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Nonreciprocality of a micromachine driven by a catalytic chemical reaction
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We propose a model that describes cyclic state transitions of a micromachine driven by a catalytic chemical
reaction. We consider a mechanochemical coupling of variables representing the degree of a chemical reaction
and the internal state of a micromachine. The total free energy consists of a tilted periodic potential and
a mechanochemical coupling energy. We assume that the reaction variable obeys a deterministic stepwise
dynamics characterized by two typical timescales, i.e., the mean first passage time and the mean first transition
path time. To estimate the functionality of a micromachine, we focus on the quantity called “nonreciprocality”
and further discuss its dependence on the properties of catalytic reaction. For example, we show that the
nonreciprocality is proportional to the square of the mean first transition path time. The explicit calculation
of the two timescales within the decoupling approximation model reveals that the nonreciprocality is inversely
proportional to the square of the energy barrier of catalytic reaction.
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I. INTRODUCTION

In recent years, physics of micromachines such as bacteria,
motor proteins, and artificial molecular machines has been
intensively studied [1,2]. Generally, a micromachine can be
defined as a small object that extracts energy from chemi-
cal substances in the system and further exhibits mechanical
functions. The interplay between the structural dynamics of
such a small object and the associated chemical reaction is
crucial for the operation of a micromachine [3,4]. Owing to
the developments in nonequilibrium statistical mechanics and
experimental techniques, various studies have been conducted
to reveal the energetics of a single micromachine. For ex-
ample, energy efficiencies of F1-ATPase and kinesin motors
have been experimentally measured by using the Harada-Sasa
relation [5–7].

Furthermore, attention has been paid to the dynamics of
micromachines. For instance, several works reported that
diffusion coefficients of metabolic enzymes increase due
to enzymatic reactions [8–10]. Although various possible
scenarios have been proposed such as self-thermophoresis,
stochastic swimming, or collective heating, the main physical
mechanism for the enhanced diffusion is not yet specified [9].
Moreover, the experiment by Jee et al. showed that metabolic
enzymes can move in a directional manner in the presence of
catalytic reactions [11]. Although such a swimming behavior
can be explained by a specific theoretical model [12], a more
fundamental understanding concerning the interplay between
the dynamics and function of a micromachine is necessary.

Biological functions of a micromachine is intimately re-
lated to the transitions between different internal states. As
depicted in Fig. 1(a), one can use time-dependent state
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variables si(t ) (i = 1, 2, 3, . . . ) to characterize such as con-
formational structure or adhesion state when a micromachine
is interacting with a substrate. The state variables si(t ) change
dynamically when a micromachine catalyzes a chemical reac-
tion of substrate molecules. As long as it acts as a catalyst,
however, the internal state should return to the initial state
after one cycle of reaction. Hence, si(t ) should change peri-
odically in time as the chemical reaction proceeds repeatedly.

In overdamped systems, such a cyclic change of internal
state is related to biological functions of a micromachine. For
example, microswimmers in a viscous fluid have been inves-
tigated by using specific models such as connected spheres
[13,14] or a spherical squirmer [15]. It was shown that the
average swimming velocity is proportional to the closed loop
area in the corresponding deformation space. In order to
extend this concept and to generally characterize the function-
ality of a generic micromachine, we focus on the following
quantity

Ri j =
∫ τc

0
dt ṡis j, (1)

where ṡi = dsi/dt and τc is the period of the cycle. In this
paper, we shall call Ri j the “nonreciprocality” representing the
area enclosed by a trajectory in the state space, as shown in
Fig. 1(b).

For a three-sphere microswimmer [14], s1 and s2 cor-
respond to the lengths of the two arms, and its average
swimming velocity is directly proportional to the nonrecip-
rocality, i.e., V ∼ R12. This relation was also discussed in
the experimental realization of a three-sphere microswimmer
[16]. Such a relation holds not only for deterministic mi-
croswimmers, but also for stochastic microswimmers [17,18].
The nonreciprocality Ri j is also relevant to crawling mo-
tions of a cell on a substrate [19,20]. Within a gauge theory,
the average velocity of a deformable body is given by V =∑

i, j Wi jRi j , where Wi j is a weighting tensor that connects
the velocity and the nonreciprocality [21]. It should be noted
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FIG. 1. (a) Schematic picture of a micromachine characterized
by the conformational state variables s1, s2, and s3. Moreover, the
adhesion between the domains and the substrate is described by the
variables s4 and s5. (b) The state transition of a micromachine is
represented by a trajectory in the state space spanned by the variables
si and s j . The nonreciprocality Ri j [see Eq. (1)] represents the area
enclosed by the trajectory.

that the nonreciprocality Ri j is a universal quantity that does
not depend on specific self-propulsion models. Moreover, Ri j

quantifies how much a micromachine breaks the detailed bal-
ance that needs to be satisfied in thermal equilibrium.

Although the functionality of a micromachine can be quan-
tified by Ri j , it is important to clarify how the nonreciprocality
is regulated within a micromachine. Considering a microma-
chine that utilizes a catalytic chemical reaction, we investigate
the relationship between the properties of the reaction and
the nonreciprocality Ri j . Our main purpose is to propose a
minimum model of a micromachine undergoing cyclic state
transitions which are driven by repeated catalytic reactions.
Hence, in addition to the state variables si(t ), we introduce
another variable θ (t ) to describe the degree of a catalytic
chemical reaction. These variables are related to each other
through the mechanochemical coupling mechanism.

