
the small time regime (t ≪ t̄), we have φx0 ∼ t and φz0 ∼ t ,
showing a normal diffusive behavior. This is because φx0 can
be approximated as

φx0(t) ≈ 4ηℓ̄2Sx

πκ

∫ ∞

0
dq e−2ℓ̄q[1 − e−(κq3/4η)t ]

≈ ℓ̄2Sxt

π

∫ ∞

0
dq e−2ℓ̄qq3 ∼ Sx

ℓ̄2
t. (52)
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FIG. 8. (a) Dimensionless MSD of a tagged membrane segment
φ̃x0 ≡ (πκ/4ηℓ̄Sx)φx0 in the presence of an active wall [see Eq. (47)]
as a function of dimensionless time t/t̄ where t̄ = 4ηℓ̄3/κ . The solid
and dashed lines represent & = ξ/ℓ̄ = 10 and 0.1, respectively. (b)
Effective exponent α of the MSDs in (a) as defined in Eq. (34).

Notice that only small-q contributes to the integral, and
the same holds for φz0. In the intermediate time regime
(t̄ ≪ t ≪ &6 t̄), we have φx0 ∼ t1/3 and φz0 ∼ t2/3, which can
be essentially obtained by the integrals in Eqs. (36) and (35),
respectively. In the long time regime (&6 t̄ ≪ t), φx0 saturates
at the value

φx0(t → ∞) ≈
[

4ηℓ̄Sx

πκ

]
3&2

8
∼ ηξ 2Sx

κℓ̄
. (53)

On the other hand, φz0 diverges logarithmically for t → ∞,
which can be seen in Fig. 9(a) and shown analytically. Such
a divergence in time occurs for small q and can be avoided
when the membrane size is finite as mentioned before.

For ξ ≪ ℓ̄ (corresponding to & = 0.1), on the other hand,
there are only two asymptotic regimes. The MSDs increase
both linearly as φx0 ∼ t and φz0 ∼ t in the small time regime
(t ≪ &3 t̄). In the long time regime (&3 t̄ ≪ t), φx0 saturates at
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FIG. 9. (a) Dimensionless MSD of a tagged membrane segment
φ̃z0 ≡ (πκ/4ηℓ̄Sz)φz0 in the presence of an active wall [see Eq. (47)]
as a function of dimensionless time t/t̄ where t̄ = 4ηℓ̄3/κ . The solid
and dashed lines represent & = ξ/ℓ̄ = 10 and 0.1, respectively. (b)
Effective exponent α of the MSDs in (a) as defined in Eq. (34).

the value

φx0(t → ∞) ≈
[

4ηℓ̄Sx

πκ

]
3&4

8
∼ ηξ 4Sx

κℓ̄3
, (54)

while φz0 also diverges logarithmically as above.

C. Active wall with an intrinsic time scale

Finally we consider a situation in which the activity of
the wall occurs over a finite time scale τ . In this case, the
statistical properties of random velocities which have been
given in Eqs. (40) and (41) would be replaced by the following
exponential correlation function in time [19,20]:

⟨Vx0(ρ,t)Vx0(ρ ′,t ′)⟩ = Sx

τ
δ(ρ − ρ ′)e−|t−t ′|/τ , (55)

⟨Vz0(ρ,t)Vz0(ρ ′,t ′)⟩ = Sz

τ
δ(ρ − ρ ′)e−|t−t ′|/τ , (56)
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FIG. 10. (a) Dimensionless MSD of a tagged membrane segment
φ̃x0 ≡ (πκ/4ηℓ̄Sx)φx0 in the presence of an active wall with an
intrinsic time scale [see Eq. (59)] as a function of dimensionless
time t/t̄ where t̄ = 4ηℓ̄3/κ . Different colors correspond to τ/t̄ = 0
(solid black), 102 (dashed red), 104 (dotted blue), and we set & = 10.
(b) Effective exponent α of the MSDs in (a) as defined in Eq. (34).

while the other velocity correlations remain the same. In
general, the intrinsic time scale τ can be different between
the x and z components. In the above relations, we have put a
factor 1/τ so that the physical dimension of Sx and Sz is the
same as before.

Repeating the same procedure as before, we obtain the total
two-point correlation function, which can be also separated
into the static and dynamics parts as in Eq. (44). The
static correlators in the presence of the active wall now
become

-x(ρ − ρ ′) = 1
π

∫ ∞

0
dq q

Sx |*x(q,ℓ̄)|2

γ (q,ℓ̄,ξ )[γ (q,ℓ̄,ξ )τ + 1]

× [1 − J0(q|ρ − ρ ′|)], (57)

(a)

(b)
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FIG. 11. (a) Dimensionless MSD of a tagged membrane segment
φ̃z0 ≡ (πκ/4ηℓ̄Sz)φz0 in the presence of an active wall with an
intrinsic time scale [see Eq. (60)] as a function of dimensionless
time t/t̄ where t̄ = 4ηℓ̄3/κ . Different colors correspond to τ/t̄ = 0
(solid black), 102 (dashed red), 104 (dotted blue), and we set & = 10.
(b) Effective exponent α of the MSDs in (a) as defined in Eq. (34).

