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ABSTRACT
We suggest several reciprocal swimming mechanisms that lead to locomotion only in viscoelastic fluids. In the first situation, we consider a
three-sphere microswimmer with a difference in oscillation amplitudes for the two arms. In the second situation, we consider a three-sphere
microswimmer in which one of the frequencies of the arm motion is twice as large as the other one. In the third situation, we consider a
two-sphere microswimmer with a difference in size for the two spheres. In all these three cases, the average velocity is proportional to the
imaginary part of the complex shear viscosity of a surrounding viscoelastic medium. We show that it is essential for a micromachine to break
its structural symmetry in order to swim in a viscoelastic fluid by performing reciprocal body motions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0018540., s

I. INTRODUCTION

Microswimmers are small machines that swim in a fluid and
have potential applications in microfluidics and microsystems.1
Over the length scale of microswimmers, the fluid forces acting on
them are dominated by the frictional viscous forces. By transforming
chemical energy into mechanical energy, however, microswimmers
change their shape and move efficiently in viscous environments.
According to the scallop theorem suggested by Purcell, recipro-
cal body motion cannot be used for locomotion in a Newtonian
fluid.2–4 As one of the simplest models exhibiting non-reciprocal
bodymotion, Najafi andGolestanian proposed a three-sphere swim-
mer5,6 in which three in-line spheres are linked by two arms of
varying length. Recently, such a swimmer has been experimentally
realized by using colloidal beads manipulated by optical tweez-
ers,7 ferromagnetic particles at an air–water interface,8,9 or neutrally
buoyant spheres in a viscous fluid.10

For manymicroswimmers in nature, however, the surrounding
fluid is not necessarily purely viscous, but, in general, viscoelastic.
Several studies have discussed the swimming behaviors of micro-
machines in different types of viscoelastic fluids.11–18 In particu-
lar, Lauga showed that the scallop theorem in a viscoelastic fluid
breaks down if the squirmer has a fore-aft asymmetry in its sur-
face velocity distribution.13 In our recent study, we have discussed
the locomotion of a three-sphere microswimmer in a viscoelas-
tic medium.19 Here, a relationship linking the average swimming

velocity to the frequency-dependent viscosity of the surrounding
mediumwas derived.We demonstrated that the absence of the time-
reversal symmetry of the body motion (i.e., non-reciprocal motion)
is reflected in the real part of the frequency-dependent complex
viscosity, whereas the absence of the structural symmetry of the
swimmer shape is reflected in its imaginary part.19

Later, we investigated the locomotion of a three-sphere
microswimmer in a viscoelastic structured fluid, characterized by
typical length and time scales.20 The competition between the swim-
mer size and the characteristic length scale associated with the fluid
internal structure gives rise to the rich dynamics.21,22 The present
authors have also proposed a generalized three-sphere microswim-
mer model in which the spheres are connected by two harmonic
springs, i.e., an elastic microswimmer.23–26 It has been shown that an
elastic microswimmer in a purely viscous fluid exhibits “viscoelastic”
effects as a whole.23,24

In this paper, employing either a three-sphere or a two-sphere
microswimmer, we suggest several swimming mechanisms that
include only reciprocal (rather than non-reciprocal) body motions
and can lead to locomotion only in viscoelastic fluids. According
to the scallop theorem,2–4 the considered reciprocal body motions
cannot be used for locomotion in a purely viscous fluid. For a three-
sphere swimmer in a viscoelastic fluid, the simplest reciprocal body
motion has been proposed in our previous work.19 This is pos-
sible when the two amplitudes of the oscillatory arm motion are
different, namely, when the structural symmetry of a three-sphere
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microswimmer is broken. For the illustration of the calculation
scheme, we first explain this reciprocal motion even though the
result is a part of the calculation in Ref. 19.

We then suggest two other reciprocal swimming mechanisms
in a general viscoelastic fluid: a three-sphere microswimmer in
which one of the frequencies of the arm motion is twice as large
as the other one and a two-sphere microswimmer with a differ-
ence in size for the two spheres. In all these three cases, we show
that the average velocity is proportional to the imaginary part of
the complex shear viscosity that characterizes the elasticity of the
surrounding fluid. The suggested body motions highlight the essen-
tial swimming mechanism of a micromachine in viscoelastic fluids.
For the sake of clarity, we do not include any non-reciprocal body
motions of a microswimmer, as discussed in Ref. 19. Moreover, we
assume that the surrounding viscoelastic fluid is homogeneous and
do not consider any fluid internal structures as in Ref. 20.