We employ Onsager’s phenomenological equations for the
time evolutions of si(t ) and θ (t ). In order to solve the equa-
tions analytically, we consider the weak coupling limit and
assume that the dynamics of θ (t ) is described by a step func-
tion characterized by two characteristic time scales, i.e., the
mean first passage time τp and the mean first transition path

time τt . Solving the equations for the state variables si, we
analytically obtain the nonreciprocality R12 as a function of
the above two timescales. Furthermore, we obtain analytical
expressions of τp and τt within the decoupling approxima-
tion and relate them to the properties of catalytic reaction.
Combining these results, we show that the nonreciprocality
is inversely proportional to the square of the energy barrier of
catalytic reaction.

In the next section, we explain the model of a microma-
chine driven by a catalytic chemical reaction. In Sec. III,
we argue the dynamics of the state variables si. In Sec. IV,
we calculate the nonreciprocality R12 analytically. In Sec. V,
we obtain the mean first passage time τp and the mean first
transition path time τt . Finally, a summary of our work and
some further comments are given in Sec. VI.

II. MODEL

A. Catalytic chemical reaction

Consider a system which contains one enzyme molecule
(E) that acts as a micromachine, nS substrate molecules (S),
and nP product molecules (P). The enzyme molecule plays the
role of a catalyst and the corresponding chemical reaction is
written as [22]

S + E � ES → P + E (2)

where ES indicates a complex molecule. The reaction rate
ṅP is often analyzed by the Michaelis-Menten equation [22].
Although the above catalytic chemical reaction is relevant to
the present study, our purpose is to adopt the simplest model
for such a chemical reaction and not to reproduce it.

The extent of a catalytic reaction is commonly described
by the number of product molecules nP. However, since our
purpose is to investigate a single molecular reaction process,
we introduce a reaction variable θ (t ) to quantify the extent of
catalytic reaction. Unlike the quantity nP, the reaction variable
θ is a continuous number and increases 2π for each reaction.
Under this assumption, θ represents the reaction phase of a
periodic catalytic reaction.

According to the Kramers theory, the free energy Gr de-
scribing a chemical reaction is given by a tilted periodic
potential [23]

Gr (θ ) = Gp(θ ) − Fθ, (3)

where Gp is a periodic potential with a period of 2π , i.e.,
Gp(θ + 2π ) = Gp(θ ), as shown schematically in Fig. 2(a).
This is because θ increases by 2π for one cycle of chemical
reaction and should experience the same potential. We also
require that Gp takes minimum values at θ = 2nπ (n being an
integer) because the chemical states should be stable before
and after the catalytic reaction. As shown in Fig. 2(a), the
amplitude of Gp, denoted by A, represents the energy barrier in
the chemical reaction and is regarded as the activation energy.
The explicit form of Gp will be presented later in Eq. (23).

On the other hand, F in Eq. (3) represents the chemical po-
tential difference (such as between ATP and ADP molecules)
that drives catalytic reaction. Physically, it corresponds to a
nonequilibrium force even though F has the dimension of
energy. The system is in chemical equilibrium when F = 0,
whereas it is in an out-of-equilibrium situation when F �= 0.
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FIG. 2. (a) The periodic potential Gp as a function of the catalytic
reaction variable θ with a period of 2π . Here we show a linear
function given by the Eq. (23) with an energy barrier A. (b) The
tilted periodic potential Gr as a function of the reaction variable θ .
As shown in Eq. (3), Gr consists of the periodic part Gp in panel
(a) and the linear part −Fθ , where F is the nonequilibrium force. A
possible trajectory of θ is shown by the blue (gray) arrow. The value
of θ fluctuates around the minimum of the potential and the transition
to the next minimum takes place occasionally.

In this paper, we shall consider the case of F > 0. With the
added nonequilibrium force F , the free energy Gr for catalytic
reaction becomes a tilted periodic potential, as schematically
shown in Fig. 2(b).

B. Mechanochemical coupling

Next, we introduce the state variables si(t ) (i =
1, 2, 3, . . . ) characterizing the conformation of a microma-
chine. As shown in Fig. 1(a), examples of the state variables
are distances between the domains in a micromachine or dis-
tances between the domains and the substrate (if it exists). In
the molecular dynamics simulation of myosin V, for example,
the protein structure is characterized by the relative distances
between the three amino acids [3]. In principle, there are a
large number of degrees of freedom of a micromachine, and
hence the number of the state variables si can also be large.

Next, we explain the mechanochemical coupling mecha-
nism in our model. We assume that each state variable si

experiences a harmonic potential, Ki[si − �i(θ )]2/2, where
Ki is the coupling parameter and �i(θ ) is the natural state

that is a function of the reaction variable θ . For a catalytic
reaction, the internal state of a micromachine should re-
turn to the initial state after one cycle of reaction and the
same process takes place repeatedly. Hence, we consider that
the natural state �i(θ ) changes also periodically and as-
sume the simplest periodic form �i(θ ) = di sin(θ + φi ), where
di is the amplitude and φi is the constant phase difference
relative to the reaction phase θ . Under these assumptions, we
consider the following mechanochemical coupling energy Gc

between θ and si:

Gc(θ, {si}) =
∑

i

Ki

2
[si − di sin(θ + φi )]

2. (4)

Then the total free energy Gt in our model is simply given by

Gt (θ, {si}) = Gr (θ ) + Gc(θ, {si}). (5)

C. Dynamic equations

For the time evolutions of θ and si, we employ the On-
sager’s phenomenological equations [24],

θ̇ = −M
∂Gt

∂θ
+ ξ (t ), (6)

ṡi = −
∑

j

μi j
∂Gt

∂s j
+ ξi(t ), (7)

where M and μi j are the Onsager coefficients for θ and si,
respectively. These coefficients represent energy dissipation,
and μi j is given, for example, by the inverse of the friction
coefficient of a domain due to the surrounding viscous fluid.
Moreover, ξ and ξi represent thermal fluctuations which sat-
isfy the fluctuation-dissipation theorem:

〈ξ (t )〉 = 0, (8)

〈ξ (t )ξ (t ′)〉 = 2MkBT δ(t − t ′), (9)

〈ξi(t )〉 = 0, (10)

〈ξi(t )ξ j (t
′)〉 = 2μi jkBT δ(t − t ′), (11)

where kB is the Boltzmann constant and T is the temperature.
In the above equations, the Onsager coefficients are as-

sumed to be constant and thermal fluctuations are given by
Gaussian white noise. In the presence of a memory effect such
as viscoelasticity, the Onsager coefficients depend on time and
thermal fluctuations are given by colored noise in the form of
generalized fluctuation-dissipation relations. In the absence of
thermal fluctuations, the reaction variable θ does not evolve
in time because of the energy barrier A in the potential Gr

[see Fig. 2(b)]. If thermal fluctuations are present, the value
of θ fluctuates around the minimum of the potential and
the transition to the next minimum takes place occasionally
[blue (gray) trajectory in Fig. 2(b)]. Hence, thermal fluctua-
tions are necessary to drive time evolutions of θ and si in our
stochastic model.

Although our model is general, we make several simplifi-
cations in order to solve the coupled equations analytically.
First, we only take into account two degrees of freedom, i.e.,
s1 and s2. Second, the mobility coefficients μi j is assumed to
have the form μ11 = μ22 = μ and μ12 = μ21 = 0. Third, the
coupling free energy is symmetric between the two degrees of
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FIG. 3. Time evolutions of θ (top), s1 (middle), and s2 (bottom)
obtained by numerically solving Eqs. (12)–(14). We use the dimen-
sionless time by Dt , where D = MkBT has the dimension of inverse
time. The parameters are a = A/(kBT ) = 10, f = F/(kBT ) = 8,
Kd2/(kBT ) = 10, φ1 = 0, φ2 = π/2, and μ/(d2M ) = 1. In this sim-
ulation, the periodic potential is taken to be Gp(θ ) = −A cos θ and is
different from the linear function in Eq. (23). The red (gray) vertical
lines indicate the moments when the catalytic chemical reactions take
place.

freedom, i.e., K1 = K2 = K and d1 = d2 = d . Then Eqs. (6)
and (7) reduce to

θ̇ = −M[∂θGr (θ ) − Kd cos(θ + φ1)δ1

− Kd cos(θ + φ2)δ2] + ξ, (12)

δ̇1 = −γ δ1 − d cos(θ + φ1)θ̇ + ξ1, (13)

δ̇2 = −γ δ2 − d cos(θ + φ2)θ̇ + ξ2, (14)

where we have introduced δi = si − d sin(θ + φi ) and defined
the relaxation rate γ = μK .

As a demonstration of our model, we have numerically
solved Eqs. (12)–(14) by using the Euler method and plotted
in Fig. 3 the time evolutions of θ (top), s1 (middle), and s2

(bottom) for certain parameters. We see that the reaction vari-
able θ increases stochastically in a stepwise manner, whereas
the state variables s1 and s2 undergo almost random fluctua-
tions. Corresponding to the stepwise increase of θ , both s1 and
s2 tend to show peaks as indicated by the vertical red (gray)
lines. Although the simulation result in Fig. 3 demonstrates
that the present minimum micromachine is indeed driven

by thermal fluctuations, it is difficult to isolate the peaks of
si because they are almost comparable to the background
fluctuations. Moreover, the state transitions become very rare
when A � kBT . Therefore, instead of performing further sim-
ulations, we investigate our model analytically by using the
decoupling approximation.

D. Decoupling approximation

The decoupling approximation relies on two assumptions:
(i) taking the weak coupling limit, Kd2 	 A, and (ii) assum-
ing a deterministic dynamics for θ (t ). Under the assumption
(i), Eq. (12) can be simplified to

θ̇ = −M∂θ Gr (θ ) + ξ, (15)

where θ is now decoupled from si. If we were able to solve
Eq. (15) for θ , we can further solve Eqs. (13) and (14) for δi

(si). However, it is still difficult to solve Eq. (15) analytically
because θ is mostly trapped in the local minimum of Gr and
thermal fluctuations are necessary to overcome the energy
barrier A.

To tackle this problem, we further employ the assumption
(ii) for θ (t ). As we shall explain in the next section, we assume
that θ (t ) is described by a deterministic function character-
ized by two timescales, i.e., the mean first passage time τp

and the mean first transition path time τt [see later Eq. (16)
and Fig. 4(b)]. Then, we can first solve Eqs. (13) and (14)
analytically and obtain the explicit expression for δi, as we
show in Sec. III. This result will be used to compute the
nonreciprocality R12 analytically in Sec. IV. In Sec. V, on
the other hand, the two characteristic timescales τp and τt

will be separately calculated by using Eq. (15) within the
decoupling approximation.

III. DYNAMICS OF STATE VARIABLES

In this section, we discuss the dynamics of the state
variables δ1 (s1) and δ2 (s2) that obey Eqs. (13) and (14),
respectively. To solve these equations, we make an assumption
for the time dependence of θ (t), as we mentioned in the
previous section. With a tilted periodic potential given by
Eq. (3) and shown in Fig. 2(b), the reaction variable θ changes
stochastically and increases in a stepwise manner as we saw in
the numerical simulation [see Fig. 3 (top)] and also schemat-
ically depicted in Fig. 4(a). Such a time evolution of θ (t ) can
be characterized by two characteristic timescales. The first
one is the “first passage time” tp, which is the time required
to change from one local minimum to the neighboring lower
local minimum [23]. The second one is the “first transition
path time” tt which is the time needed for the actual transition
[25–27]. It should be noticed that both tp and tt are stochastic
quantities.