-z(ρ − ρ ′) = 1
π

∫ ∞

0
dq q

Sz|*z(q,ℓ̄)|2

γ (q,ℓ̄,ξ )[γ (q,ℓ̄,ξ )τ + 1]

× [1 − J0(q|ρ − ρ ′|)]. (58)

A similar static correlator was previously discussed by Gov
et al. [19,20]. Notice that the above expressions reduce to
those in Eq. (45) when τ → 0. This is reasonable because
the exponential function in Eqs. (55) and (56) reduce to a δ
function in the limit of τ → 0.

Similarly, the two MSD functions of a tagged membrane
segment are given by

φx0(t) = 1
π

∫ ∞

0
dq q

Sx |*x(q,ℓ̄)|2

γ (q,ℓ̄,ξ )[γ (q,ℓ̄,ξ )τ + 1]

× [1 − e−γ (q,ℓ̄,ξ )t ], (59)
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φz0(t) = 1
π

∫ ∞

0
dq q

Sz|*z(q,ℓ̄)|2

γ (q,ℓ̄,ξ )[γ (q,ℓ̄,ξ )τ + 1]

× [1 − e−γ (q,ℓ̄,ξ )t ], (60)

which also reduce to those in Eq. (47) when τ → 0. In Figs. 10
and 11, we plot the scaled φx0 and φz0, respectively, as a
function of t/t̄ for different τ values when & = 10. We first
notice that both φx0 and φz0 decrease when the intrinsic time
scale τ is taken into account. Also the initial time regions
during which φx0 and φz0 grow linearly in time increase for
larger τ values, and the regions showing the scaling φx0 ∼ t1/3

or φz0 ∼ t2/3 become narrower. In the large τ limit, there will
be only two scaling regimes of the MSDs.

IV. SUMMARY AND DISCUSSION

In this paper, we have discussed the dynamics of a mem-
brane interacting with an active wall that generates random
velocities. We have generally shown that the dynamics of a
bound membrane is significantly affected by active fluctuations
at the wall, and they propagate through the surrounding
fluid. Using the result of the hydrodynamic calculation of
a bound membrane, we have derived a dynamic equation
for the membrane fluctuation amplitude [see Eq. (17)]. As
noted by Seifert previously [26], there are two different
asymptotic behaviors of the hydrodynamic decay rate γ
depending on the relative magnitude between the average
membrane-wall distance ℓ̄ and the correlation length ξ [see
Eqs. (24) and (25)]. We have obtained in Sec. III the membrane
two-point correlation functions for three different wall cases:
(i) a static wall, (ii) an active wall, and (iii) an active wall with
an intrinsic time scale.

As a dynamic part of the correlation function, we have
mainly discussed the MSD of a tagged membrane and
investigated its asymptotic time dependencies for the different
types of walls. For the static wall case, the membrane fluctuates
due to thermal agitations. When the decay rate γ changes
monotonically, the MSD given by Eq. (33) exhibits two
asymptotic behaviors φ0 ∼ t2/3 and φ0 ∼ t1/3 before it reaches
a constant value that is fixed by ξ (see Fig. 4). When the wall
is active, on the other hand, the partial MSDs in Eq. (47) grow
linearly in time, φx0 ∼ φz0 ∼ t , in the early stage. Compared
to the dynamics due to thermal fluctuations, this is a unique
behavior of a membrane segment in the presence of an active
wall (see Figs. 8 and 9). When the active wall has a finite
intrinsic time scale τ as defined in Eqs. (55) and (56), the
linear-growth region of the MSD is further extended as τ is
increased.

The present work should be distinguished from those
dealing with the dynamics of “active membranes” [8]. These
membranes contain active proteins such as ion pumps which
consume the chemical energy and drive the membrane out
of equilibrium. Being motivated by the theoretical predic-
tions [37–43], some experiments have shown that active forces
enhance membrane fluctuations [44–46]. In our theory, we
have considered that the active components are incorporated
not in the membrane but in the wall, and we discussed their
hydrodynamic effects on the membrane fluctuations. Hence
our work is related to the recent work by Maitra et al. [47]

who discussed the dynamics of a membrane coupled to an
actin cortex consisting of filaments with active stresses and
currents.