In Sec. II, we briefly review Ref. 19 to show the basic equations
for the motion of a three-sphere swimmer in a general viscoelas-
tic fluid. In Sec. III, we discuss the locomotion of a three-sphere
swimmer when the two arm amplitudes are asymmetric, as already
discussed in Ref. 19. In Sec. IV, we explain the case of asymmetric
arm frequencies for a three-sphere swimmer. The generalization for
higher frequencies of the arm motion is also discussed. In Sec. V, we
present the result for an asymmetric two-sphere microswimmer in a
viscoelastic fluid. Finally, a summary of our work and a discussion is
provided in Sec. VI.

II. THREE-SPHERE MICROSWIMMER
IN A VISCOELASTIC FLUID

The general equation that describes the hydrodynamics of a
low-Reynolds-number flow in a viscoelastic medium is given by the
following generalized Stokes equation:27

� t

−∞ dt′ η(t − t′)∇2v(r, t′) −∇p(r, t) = 0. (1)

Here, η(t) is the time-dependent shear viscosity, v is the velocity
field, p is the pressure field, and r stands for a three-dimensional
positional vector. The above equation is further subjected to the
incompressibility condition,

∇ ⋅ v = 0. (2)

From these equations, one can obtain a linear relation between the
time-dependent force F(t) acting on a hard sphere of radius a and its
time-dependent velocity V(t). In the Fourier domain, this relation
can be represented as

V(ω) = 1
6πη[ω]aF(ω), (3)

where we use a bilateral Fourier transform for V(ω)= �∞−∞dt V(t)e−iωt and F(ω) = �∞−∞dt F(t)e−iωt , while we employ
a unilateral one for η[ω] = �∞0 dt η(t)e−iωt . Equation (3) is the gen-
eralized Stokes-Einstein relation (GSR), which has been successfully
used in active microrheology experiments,28–30 and its mathematical
validity has also been discussed.31,32

Next, we briefly explain the three-sphere micromachine model
proposed by Najafi and Golestanian.5,6 As schematically shown in

Fig. 1, this model consists of three spheres of the same radius a. They
are connected by two arms of lengths L1(t) and L2(t), which undergo
time-dependent motion, as we will discuss separately in Secs. III and
IV. Moreover, the radius of the two arms is assumed to be negligibly
small. If we define the velocity of each sphere along the swimmer
axis as Vi(t) (i = 1, 2, 3), we have

L̇1(t) = V2(t) −V1(t), (4)

L̇2(t) = V3(t) −V2(t), (5)

where L̇1 and L̇2 indicate the time derivatives of L1 and L2,
respectively.

Owing to the hydrodynamic effect, each sphere exerts a force
Fi on the viscoelastic medium and experiences a force −Fi from
it. To relate the forces and the velocities in the frequency domain,
we use the GSR in Eq. (3) and the Oseen tensor in which the
frequency-dependent viscosity η[ω] is used instead of a constant
one.33,34 Assuming that a� L1, L2, we can write the three velocities
Vi(ω) as5,6

V1(ω) = F1(ω)
6πη[ω]a +

1
4πη[ω] F2(ω) ∗ L

−1
1 (ω)

2π

+
1

4πη[ω] F3(ω) ∗ (L1 + L2)−1(ω)
2π , (6)

V2(ω) = 1
4πη[ω] F1(ω) ∗ L

−1
1 (ω)

2π +
F2(ω)
6πη[ω]a

+
1

4πη[ω] F3(ω) ∗ L
−1
2 (ω)

2π , (7)

V3(ω) = 1
4πη[ω] F1(ω) ∗ (L1 + L2)−1(ω)

2π

+
1

4πη[ω] F2(ω) ∗ L
−1
2 (ω)

2π +
F3(ω)
6πη[ω]a , (8)

where we have used bilateral Fourier transforms such as L−11 (ω)= �∞−∞dt [L1(t)]−1e−iωt . Furthermore, the convolution of two func-
tions is generally defined by g1(ω) ∗ g2(ω) = �∞−∞ dω′ g1(ω− ω′)g2(ω′) in the above equations.

Since we are interested in the autonomous net locomotion of
the swimmer, there are no external forces acting on the spheres.