To discuss the dynamics of s1 and s2, let us assume that
θ can be represented by a deterministic stepwise function
characterized by the “mean first passage time” τp and the
“mean first transition path time” τt , which are the averages
of tp and tt , respectively. As depicted in Fig. 4(b), the assumed
functional form of θ is

θ (t ) =
{

2πt/τt for 0 � t < τt

2π for τt � t < τp
. (16)
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FIG. 4. (a) Schematic example of a stochastic time evolution of
the reaction variable θ . Such a time evolution is characterized by the
first transition path time tt and the first passage time tp, which are both
stochastic quantities. (b) After averaging over these quantities, we
obtain the average time evolution of θ as assumed in Eq. (16). Here
τt and τp are the mean first transition path time and the mean first
passage time, respectively. The reaction variable increases linearly
for 0 � t < τt and remains constant for τt � t < τp. The reaction
phase θ (t ) satisfies θ (t + τp) = θ (t ) + 2π .

Furthermore, we require that θ increases by 2π after one
cycle of catalytic reaction τp, i.e., θ (t + τp) = θ (t ) + 2π . The
explicit expressions of τp and τt under the decoupling ap-
proximation will be given in Sec. V, where we focus on their
dependencies on the energy barrier A and the nonequilibrium
force F .

Substituting Eq. (16) into Eqs. (13) and (14), we solve
them in the absence of thermal noise, i.e., ξ1 = ξ2 = 0 (see
Appendix A for the details). Then the stationary solution for
δi (i = 1, 2) can be obtained as

δi(t ) = d

(γ τt/2π )2 + 1

×
[
−γ τt

2π
cos

(
2πt

τt
+ φi

)
− sin

(
2πt

τt
+ φi

)

+eγ τp − eγ τt

eγ τp − 1

(γ τt

2π
cos φi + sin φi

)
e−γ t

]
, (17)

for 0 � t < τt and

δi(t ) = − d

(γ τt/2π )2 + 1

eγ τp (eγ τt − 1)

eγ τp − 1

×
(γ τt

2π
cos φi + sin φi

)
e−γ t , (18)

for τt � t < τp.
In Figs. 5(a) and 5(b), we plot the time evolutions of s1 and

s2, respectively, when φ1 = 0 and φ2 = π/2. We set τt/τp =
0.5 and change γ τp = 1, 10, and 102. Notice that γ τp = μKτp

is the dimensionless relaxation rate. When the relaxation is
fast, γ τp > 1, the internal state of a micromachine can be
sufficiently relaxed to the initial state within the reaction cycle
τp. When the relaxation is slow, γ τp < 1, on the other hand,
the next reaction starts before the internal state is fully relaxed.
The fast relaxation cases, γ τp = 10, 102 adopted in Fig. 5
do not contradict with the weak coupling limit, Kd2 	 A,
as we have discussed before. These two conditions can be
simultaneously satisfied when μ � d2/(τpA), namely, when
the Onsager coefficient μ is sufficiently large.

When γ τp = 102 (green or light gray), the behaviors for
0 � t < τt are well described by sinusoidal functions s1/d =
sin(2πt/τt ) and s2/d = cos(2πt/τt ). In this fast relaxation
case, we see a sufficiently large state change within a micro-
machine. When γ τp = 1 (black) or 10 (red or gray), si cannot
follow the change in θ and the functionality of a microma-
chine is diminished. In Fig. 5(c), we plot the trajectories of
s1 and s2 over one cycle of reaction for different values of
γ τp. For each cycle, 20 equal time intervals are marked by the
filled circles. As mentioned before, the enclosed area of each
trajectory gives the nonreciprocality R12.

In Figs. 5(d)–5(f), we show the corresponding plots when
τt/τp = 0.1 (smaller τt). When γ τp = 102 (green or light
gray) and 0 � t < τt , both s1 and s2 are well described by the
same sinusoidal functions as in Figs. 5(a) and 5(b), respec-
tively. On the other hand, the black and red (gray) curves for
γ τp = 1 and 10, respectively, deviate significantly from the
green (light gray) curve for γ τp = 102, and the magnitudes are
significantly suppressed. The reduced magnitudes can also be
seen in Fig. 5(f), where the areas enclosed by the black and red
(gray) lines are much smaller than that of the green (light gray)
line. This means that, for γ τp = 1 and 10, the nonreciprocality
is further decreased as τt/τp is made smaller.

IV. NONRECIPROCALITY OF A MICROMACHINE

We have mentioned in introduction that the nonrecipro-
cality defined in Eq. (1) provides us with a useful quantity
to evaluate the functionality of a micromachine [14,17,19–
21]. Previously, the nonreciprocality was obtained along a
deterministic state change when the period of deformation
is constant. However, this is not always possible when fluc-
tuations are present [28]. For a stochastic micromachine, it
is necessary either to take a long time limit or to estimate
the statistical average to estimate the nonreciprocality. In the
present model and analysis, on the other hand, one can cal-
culate the nonreciprocality directly from Eq. (1) because we
have assumed a deterministic dynamics for θ as in Eq. (16).
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FIG. 5. Time evolutions of (a) s1 and (b) s2 when φ1 = 0 and φ2 = π/2. We set τt/τp = 0.5 (shown by the dashed line) and change γ τp = 1
(black), 10 (red or gray), and 102 (green or light gray). (c) The trajectory of the state variables s1 and s2 shown in panels (a) and (b), respectively,
over one cycle. For each cycle, 20 equal time intervals are marked by the filled circles. The black arrow indicates the direction of the state
transition. The enclosed area of the trajectory corresponds to the nonreciprocality R12. Plots (d)–(f) are similar plots to (a)–(c), respectively,
when τt/τp = 0.1 (shown by the dashed line).