For our further discussion, we give here some numerical
estimates of the quantities used in our calculations. As
an example, we consider the shape fluctuations of RBCs.
Previously, the data for a normal RBC [48] were well described
by using the following parameters [19,20]; κ ∼ 10−19 J, ℓ̄ ∼
2–3 × 10−8 m, and ξ ∼ 2–3 × 10−7 m. Then the important
dimensionless parameter is roughly & = ξ/ℓ̄ ∼ 10 for RBCs,
and the decay rate γ is expected to increase monotonically as in
Eq. (24). Using the value of water viscosity η ∼ 10−3 J/m3, we
obtain the characteristic time scale as t̄ = 4ηℓ̄3/κ ∼ 10−7 s.
Hence the second crossover time scale discussed in Eq. (36) is
roughly given by &6 t̄ ∼ 10−1 s. Since t̄ and &6 t̄ are well
separated, the three different asymptotic regimes of φ0(t)
should be clearly observable.

The intrinsic time scale τ appearing in Eqs. (55) and (56)
represents the duration of force production at the active wall
and can be roughly estimated as τ ∼ 10−3 s for the spectrin
network of RBCs [19,20]. Hence the choice of τ/t̄ ∼ 104

in Figs. 10 or 11 is reasonable. Moreover, the force balance
between the spectrin compression and the membrane bending
yields a characteristic length scale of the order of L ∼ 10−7 m.
From the viewpoint of dimensional analysis, the quantities Sx

and Sz, which fix the amplitudes of the random velocities
in Eq. (40) and (41), respectively, can be evaluated as Sx ∼
L4/τ ∼ 10−24 m4/s and similarly for Sz. With this value,
the amplitude of the MSD due to the active wall becomes
φx0 ∼ ηℓ̄Sx/κ ∼ 10−17 m2. This value is comparable to that
of thermal fluctuations φ0 ∼ kBT ℓ̄2/κ ∼ 10−16 m2.

As mentioned in Sec. II, the decay rate γ changes
nonmonotonically when & ≪ 1. This situation may occur for
a charged membrane pushed by an osmotic pressure [26].
When unscreened electrostatic interactions compete with an
osmotic pressure, the condition & ≪ 1 is met whenever ℓ̄ ≫
κℓB/kBT ∼ 5 × 10−9 m where ℓB is the Bjerrum length. As
the unbinding transition point is approached [28], ℓ̄ becomes
much larger than ξ .

Following the calculation by Seifert [26], we have shown
in Sec. II that the hydrodynamic kinetic coefficient ,(q,ℓ̄)
is given by Eq. (19). In Ref. [17], Gov et al. used different
boundary conditions at the membrane and obtained an alter-
native expression for the kinetic coefficient:

,G(q,ℓ̄) = e−2qℓ̄

4ηq
[e2qℓ̄ − 1 − 2qℓ̄ − 2(qℓ̄)2]. (61)

As expressed in Eq. (14), Seifert and we have used an
incompressibility condition for the fluid near the membrane,
whereas Gov et al. employed a zero-shear-stress condition,
which implies that the xz component of the shear on both
sides of the membrane are equal. Gov et al. insisted that the
latter condition is appropriate for a fluid membrane which
cannot support shear stress across its width [17]. We have
quantitatively compared Eqs. (19) and (61) and confirmed that
they only differ by a numerical factor of 4 in the small-q
regime, and the asymptotic scaling behaviors are completely
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identical. Notice that ,G(q,ℓ̄) in Eq. (61) behaves as

,G ≈
{
ℓ̄3q2/3η, q ≪ 1/ℓ̄
1/4ηq, q ≫ 1/ℓ̄,

(62)

which can be compared with Eq. (23). In any case, the
differences between Eqs. (19) and (61) are not significant as
far as the role of the wall is concerned, and various scaling
behaviors of the MSD discussed in this paper are valid.

In this paper, we have only dealt with a tensionless
membrane whose shape is governed by Eq. (1). In Ref. [16],
it was claimed that the attachment of the cytoskeleton to the
membrane would induce an effective surface tension. For a
membrane with a finite surface tension 2, the free energy is
modified to

F =
∫

d2ρ

[
κ

2
(∇2ℓ)2 + V (ℓ) + 2

2
(∇ℓ)2

]
. (63)

Hence the quantity E in the static correlation function Eq. (4)
should now be replaced with

E(q,ξ ) = κ(q4 + ξ−4) + 2q2. (64)

The new term associated with the surface tension neither
modifies the small wave number nor the large wave number
asymptotic behaviors [26]. Although a more complicated
crossover behavior can arise in the intermediate wave number
if 2 > κ/ξ 2, we do not discuss it here because our main aim
is to see the effects of the active wall. In general, the presence
of the finite surface tension tends to suppress the membrane
fluctuations.