FIG. 1. Najafi–Golestanian three-sphere swimmer model. Three identical spheres
of radius a are connected by arms of lengths L1(t) and L2(t), and they undergo
time-dependent cyclic motions [see Eqs. (10) and (11) or Eqs. (18) and (19)].
Such a microswimmer is embedded in a viscoelastic medium characterized by
a frequency-dependent complex shear viscosity η[ω]. In this work, we consider
only reciprocal body motions.
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Neglecting the inertia of the surrounding fluid, we require the
following force balance condition:

F1(ω) + F2(ω) + F3(ω) = 0. (9)

Since Eqs. (6)–(8) involve convolutions in the frequency
domain, we cannot solve these equations for arbitrary L1(t) and
L2(t). In Secs. III–V, we assume three different reciprocal arm
motions for L1(t) and L2(t) and obtain the average velocity of a
microswimmer in a viscoelastic fluid.

III. ASYMMETRIC ARM AMPLITUDES
We first consider the case when the amplitudes of the two arms

are different. We assume that the two arms undergo the following
reciprocal periodic motion:

L1(t) = ` + d1 cos(Ωt), (10)

L2(t) = ` + d2 cos(Ωt). (11)

In the above equations, ` is the constant length, d1 and d2 are the
amplitudes of the oscillatory motion, and Ω is the common arm
frequency. It should be emphasized that, in contrast to Ref. 19, we
do not include any difference in the phases between the two arms,
and hence, the whole body motion is reciprocal. On the other hand,
we characterize the structural symmetry of the swimmer by d1 and
d2. The whole micromachine is symmetric when d1 = d2, while it is
asymmetric when d1 ≠ d2.

Since the arm frequency isΩ, we assume that the velocities and
the forces of the three spheres can generally be written as

Vi(ω) = Vi,0 δ(ω) + ∞�
n=1[Vi,n δ(ω + nΩ) + Vi,−n δ(ω − nΩ)], (12)

Fi(ω) = Fi,0 δ(ω) + ∞�
n=1[Fi,n δ(ω + nΩ) + Fi,−n δ(ω − nΩ)]. (13)

Substituting Eqs. (12) and (13) into the six coupled equations (4)–
(9), we obtain, in general, a matrix equation with infinite dimen-
sions.

Under the conditions d1, d2 � ` and a � `, we are allowed
to consider only n = 0, ±1, and we further use the approximation
Fi ,±2 ≈ 0. Then, we can solve for the six unknown functions Vi(ω)
and Fi(ω) and also calculate the total swimming velocity,

V = 1
3
(V1 + V2 + V3). (14)

Up to the lowest order terms in a, the average swimming velocity
over one cycle of motion becomes19

V = −5a(d21 − d22)Ω
48`2η0

η′′[Ω], (15)

where η′′[Ω] is the imaginary part of the complex shear viscosity,
η[Ω] = η′[Ω] + iη′′[Ω], and η0 = η[Ω → 0] is the constant zero-
frequency viscosity. A detailed derivation of Eq. (15) is given in the
Appendix. Note that η′′[Ω] is taken to be negative in our notation.
Hence, V > 0 when d1 > d2.

Since Eq. (15) involves η′′[Ω], it can be regarded as an elastic
contribution that exists when the structural symmetry of the swim-
mer is broken, i.e., d1 ≠ d2. In other words, a reciprocal three-sphere
micromachine uses the elastic degree of freedom of the surrounding
viscoelastic medium for its locomotion. The structural asymmetry,
d1 ≠ d2, is necessary for a microswimmer to determine its moving
direction. For a purely Newtonian fluid, namely, for a medium char-
acterized by a constant viscosity, Eq. (15) vanishes even when d1 ≠ d2
because η′′[Ω] = 0. The above result also implies that a three-sphere
swimmer cannot move in a purely elastic medium for which we have
η0 →∞.

When the armmotion is non-reciprocal, such as by introducing
a phase difference between the two arms, a different term arises.19,20
This term includes η′[Ω] and hence can be regarded as the viscous
contribution. Because Eq. (15) contributes to the average velocity
even for a reciprocal body motion, the scallop theorem should be
generalized for a three-sphere swimmer in a viscoelastic medium.13

To illustrate the above result, we assume that the surrounding
viscoelastic medium is described by a simple Maxwell model.19 In
this case, the frequency-dependent complex viscosity can be written
as

η[ω] = η0 1 − iωτ
1 + ω2τ2 , (16)

where τ is the characteristic time scale. Within this model, the
medium behaves as a viscous fluid for ωτ � 1, while it becomes
elastic for ωτ � 1. Using Eq. (16), we can easily obtain the average
swimming velocity in Eq. (15) as19

V = 5(d21 − d22)aΩ
48`2

Ωτ
1 +Ω2τ2 . (17)

Here, V increases as V ∼ Ω2 for Ωτ � 1, and it approaches a
constant for Ωτ � 1. In Fig. 2, we plot the dimensionless average

FIG. 2. Average swimming velocity V as a function of Ωτ, where Ω is the arm
frequency and τ is the characteristic time scale in the Maxwell model. Here, V is
scaled by 5(d21 − d22)a�(48`2τ) assuming that d1 ≠ d2. V increases as V ∼ Ω2

for Ωτ� 1.
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swimming velocity V as a function of the dimensionless arm fre-
quencyΩτ when d1 ≠ d2.