With the use of Eqs. (17) and (18), the nonreciprocality R12

can be analytically obtained in terms of τp and τt as

R12 =
∫ τp

0
dt ṡ1s2

= d2γ 2τ 2
t

4π [(γ τt/2π )2 + 1]
sin(φ2 − φ1)

×
[

1 + 2[1 + eγ τp − eγ τt − eγ (τp−τt )]

γ τt[(γ τt/2π )2 + 1](eγ τp − 1)

]
. (19)

This is the main result of this paper. Since R12 is proportional
to sin(φ2 − φ1), it vanishes when φ1 = φ2. In other words,
the state variables s1 and s2 should be out of phase (φ1 �= φ2)
with respect to each other in order to exhibit a functionality.
This result is in accordance with the scallop theorem for a mi-
croswimmer [14,21]. Moreover, the nonreciprocality satisfies
the symmetry property such that R12 = −R21.

From Eq. (19), the asymptotic expressions of R12 can be
obtained as

R12 ≈ d2γ 2τ 2
p sin(φ2 − φ1)

4π [(γ τp/2π )2 + 1]
(τt/τp ≈ 1), (20)

R12 ≈ 3d2γ 2τ 2
t

4π
sin(φ2 − φ1) (τt/τp 	 1). (21)

In Fig. 6, we plot the dimensionless nonreciprocality r12, i.e.,
R12 scaled by the right-hand side of Eq. (20), as a function of
the ratio τt/τp for different values of γ τp. The dotted lines

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

γτp = 1
γτp = 10
γτp = 102

τt/τp

r 1
2

FIG. 6. The dimensionless nonreciprocality r12 (defined in the
text) as a function of τt/τp for γ τp = 1 (black), 10 (red or gray),
and 102 (green or light gray). The dotted lines are the asymptotic
expression for τt/τp 	 1 given by Eq. (21).
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represent the asymptotic expression in Eq. (21). From this
plot, one can confirm the scaling behavior R12 ∼ (γ τt )2 when
τt/τp 	 1. When τt/τp ≈ 1, on the other hand, r12 approaches
unity as we see in Eq. (20).

V. TWO CHARACTERISTIC TIMESCALES

As discussed in Sec. III, the dynamics of a catalytic chem-
ical reaction is generally characterized by the mean first
passage time τp and the mean first transition path time τt . Ac-
cording to the Kramers theory, τp gives the time to overcome
an energy barrier, and the inverse of it is a chemical reaction
rate [23]. While most of the first passage time is spent by the
waiting time, the actual time required for a state transition can
be much smaller. Such a short timescale is characterized by τt

[25–27,29,30]. For a nucleic acid folding, it was estimated to
be τt � 10−5 s [31–33].

In this section, we obtain the analytical expressions of τp

and τt in terms of the potential parameters A and F in Gr.
Within the decoupling approximation, Kd2 	 A, we consider
the dynamics of θ by using Eq. (15). Then one can obtain both
τp and τt for a general potential [27].

A. Mean first passage time τp

The first passage time tp is a time for a reaction that
started from the initial value θ0 reaches the final value θf for
the first time. Notice that θ0 = 0 and θf = 2π in our model.
Mathematically, this is equivalent to consider a Brownian mo-
tion of a particle in a semi-infinite system with an absorbing
boundary condition at θ = θf , and to measure the time until
the particle is absorbed at θ = θf [see Fig. 7(a)]. However,
because the state θ = θ0 can be visited multiple times, most
of the first passage time is spent by a long waiting time. Since
tp is a stochastic quantity and has a broad distribution, it is
useful to consider its average value τp called the mean first
passage time.

A formal derivation of τp is reviewed in Appendix B. For
an arbitrary periodic function Gp, τp can be given by

τp = 1

D(1 − e−2π f )

∫ 2π

0
dx

∫ 2π

0
dy

× exp[gp(x) − gp(x − y) − f y], (22)

where gp = Gp/(kBT ) and f = F/(kBT ) are the dimen-
sionless potential and nonequilibrium force, respectively.
Moreover, we have defined the diffusion constant D = MkBT ,
where M is the Onsager coefficient used in Eqs. (6) and (15).
Note that D has the dimension of inverse time in the present
model.

The periodic potential Gp(θ ) in Eq. (3) should satisfy
Gp(θ + 2π ) = Gp(θ ) and its energy barrier is A. Among
various possibilities, the simplest form would be Gp(θ ) =
−A cos θ that was used in our numerical simulation. However,
to perform the integral in Eq. (22) analytically, we employ
here the following linear functions:

Gp(θ ) =

⎧⎪⎪⎨
⎪⎪⎩

A

(
2

π
θ − 1

)
for 0 � θ < π

A

(
− 2

π
θ + 3

)
for π � θ < 2π

, (23)

FIG. 7. (a) Schematic description of the first passage time tp. We
consider a semi-infinite system with an absorbing boundary condi-
tion at θ = 2π , and measure the time until a Brownian particle is
absorbed at θ = 2π . Here the state θ = 0 can be visited multiple
times, which gives rise to a long waiting time. (b) Schematic descrip-
tion of the first transition path time tt . We consider a finite system
with absorbing boundary conditions at θ = 0 and 2π , and measure
the time until a Brownian particle is absorbed at θ = 2π . When the
particle is absorbed at θ = 0 [the red (gray) trajectory], such an event
is not counted.

as depicted in Fig. 2(a). With this periodic potential, one can
analytically obtain τp as

τp = 2π2

D

[
π f

π2 f 2 − 4a2
− 8a2

(π2 f 2 − 4a2)2

1 + e−2π f

1 − e−2π f

+ 16a2 cosh(2a)

(π2 f 2 − 4a2)2

e−π f

1 − e−2π f

]
, (24)

where a = A/(kBT ) is the dimensionless energy barrier. Then
the asymptotic expressions of τp are given as follows:

τp ≈ 2π

D f
= 2π

MF
(a 	 1 or a 	 f ), (25)

τp ≈ πe2a

2Da2 f
= π (kBT )2e2A/kBT

2MA2F
(a � 1 and f 	 1),

(26)

τp ≈ π2e2ae−π f

Da2
= π2kBTe2A/kBT e−πF/kBT

MA2

(a � f � 1). (27)

Here we have recovered the dimension in the last expressions
for the clarity sake. Since Eq. (25) does not depend on the
temperature, thermal fluctuations are irrelevant in this limit.
This is not the case for Eqs. (26) and (27) which diverge when
the temperature vanishes due to the exponential factors.

