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The variational principle of the Onsager–Machlup integral is used to
describe the stochastic dynamics of a micromachine, such as an enzyme,
characterized by odd elasticity. The obtained most probable path is found to
become non-reciprocal in the presence of odd elasticity and is further related
to the entropy production.

Structural changes in enzymes or proteins are essential for
biological functions and have attracted extensive attention.1)

Such dynamical transitions are associated with various active
processes including catalytic chemical reactions. Because
thermal fluctuations act as a driving force, structural changes
can be regarded as rare events that occur stochastically. To
describe the dynamics of rare events, several concepts such
as the path probability and the Onsager–Machlup (OM)
integral were employed.2) Recently, Scheibner et al. intro-
duced the concept of odd elasticity to describe non-conserved
interactions in active materials.3) They showed that the active
moduli quantify the amount of work extracted during
quasistatic strain cycles.

In the present work, we investigate how the presence of
odd elasticity in a micromachine influences the most probable
path derived by the variation of the OM integral, namely, the
OM variational principle.4) The most probable outward path
is shown to differ from the most probable return path in
active micromachines; hence, the entire process becomes
non-reciprocal owing to odd elasticity. Using the fluctuation
theorem,5) we also estimate the entropy production which is
generated by the most probable cyclic path. Our study is
useful for understanding the dynamics of the binding and
dissociation processes between the enzyme and substrate
molecules. Furthermore, this research suggests that non-
equilibrium processes, including catalytic chemical reactions,
can generally be described by the concept of odd elasticity in
active systems.

Let us introduce the N-dimensional time-dependent state
vector xðtÞ whose components are xiðtÞ (i ¼ 1; 2; . . . ; N).
These variables describe, for example, the distances between
the domains in an enzyme as shown in Fig. 1(a). We assume
that xiðtÞ obeys the following linear Langevin equation6)

_xiðtÞ ¼ ��ijKjkxkðtÞ þ Fij�jðtÞ; ð1Þ
where _xi ¼ dxi=dt. The transport coefficient tensor �ij is
symmetric (�ij ¼ �ji) and positive definite owing to
Onsager’s reciprocal relations and the second law of
thermodynamics, respectively.7)

In the above equation, Kij is the elastic constant tensor. For
ordinary passive situations, Kij should be symmetric because
the elastic forces are conservative. However, for active
systems with non-conservative interactions, Kij can have an
anti-symmetric part that corresponds to odd elasticity.3,6)

Hence Kij can generally be written as

Kij ¼ Ke
ij þ Ko

ij; ð2Þ
where the symmetric (even) part and the anti-symmetric
(odd) part satisfy Ke

ij ¼ Ke
ji and Ko

ij ¼ �Ko
ji, respectively.

Within a coarse-grained description, non-equilibrium proc-
esses in active systems can generally be described by odd
elasticity. For example, conformational changes of an
enzyme are driven by catalytic chemical reactions, leading
to non-conserved interactions between domains. The out-
come of such non-equilibrium interactions can be considered
by the odd part of the elastic constant tensor Ko

ij.
6)

Moreover, �i in Eq. (1) represents N-dimensional Gaussian
white noise with a zero mean h�iðtÞi ¼ 0, and its correlations
satisfy the relation h�iðtÞ�jðt 0Þi ¼ �ij�ðt � t 0Þ. The tensor Fij

represents the noise strength and is further related to the
diffusion tensor by Dij ¼ FikFkj=2. In this study, stochastic
transition processes driven by thermal fluctuations are
considered and the relation Dij ¼ kBT�ij is assumed, where
kB is the Boltzmann constant and T is the temperature. This
means that the random force is determined by the thermal
motion of the surrounding fluid molecules and will not be
affected by the force acting on the domains.7) In terms of the
probability distribution function Pðx; tÞ, the Fokker–Planck
equation, equivalent to Eq. (1), is written as8)

_Pðx; tÞ ¼ Lðx; tÞPðx; tÞ; Lðx; tÞ ¼ @i�ijKjkxk þDij@i@j; ð3Þ
where L is the Fokker–Planck operator and @i ¼ @=@xi.

Next, we discuss the transition dynamics that occur, for
example, in an enzyme as shown in Fig. 1(a). When a
catalytic chemical reaction takes place, the dissociation
process between the enzyme and the substrate molecules
follows a configurational path that differs from the binding
process between them. To describe such transition dynamics,
we consider the path probability, namely, the probability of a
specific stochastic trajectory.2)

When the initial condition is xi ¼ x0i at t ¼ 0, the path
probability P½xðtÞjx0� during the time interval 0 � t � tf ,
where tf is the final time, is obtained from the product of the
conditional probability distribution functions Pðx; tjx0; t 0Þ for
a small time separation t � t 0. With the use of Eq. (3), it is
known that the path probability is expressed as8)

P½xðtÞjx0� ¼ N exp � O½xðtÞ�
2kBT

� �
; ð4Þ

where N is the normalization constant fixed by the conditionR DxP½xðtÞjx0� ¼ 1 and
R Dx indicates integration over all

paths. In Eq. (4), O½xðtÞ� is the OM integral defined by2)

O½xðtÞ� ¼ kBT

2

Z tf

0

dt D�1
ij ½ _xi þ �ikKklxl�½ _xj þ �jmKmnxn�; ð5Þ

where D�1
ij is the inverse matrix of Dij.