IV. ASYMMETRIC ARM FREQUENCIES
As the second case, we consider the situation where the fre-

quencies of the two arms are different. For the sake of simplicity,
we consider here the following time dependencies:

L1(t) = ` + d cos(Ωt), (18)

L2(t) = ` + d cos(2Ωt). (19)

In the above equations, the frequency of L2 is twice as large as that
of L1, whereas the amplitude of oscillation d is taken to be the same.
Since the arm frequencies are different, a phase shift does not play
any role, and the overall arm motion can be regarded as reciprocal
for Eqs. (18) and (19).

The procedure to obtain the average velocity is essentially the
same as in Sec. III.We assume that the velocities and the forces of the
three spheres are also expressed by Eqs. (12) and (13), respectively.
Under the conditions d� ` and a� `, we consider only n = 0, ±1,±2 and use the approximation Fi ,±3 ≈ 0 because of Eq. (19). After
some calculation, the average swimming velocity can be obtained as

V = − 5ad2Ω
48`2η0

�η′′[Ω] − 2η′′[2Ω]�. (20)

Similar to Eq. (15), only the imaginary part of the complex
shear viscosity appears in the above expression, and the two terms
in Eq. (20) are the elastic contributions. The above result means
that a micromachine can swim as long as η′′[Ω] ≠ 2η′′[2Ω], which
usually holds for viscoelastic fluids. It is interesting to note that
the direction of locomotion is determined by the relative magni-
tude between η′′[Ω] and 2η′′[2Ω]. When the arm amplitudes are
different and characterized by d1 and d2, as in Eqs. (10) and (11),
we have confirmed that the average velocity is then proportional to
d21η′′[Ω] − 2d22η′′[2Ω], as one can expect from Eqs. (15) and (20).

In general, the motions of the two arms can be given by

L1(t) = ` + d cos(Ωt), (21)

L2(t) = ` + d cos(mΩt), (22)

where m is an integer. Note that the average velocity vanishes for
m = 1 even in a viscoelastic fluid because the arm amplitudes are the
same in Eqs. (21) and (22). Although we have explicitly calculated
only up tom = 3, we speculate that the average velocity can be given
by

V = − 5ad2Ω
48`2η0

�η′′[Ω] −mη′′[mΩ]�, (23)

which is a natural generalization of Eq. (20). When m is very large,
the first term becomes negligible, and the whole locomotion is
dominated by η′′[mΩ].

One can further generalize Eq. (21) to L1(t) = ` + d cos(MΩt),
where M is another integer, while L2 is still given by Eq. (22), but
M ≠ m. Then, the least common multiple of M and m determines
the period of the overall reciprocal motion of a micromachine. In

this case, we predict, in general, that the first term in Eq. (23) will
be replaced by Mη′′[MΩ], which results from the symmetry of our
system.

V. ASYMMETRIC TWO-SPHERE MICROSWIMMER
As the third reciprocal body motion, we consider a two-sphere

swimmer consisting of two hard spheres having different sizes. As
shown in Fig. 3, these two spheres are connected by a single arm that
can vary its length. The radii of the two spheres are denoted by a1
and a2, respectively, and the distance between them is L(t). As the
equations of motion for the two spheres are even simpler than those
for a three-sphere swimmer, we shall explicitly write them below.