In Fig. 8(a), we plot the scaled τp in Eq. (24) as a function
of f for a = 0.1 and 10. For a = 0.1 (black), the entire be-
havior is simply approximated by Eq. (25). For a = 10 (red
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FIG. 8. (a) The dimensionless mean first passage time τp as a function of the dimensionless nonequilibrium force f for a = 0.1 (black) and
10 (red or gray). The plot for a = 0.1 almost coincides with the asymptotic form in Eq. (25). The dotted and dashed lines are the asymptotic
expressions in Eqs. (26) and (27), respectively. (b) The dimensionless mean first transition path time τt as a function of the dimensionless
nonequilibrium force f for a = 0.1 (black) and 10 (red or gray). The dotted and dashed lines are the asymptotic expressions in Eqs. (35)
and (36), respectively. The dash-dotted line is the asymptotic expression in Eq. (37). (c) The ratio τt/τp as a function of the dimensionless
nonequilibrium force f for a = 0.1 and 10. The asymptotic value of τt/τp approaches unity for large f , while it strongly depends on a for
small f .

or gray), on the other hand, we have plotted Eqs. (26) (dotted
line) and (27) (dashed line), which are in good agreement with
the full expression of τp.

B. Mean first transition path time τt

The first transition path time tt is a time for a reaction
that started from the initial value θ0 reaches the final value
θf without returning to θ0. Mathematically, this is equivalent
to consider a Brownian motion of a particle in a finite system
with absorbing boundary conditions both at θ = θ0 and θ = θf

and to measure the time until the particle is absorbed at θ = θf

[the black trajectory in Fig. 7(b)]. When the particle is ab-
sorbed at θ = θ0, such an event is not counted [the red (gray)
trajectory in Fig. 7(b)]. Since tt is also a random quantity, we
consider its average τt called the mean first transition path
time.

A formal derivation of τt is explained in Appendix C, and
the result is given by

τt = 1

D

[∫ 2π

0
dw exp[gr (w)]

]−1 ∫ 2π

0
dx

∫ 2π

x
dy

∫ x

0
dz

× exp[−gr (x) + gr (y) + gr (z)], (28)

where gr = Gr/(kBT ). Using Eqs. (3) and (23), we can ana-
lytically obtain τt as

τt = 2π2

D[2a(1 − 2e2aeπ f + e2π f ) + π f (e2π f − 1)]

× �0 + �1(π f ) + �2(π f )2 + �3(π f )3 + �4(π f )4

(π2 f 2 − 4a2)2
,

(29)

where

�0 = −2(2a)4e2aeπ f

+ (2a)3(e−2aeπ f + 3e2aeπ f − 2 − 2e2π f ), (30)

�1 = (2a)3(1 − e2π f ) + 3(2a)2(1 − e2π f ), (31)

�2 = (2a)2(−1 + 2e2aeπ f − 3e2π f )

+ (2a)(−e−2aeπ f + 5e2aeπ f − 2e2π f − 2), (32)

�3 = 2a(e2π f − 1) − (e2π f − 1), (33)

�4 = e2π f + 1. (34)

Then the asymptotic expressions of τt are given as follows:

τt ≈ 2π2

3D
= 2π2

3MkBT
(a 	 1 and f 	 1), (35)

τt ≈ 2π

D f
= 2π

MF
( f � 1 and a 	 f ), (36)

τt ≈ π2

Da
= π2

MA
(a � 1 and a � f ). (37)

In the limit of Eq. (35), the transition process is dominated by
thermal fluctuations. On the other hand, Eqs. (36) and (37) are
independent of the temperature, and hence the transitions oc-
cur deterministically. The scaling relation τt ∼ 1/a in Eq. (37)
was also obtained before for a quadratic potential [34].

In Fig. 8(b), we plot the scaled τt as a function of f for a =
0.1 and 10. For a = 0.1 (black), τt is constant for f < 1 and it
decreases for f > 1. This behavior is in accordance with the
asymptotic expressions in Eq. (35) (dotted line) and Eq. (36)
(dashed line). For a = 10 (red or gray), on the other hand, τt

takes a maximum value around f ≈ a. The dash-dotted line is
the asymptotic expression in Eq. (37).

In Fig. 8(c), we plot the ratio τt/τp as a function of f for
a = 0.1 and 10. For a = 0.1 (black), a power law dependence
is seen for f < 1, and τt/τp approaches unity for f > 1. For
a = 10 (red or gray), on the other hand, τt/τp is vanishingly
small for f < 1, and it grows exponentially for 1 < f < a.

It is worth mentioning here the characteristic difference
between τp and τt . In the limit of f → 0, τp diverges [see
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Eqs. (25) and (26)] while τt remains finite [see Eqs. (35) and
(36)]. This is because a nonequilibrium driving force is always
required for the net chemical reaction with a finite τp. On
the other hand, τt can be evaluated even in the equilibrium
situation.