In our model, the outer fluid is assumed to be purely
viscous characterized by a constant viscosity η. It should
be noted, however, fluids surrounding biomembranes are
viscoelastic rather than purely viscous. This is a common
situation in all eukaryotic cells whose cytoplasm is a soup
of proteins and organelles, including a thick submembrane
layer of actin-meshwork forming a part of the cell cytoskele-
ton [12]. The extra-cellular fluid can also be viscoelastic
because it is filled with extracellular matrix or hyaluronic
acid gel. In order to mimic the real situations, the dynamics
of undulating bilayer membrane surrounded by viscoelastic
media was considered before [49,50]. It was assumed that
both sides of the membrane are occupied by viscoelastic media
with a frequency-dependent modulus that obeys a power-law
behavior G(ω) = G0(iω)β with 0 ! β ! 1 [49–52]. Such
a frequency dependence is commonly observed for various
polymeric solutions at high frequencies. The limits of β = 0
and 1 correspond to the purely elastic and purely viscous cases,
respectively. Following the previous results, we argue that
the time dependencies of MSD which has been expressed
as φ0 ∼ tα in the pure viscous case will be modified to
φ0 ∼ tαβ for both the static and the active wall cases. Hence
the asymptotic exponent of the MSD is generally smaller than
that for a purely viscous fluid.
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APPENDIX: SOLUTIONS OF HYDRODYNAMIC
EQUATIONS

The incompressibility condition Eq. (5) and the Stokes
equation (6) can be formally solved for the fluid velocity v
in terms of the force f acting on the fluid [53]:

vx(q,z) =
∫ ∞

−∞
dz′ e−q|z−z′|

4ηq
[(1 − q|z − z′|)fx(q,z′)

+ iq(z′ − z)fz(q,z′)], (A1)

vy(q,z) =
∫ ∞

−∞
dz′ e−q|z−z′|

4ηq
2fy(q,z′), (A2)

vz(q,z) =
∫ ∞

−∞
dz′ e−q|z−z′|

4ηq
[(1 + q|z − z′|)fz(q,z′)

+ iq(z′ − z)fx(q,z′)], (A3)

with q = |q|. Notice that vy in Eq. (A2) is not coupled to the
other components and hence can be neglected.

For the fluid in the region 0 ! z ! ℓ̄, the forces are acting
both at z = 0 and z = ℓ̄ so that fx and fz can be written as

fx(q,z) = fx(q,0)δ(z) + fx(q,ℓ̄)δ(z − ℓ̄), (A4)

fz(q,z) = fz(q,0)δ(z) + fz(q,ℓ̄)δ(z − ℓ̄). (A5)

Substituting Eqs. (A4) and (A5) into Eq. (A3), we obtain
Eq. (10) where the the coefficients A and B are given by

A = e−qℓ̄

2ηq

[
iqℓ̄fx(q,ℓ̄) + (1 + qℓ̄)fz(q,ℓ̄)

]
, (A6)

B = e−qℓ̄

2ηq

[
−i(1 − qℓ̄)fx(q,ℓ̄) + qℓ̄fz(q,ℓ̄)

]
. (A7)

For the fluid in the region ℓ̄ ! z, the forces are acting only
at z = ℓ̄ so that fx and fz can be written as

fx(q,z) = fx(q,ℓ̄)δ(z − ℓ̄), (A8)

fz(q,z) = fz(q,ℓ̄)δ(z − ℓ̄). (A9)

Substituting Eqs. (A8) and (A9) into Eq. (A3), we obtain
Eq. (11) where the coefficients C and D are given by

C = fz(q,ℓ̄)
4ηq

, (A10)

D = fz(q,ℓ̄) − ifx(q,ℓ̄)
4ηq

. (A11)

Using these four coefficients A, B, C, and D, the x compo-
nent of the velocity v±

x (q,z,t) and the pressure p±(q,z,t) are
obtained as follows:

v−
x (q,z,t) = − iAqz sinh(qz) + iB[sinh(qz) + qz cosh(qz)]

+ (1 − qz)Vx0(q,t)e−qz − iqzVz0(q,t)e−qz,
(A12)
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v+
x (q,z,t) = −ie−q(z−ℓ̄)(C − D − Dqℓ̄ + Dqz), (A13)

p−(q,z,t) = − 2ηq[A cosh(qz) − B sinh(qz)]

+ 2ηq[Vz0(q,t) − iVx0(q,t)]e−qz, (A14)

p+(q,z,t) = 2ηDqe−q(z−ℓ̄). (A15)

The four unknown coefficients are determined by the boundary
conditions (12), (13), (14), and (15) at z = ℓ̄.
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