Similar to Eqs. (4) and (5), the time derivative of L is given by

L̇(t) = V2(t) −V1(t). (24)

Corresponding to Eqs. (6)–(8), the relations between the velocities
and the forces in the frequency domain can be written as

V1(ω) = F1(ω)
6πη[ω]a1 +

1
4πη[ω] F2(ω) ∗ L

−1(ω)
2π , (25)

V2(ω) = 1
4πη[ω] F1(ω) ∗ L

−1(ω)
2π +

F2(ω)
6πη[ω]a2 . (26)

Finally, the force balance equation now becomes

F1(ω) + F2(ω) = 0. (27)

The periodic arm motion is assumed to have the following
simple form:

L(t) = ` + d cos (Ωt). (28)

Since there is only one arm, it is obvious that any periodic arm
motion is inevitably reciprocal. Under the conditions d � ` and
a1, a2 � `, we consider only n = 0, ±1 and use the approximation
Fi ,±2 ≈ 0 in Eqs. (12) and (13). Calculating the total swimming veloc-
ityV = (V1 +V2)/2, we finally obtain the average swimming velocity
over one cycle of motion as

V = 3a1a2(a1 − a2)d2Ω
4`2(a1 + a2)2η0 η′′[Ω]. (29)

FIG. 3. Asymmetric two-sphere swimmer model. Two spheres of different radii
a1 and a2 (a1 < a2) are connected by an arm of length L(t), and it undergoes
a time-dependent periodic motion [see Eq. (28)]. The swimmer is embedded in
a viscoelastic medium characterized by a frequency-dependent complex shear
viscosity η[ω].
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This result shows that a reciprocal two-sphere micromachine
can swim in a viscoelastic fluid when the sphere sizes are differ-
ent, i.e., a1 ≠ a2. Similar to the previous cases, the average velocity
depends only on η′′[Ω], and it is due to the elastic contribution.
Hence, the elasticity of a viscoelastic medium is responsible for the
locomotion of a reciprocal microswimmer as long as its structure
is asymmetric. This statement does not contradict with the original
scallop theorem that holds only for purely viscous fluids.2–4 When
the surrounding fluid is purely elastic, however, the average velocity
V vanishes because η0 →∞.

In the limit of a1 � a2, for example, Eq. (29) further reduces to

V ≈ −3a1d2Ω
4`2η0

η′′[Ω]. (30)

This result shows that the average velocity of a two-sphere swimmer
is proportional to the radius of the smaller sphere, a1. Since η′′[Ω]< 0 by definition, V > 0 in the limit of Eq. (30).

Here, we discuss the connection between a three-sphere
microswimmer and a two-sphere microswimmer considered in
Secs. IV and V, respectively. According to the average velocity in
Eq. (23) for a three-sphere microswimmer, its locomotion is dom-
inated by η′′[mΩ] when m � 1. In such a situation, the motion of
the first arm L1 appears to be stagnant when compared with that of
the second arm L2. Note that the limiting expression of Eq. (23) for
m � 1 is similar to the average velocity in Eq. (30) for a highly
asymmetric two-sphere microswimmer, i.e., a1 � a2. Although the
numerical factors are different between these two limiting expres-
sions, their dependence on the structural and dynamical parameters
is identical. Such a similarity between a three-sphere microswim-
mer and a two-sphere microswimmer is an interesting feature of
reciprocal micromachines in a viscoelastic fluid.

VI. SUMMARY AND DISCUSSION
In this paper, employing either a three-sphere or a two-

sphere microswimmer, we have suggested three reciprocal swim-
ming mechanisms that can lead to locomotion only in viscoelastic
fluids. In the first situation, we consider a three-sphere microswim-
mer with a difference in oscillation amplitudes for the two arms.19
In the second situation, we consider a three-sphere microswim-
mer in which one of the frequencies of the arm motion is twice as
large as the other one. In the third situation, we consider a two-
sphere microswimmer with a difference in size for the two spheres.
In all these three cases, the average velocity is proportional to the
imaginary part of the complex shear viscosity that characterizes the
elastic property of the surrounding viscoelastic fluid. Hence, it is
essential for a micromachine to break its structural symmetry in
order to swim in viscoelastic fluids by performing reciprocal body
motions. Our result also indicates that the scallop theorem should
be generalized for microswimmers in a viscoelastic fluid.

Lauga considered an axisymmetric squirming motion of a
spherical squirmer embedded in an Oldroyd-B fluid, which repre-
sents a typical polymeric fluid.13 It was reported that the scallop
theorem in a viscoelastic fluid breaks down if the squirmer has a
fore-aft asymmetry in its surface velocity distribution, which is in
accordance with our result. On the other hand, Curtis and Gaffney

showed that the swimming velocity in a viscoelastic medium is the
same as that in a Newtonian fluid.15 Recently, the motion of a two-
sphere swimmer in viscoelastic fluids has been discussed by Datt
et al.18 However, their calculations are limited to an Oldroyd-B fluid.
Our treatment using the GSR in Eq. (3) is more general because we
do not specify any frequency dependence of the complex shear vis-
cosity. We emphasize that our theory applies for all types of linear
viscoelastic fluids.