VI. SUMMARY AND DISCUSSION

In this paper, we have discussed cyclic state transitions
of a micromachine driven by a catalytic chemical reaction.
We have proposed a minimum model of a generic microma-
chine and calculated the nonreciprocality in Eq. (1) to quantify
the functionality. Our model uses the reaction variable θ and
the state variables si which are coupled to each other through
the mechanochemical coupling mechanism. The tilted peri-
odic potential Gr (θ ) for catalytic reaction is characterized by
the energy barrier A and the nonequilibrium force F . Impor-
tantly, the state variables si are required to change periodically
in time for a catalytic reaction.

To investigate our model analytically, we have employed
the decoupling approximation for the Onsager’s equations.
Furthermore, we have assumed that the reaction variable θ

obeys a deterministic stepwise dynamics characterized by the
mean first passage time τp and the mean first transition path
time τt . Under these assumptions, we have first obtained the
time dependencies of the state variables s1 and s2 in terms
of τp and τt [see Eqs. (17) and (18)]. We find that the mag-
nitudes of s1 and s2 become smaller when τt/τp or γ τp is
decreased. Then we have analytically obtained the nonrecipro-
cality R12 within the decoupling approximation [see Eq. (19)].
One of the important results is the asymptotic scaling relation
R12 ∼ (γ τt )2 for τt/τp 	 1 [see Eq. (21)]. Using Eq. (15) in
the small coupling limit, we have further obtained τp [see
Eq. (24)] and τt [see Eq. (29)] in terms of the potential pa-
rameters A and F .

So far, the nonreciprocality R12 has been obtained in terms
of τp and τt , whereas they are further expressed in terms
of A and F . For a realistic chemical reaction such as ATP
hydrolysis, τt/τp is typically small, and we expect that R12 can
be well approximated by Eq. (21). On the other hand, the limit
of Eq. (37) is appropriate for τt when a = A/(kBT ) is large
enough. Using the corresponding asymptotic expressions, the
relevant scaling for the nonreciprocality R12 turns out to be

R12 ∼
(

dγ

Da

)2

sin(φ2 − φ1) ∼
(

dμK

MA

)2

sin(φ2 − φ1).

(38)

In particular, the relation R12 ∼ 1/A2 implies that the higher
the energy barrier is, the smaller the nonreciprocality be-
comes. This scaling relation is another important result of the
present model.

Next we discuss typical values of the model parameters.
From the experiment measuring the enhanced diffusion of a
motor protein, the energy barrier of ATP was estimated to
be A ∼ 10 kBT [35]. When a single ATP molecule is con-
verted into ADP, the produced energy is roughly 20 kBT [6].
Then we estimate the nonequilibrium chemical force as F ∼
20/(2π ) kBT ∼ 3 kBT (notice again that the dimension of F is
energy). Hence both A/kBT > 1 (a > 1) and A > F (a > f )

are satisfied. Moreover, one can estimate from Eqs. (26) and
(37) that τt/τp ∼ 10−6 	 1, which justifies the assumption in
Eq. (38).

Recent experiments reported the diffusion enhancement of
enzymes due to catalytic chemical reactions [8,11]. When
a self-propelled particle undergoes a rotational diffusion, its
translational diffusion coefficient increases by �D = V 2τrot,
where V is the propulsion velocity and τrot is the rotational dif-
fusion time [36]. Since the propulsion velocity is proportional
to the nonreciprocality, V ∼ R, the diffusion enhancement can
be estimated as �D ∼ R2τrot ∼ τrot/A4. So far, the relation
between the energy barrier and the functionality of a micro-
machine has not yet been investigated. We predict that the
change in the energy barrier can be reflected in the diffusion
enhancement of enzymes.

In the present study, we have mainly discussed the case
when there are only two degrees of freedom (s1 and s2) of
a micromachine. Although this is a minimum and sufficient
number to discuss the nonreciprocality R12, one needs to take
into account a large number of state variables to describe
the dynamics of realistic enzymes. As mentioned in the in-
troduction, the total functionality of a micromachine can be
expressed by the weighted sum

∑
i, j Wi jRi j , where Wi j is the

weighting tensor that depends on the properties of a microma-
chine. Hence, it is necessary to evaluate the nonreciprocalities
Ri j for all the binary combinations of the state variables.
Although the estimation of the weight tensor Wi j is beyond
the scope of this work, such a study will be important in the
future.

In the present work, the nonreciprocality R12 has been
obtained only in the weak coupling limit, Kd2 	 A. The
investigation of the opposite strong coupling limit is also left
as a future work such as performing more extended numer-
ical simulations. It would be also interesting to see the case
when the off-diagonal elements of the Onsager coefficient are
nonzero, i.e., μi j �= 0 for i �= j.
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APPENDIX A: DERIVATION OF EQS. (17) AND (18)

In this Appendix, we show the derivation of Eqs. (17) and
(18). In the absence of the noise terms, Eqs. (13) and (14) can
be formally solved as

δi(t ) = −e−γ t
∫ t

−∞
dt ′ eγ t ′

d cos[θ (t ′) + φi]θ̇ (t ′), (A1)

where we have assumed 0 � t � τp and ignored a term that
depends on the initial condition. Using Eq. (16) for θ and the
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condition θ (t + τp) = θ (t ) + 2π , we obtain

δi(t ) = −2π

τt
de−γ t

[ ∫ t

0
dt ′ eγ t ′

cos

(
2πt ′

τt
+ φi

)

(τt − t ′)

−
∞∑

n=1

∫ −nτp+τt

−nτp

dt ′ eγ t ′
cos

[
2π

τt
(t ′ + nτp) + φi

]]
,

(A2)

where 
(t ) is the Heaviside step function. Changing the vari-
able to t ′′ = t ′ + nτp in the second integral, we obtain

δi(t ) = −2π

τt
de−γ t

[ ∫ t

0
dt ′ eγ t ′

cos

(
2πt ′

τt
+ φi

)

(τt − t ′)

−
∞∑

n=1

e−γ nτp

∫ τt

0
dt ′′ eγ t ′′

cos

(
2πt ′′

τt
+ φi

)]
, (A3)

which results in Eqs. (17) and (18) after the integration.