As clearly seen in Eq. (4), a transition path that minimizes
the OM integral is realized with the highest probability.
In other words, the most probable transition path can be
obtained by requiring the first variation of the OM integral
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to vanish, i.e., �O½xðtÞ� ¼ 0.4) Taking the variation of Eq. (5)
with respect to xiðtÞ yields the following differential equation
for the most probable transition path:

€xiðtÞ þ �ijðKjk � KkjÞ _xkðtÞ � �ijKkj�klKlmxmðtÞ ¼ 0: ð6Þ
Given the initial (x0i at t ¼ 0) and the final (xfi at t ¼ tf )

conditions, the above equation can be solved for xiðtÞ.
Importantly, the coefficient of _xkðtÞ in Eq. (6) is proportional
to the odd elastic constant Ko

ij ¼ ðKij � KjiÞ=2. In other
words, the presence of odd elasticity breaks the time-reversal
symmetry of the equation. Consequently, the outward and
return processes of the most probable path generally differ,
leading to a non-reciprocal trajectory in state space. This is
the main message of this study.

As a simple example, the most probable path of an active
system with only two degrees of freedom (N ¼ 2) is
discussed. Additionally, we assume that the transport
coefficient tensor and elastic constant tensor are given by
�ij ¼ ��ij, Ke

ij ¼ Ke�ij, and Ko
ij ¼ Ko�ij, where �ij is the 2D

Levi–Civita tensor with �11 ¼ �22 ¼ 0 and �12 ¼ ��21 ¼ 1.
Then, the analytic solution of the most probable outward path
(x0 ! xf ) is obtained as

x0!f
i ðt̂Þ ¼ � sinhðt̂ � t̂fÞ

sinhðt̂fÞ Aijð�t̂Þx0j þ
sinhðt̂Þ
sinhðt̂fÞ Aijð�ðt̂ � t̂fÞÞxfj ;

ð7Þ
where AijðtÞ ¼ �ij cos t � �ij sin t, and the dimensionless
quantities t̂ ¼ t�Ke, t̂f ¼ tf�K

e, and � ¼ Ko=Ke are intro-
duced. Notice that Aij satisfies the relation AijðtÞ ¼ Ajið�tÞ.

Then, let us exchange the initial and the final conditions,
and consider the most probable trajectory xf!0

i ðt̂Þ for the
return path (xf ! x0). When � ¼ 0 and hence Aij ¼ Aji, we
have x0!f

i ðt̂Þ ¼ xf!0
i ðt̂f � t̂Þ, indicating that the entire com-

bined process (x0 ! xf ! x0) is reciprocal. When � ≠ 0 and
hence Aij ≠ Aji, on the other hand, the process becomes non-
reciprocal. In Figs. 1(b) and 1(c), we plot on the ðx1; x2Þ-plane
the outward path x0!f

i ðt̂Þ (black line) and the return path
xf!0
i ðt̂Þ (red line) in the presence of odd elasticity (� ¼ 1). It is
explicitly revealed that these two paths do not coincide; hence,
the entire trajectory is non-reciprocal when � ≠ 0.

The path probability P½xðtÞjx0� is closely related to the
entropy production σ along the stochastic path xiðtÞ (not
necessarily the most probable path). According to the
fluctuation theorem, P½xðtÞjx0�=P½xrevðtÞjxf� ¼ expð�=kBÞ,
where xrevi ðtÞ ¼ xiðtf � tÞ is the time-reversed backward

path.5,9) With the use of Eqs. (4) and (5) for general N, σ
can be obtained as

� ¼ � Kij

T

Z tf

0

dt _xiðtÞxjðtÞ: ð8Þ

For a cyclic path, only the odd elastic constant gives rise to a
non-conservative force, and Eq. (8) further reduces to

� ¼ � Ko
ij

T

I
dxi xj: ð9Þ

Note that the above line integral corresponds to the area
enclosed by a closed path on the ðxi; xjÞ-plane.

Finally, we calculate the entropy production for the most
probable non-reciprocal cyclic paths as shown in Figs. 1(b) and
1(c) when N ¼ 2. In Fig. 1(d), a plot of the dimensionless
entropy production �̂ ¼ �T=ð2Ke�2Þ as a function of t̂f is
shown for different values of λ. Although the dependence of �̂
on t̂f is highly non-monotonic, it is interesting to note that �̂
takes themaximum values, which also depend on the value of λ.

For stochastic systems, it was reported that probability flux
in closed loops is possible in a non-equilibrium steady
state.10,11) While the probability flux can predict only short-
time dynamics, the most probable path contains information
on the long-time and global behavior of the system.
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Fig. 1. (Color online) (a) A coarse-grained model of an enzyme consisting of domains that are connected to springs. A substrate (green circle) changes into a
product (orange circle) via a catalytic chemical reaction. The distances between the domains are represented by xiðtÞ. Each spring is characterized by the even
elastic constant tensor Ke

ij and the odd elastic constant tensor Ko
ij. (b, c) The most probable outward path x0!f (black line) and the return path xf!0 (red line)

when N ¼ 2 and � ¼ 1. The initial and final conditions are x0 ¼ ð1; 0Þ (green circles) and xf ¼ ð�1; 0Þ (orange circles), respectively, whereas the final times are
t̂f ¼ 1 in (b) and t̂f ¼ 10 in (c). (d) The dimensionless entropy production �̂ corresponding to the most probable non-reciprocal cyclic path as a function of the
final time t̂f for � ¼ 1; 2; 3.
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