The scallop theorem states that a microswimmer cannot gain
any net displacement after one cycle of reciprocal bodymotion when
the surrounding fluid is purely viscous.2,3 It should be noted that
this theorem is correct only when the Reynolds number strictly van-
ishes.4 Lauga showed that oscillatory reciprocal forcing of a solid
body leads to net translational motion when the Reynolds number
is nonzero even when the fluid is purely viscous.35 It was further
predicted that the scallop theorem breaks downwith inertia in a con-
tinuous manner as long as there are some spatial broken symmetries
that govern the direction of the net motion. In the future, it would
be interesting to see the effects of inertia for a reciprocal microswim-
mer in a viscoelastic fluid and to elucidate how the scallop theorem
needs to be extended in more general situations.

Even though the argument in this work is restricted to an artifi-
cial microswimmer, we expect that the basic concept can be applied
to more complex biological processes such as the motion of bacteria,
flagellated cellular swimming, and the beating of cilia. Since most of
these phenomena take place in a viscoelastic environment, we hope
that the suggested mechanisms in this paper will be applicable for
more complex biological swimming objects.
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APPENDIX: DERIVATION OF EQ. (15)
In this appendix, we show the detailed derivation of Eq. (15).

Substituting Eqs. (10) and (12) into Eq. (4), we obtain

V2,0 −V1,0 = 0, (A1)

V2,1 −V1,1 = −iπd1Ω, (A2)

V2,−1 −V1,−1 = iπd1Ω, (A3)

V2,n −V1,n = 0 for �n� ≥ 2. (A4)

Similarly, substituting Eqs. (11) and (12) into Eq. (5), we obtain

V3,0 −V2,0 = 0, (A5)
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V3,1 −V2,1 = −iπd2Ω, (A6)

V3,−1 −V2,−1 = iπd2Ω, (A7)

V3,n −V2,n = 0 for �n� ≥ 2. (A8)

Next, we expand Eqs. (6)–(8) in terms of the small quantities
d1/` and d2/`while keeping only the lowest order terms. Substituting
Eqs. (12) and (13) into these three equations, we obtain

V1,n ≈ F1,n
6πη[−nΩ]a +

1
4πη[−nΩ]`�F2,n − d1F2,n+1

2`

−d1F2,n−1
2`

� + 1
4πη[−nΩ]`�F3,n2 − d1F3,n+1

8`

−d1F3,n−1
8`

− d2F3,n+1
8`

− d2F3,n−1
8`

�, (A9)

V2,n ≈ 1
4πη[−nΩ]`�F1,n − d1F1,n+1

2`
− d1F1,n−1

2`
�

+
F2,n

6πη[−nΩ]a +
1

4πη[−nΩ]`�F3,n − d2F3,n+1
2`

−d2F3,n−1
2`

�, (A10)

V3,n ≈ 1
4πη[−nΩ]`�F1,n2 − d1F1,n+1

8`
− d1F1,n−1

8`

−d2F1,n+1
8`

− d2F1,n−1
8`

� + 1
4πη[−nΩ]`

× �F2,n − d2F2,n+1
2`

− d2F2,n−1
2`

� + F3,n
6πη[−nΩ]a . (A11)

Note that the couplings between different n-modes are involved
in these equations. Finally, substituting Eq. (13) into Eq. (9), we
obtain

F1,n + F2,n + F3,n = 0. (A12)

The above set of equations constitutes a matrix equation with
infinite dimensions and cannot be solved, in general. Under the
assumption of a � `, however, we are allowed to consider only
n = −1, 0, 1 and further approximate as Fi ,±2 ≈ 0. The justification of
the latter approximation is also seen by solving Eqs. (A4) and (A8)–
(A12) for n = ±2 and taking the limit of a� `. Hence, the above set
of equations can be solved for 18 unknowns, i.e., Vi ,n and Fi ,n for
i = 1, 2, 3 and n = −1, 0, 1.

The velocity of each sphere is simply obtained by the inverse
Fourier transform, Vi(t) = (2π)−1�∞−∞dωVi(ω)eiωt . The average
swimming velocity over one cycle of motion is then calculated
by

V = Ω
2π �

2π�Ω
0

dt [V1(t) + V2(t) + V3(t)]�3. (A13)

Up to the lowest order terms in a, we finally obtain Eq. (15). In order
to obtain more accurate higher order terms in a, one needs to take
into account the higher order n-modes (|n| ≥ 2). Equations (20) and
(29) can be obtained similarly.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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