APPENDIX B: DERIVATION OF EQ. (22)

In this Appendix, we show the derivation of the mean first
passage time τp in Eq. (22) [23,37,38]. For this purpose, we
consider a conditional probability distribution P(θ, t |θ0) for
which θ (0) = θ0 is imposed as the initial condition. Then
P(θ, t |θ0) satisfies the following Fokker-Planck equation:

∂t P(θ, t |θ0) = L(θ )P(θ, t |θ0), (B1)

L(θ ) = D∂θ exp[−gr (θ )]∂θ exp[gr (θ )]. (B2)

Similarly, P(θ, t |θ0) also satisfies the following backward
Fokker-Planck equation:

∂t P(θ, t |θ0) = L†(θ0)P(θ, t |θ0), (B3)

L†(θ0) = D exp[gr (θ0)]∂θ0 exp[−gr (θ0)]∂θ0 . (B4)

We employ the reflective boundary condition at θ → −∞
and the absorbing boundary condition at θ = 2π . Then the
total probability distribution decays due to the latter boundary
condition. Here we introduce the survival probability defined
as

S(t, θ0) =
∫ 2π

−∞
dθ P(θ, t |θ0). (B5)

Then the distribution function of the first passage time is given
by

Kp(t, θ0) = −dS

dt
. (B6)

From the condition S(0) = 1, the following normalization
condition holds: ∫ ∞

0
dt Kp(t, θ0) = 1. (B7)

The mean first passage time τp is defined as the first moment
of the distribution function

τp(θ0) =
∫ ∞

0
dt tKp(t, θ0). (B8)

Next, one can show from Eqs. (B3), (B5), (B6), and (B8)
that

−1 = L†(θ0)τp(θ0), (B9)

where we have used the conditions limt→0 tKp(t ) = 0 and
limt→∞ tKp(t ) = 0. Using the reflective boundary condition
(∂θ0τp = 0 at θ0 → −∞) and the absorbing boundary condi-
tions (τp = 0 at θ0 = 2π ), one can solve the above equation to
obtain [39]

τp(θ0) = 1

D

∫ 2π

θ0

dx exp[gr (x)]
∫ x

−∞
dY exp[−gr (Y )].

(B10)

Setting θ0 = 0 and using Eq. (3), we get

τp = 1

D

∫ 2π

0
dx

∫ ∞

0
dy′ exp[gp(x) − gp(x − y′) − f y′],

(B11)

where y′ = x − Y . Because the periodicity of Gp is 2π , we
obtain

τp = 1

D

∞∑
n=0

e−2nπF
∫ 2π

0
dx

∫ 2π

0
dy

× exp[gp(x) − gp(x − y) − f y], (B12)

where y = y′ − 2nπ . Since F > 0, we can easily evaluate the
infinite series and obtain Eq. (22).

APPENDIX C: DERIVATION OF EQ. (28)

In this Appendix, we show the derivation of the mean
first transition path time τt in Eq. (28) [25–27]. In this case,
the absorbing boundary condition is imposed both at θ = 0
and θ = 2π . Hence, unlike τp, the probability is absorbed
from both of the boundaries, although the probability of being
absorbed at θ = 2π determines τt .

The distribution function of the first transition path time is
given by

Kt (t, θ0) = 1

N
J (θ = 2π, t |θ0), (C1)

where J (θ, t |θ0) is a probability flux

J (θ, t |θ0) = −D exp[−gr (θ )]
∂

∂θ
[exp[gr (θ )]P(θ, t |θ0)].

(C2)

In Eq. (C1), N is the normalization constant that is fixed by
the condition ∫ ∞

0
dt Kt (t, θ0) = 1. (C3)

The mean first transition path time τt is defined as the first
moment of the distribution function

τt (θ0) =
∫ ∞

0
dt tKt (t, θ0). (C4)

The backward Fokker-Planck equation for the probability
flux J is given by

∂t J (θ, t |θ0) = L†(θ0)J (θ, t |θ0). (C5)
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From Eqs. (C1), (C3), and (C5), one can show that

0 = L†(θ0)N (θ0), (C6)

where we have used the conditions J (2π, 0|θ0) = 0 and
J (2π,∞|θ0) = 0. Solving this equation with the boundary
conditions N (0) = 0 and N (2π ) = 1, we obtain

N (θ0) =
∫ θ0

0
dy0 exp[gr (y0)]

[∫ 2π

0
dy0 exp[gr (y0)]

]−1

.

(C7)

From Eqs. (C1), (C4), and (C5), we obtain

−N (θ0) = L†(θ0)ψ (θ0), (C8)

where ψ (θ0) = τt (θ0)N (θ0) and we have used the conditions
limt→0 tKt (t, θ0) = 0 and limt→∞ tKt (t, θ0) = 0. With the use

of the absorbing boundary conditions ψ (0) = 0 and ψ (2π ) =
0, we can solve the above equation to obtain

ψ (θ0) = 1

D

[∫ 2π

0
dw exp[gr (w)]

]−1

×
[

[1 − N (θ0)]
∫ θ0

0
dx exp[−gr (x)]N2(x)

+ N (θ0)
∫ 2π

θ0

dx exp[−gr (x)][1 − N (x)]N (x)

]
.

(C9)

Since τt = limθ0→0[ψ (θ0)/N (θ0)], only the second term re-
mains and we obtain Eq. (28).
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