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Onsager’s variational principle provides us with a systematic way to derive dynamical equations for various
soft matter and active matter. By reformulating the Onsager-Machlup variational principle (OMVP), which is a
time-global principle, we propose a new method to incorporate thermal fluctuations. To demonstrate the utility
of the statistical formulation of OMVP, we obtain the diffusion constant of a Brownian particle embedded in a
viscous fluid by maximizing the modified Onsager-Machlup integral for the surrounding fluid. We also apply
our formulation to a Brownian particle in a steady shear flow, which is a typical nonequilibrium system. Possible
extensions of our formulation to internally driven active systems are also discussed.
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I. INTRODUCTION

Onsager’s variational principle (OVP) is useful to ob-
tain the governing equations of irreversible dynamics in
soft matter [1–4]. It has been applied for various problems
such as colloidal suspensions [3,4], polymers [5,6], binary
mixtures [7], liquid crystals [3], bilayer membranes or vesi-
cles [8–10], and liquid droplets [11,12]. In this principle, we
construct a functional quantity called Rayleighian by sum-
ming up the dissipation function and the change rate of free
energy. Minimization of the Rayleighian under appropriate
constraints provides us with overdamped deterministic equa-
tions that describe the change rate of the state variables. The
obtained equations automatically satisfy Onsager’s reciprocal
relations and the second law of thermodynamics. OVP has
been applied not only for passive soft matter but also for
active living systems [13–15]. To take into account thermal
fluctuations in OVP, noise terms are added to the deterministic
equations, and their statistical properties are determined by the
fluctuation-dissipation relation [4].

For time-evolving processes under thermal fluctuations, the
Onsager-Machlup (OM) integral can be employed to discuss
the path probability [16,17]. The OM integral has been used
in various problems, such as structural transitions of pro-
tein folding [18], chemical kinetic models [19], and active
matter [14,20–22]. Moreover, a path integral representation
of fluctuating hydrodynamics can be formulated by the OM
integral [23–26].

Using the OM integral, Doi et al. proposed the Onsager-
Machlup variational principle (OMVP) [6,27]. In contrast to
OVP, which is a time-local principle, OMVP is a time-global
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variational principle, and it allows us to obtain the most
probable trajectory over a long time. In particular, OMVP
is useful for finding accurate solutions to the time-evolution
equations when the solutions involve unavoidable errors due
to the precision limit of numerical calculations, and it can
determine long-time behaviors such as the steady state. They
demonstrated that OMVP can evaluate approximate solutions
describing passive soft matter such as diffusion [27], finger
flow in a square tube [27], and dye coating [6]. Recently,
Wang et al. used OMVP to calculate the steady state of
active systems [14]. OMVP was also employed to obtain
the most probable path of an active Brownian particle [22],
an active Ornstein-Uhlenbeck particle [28,29], odd elastic
systems [21], and a chemical kinetic model [19]. However,
statistical properties of stochastic trajectories and effects of
thermal fluctuations, such as the mean square displacement
of a Brownian particle, cannot be directly obtained within
OMVP, which remains an important issue especially for active
systems [6,27].

In this paper, we propose a statistical formulation of
OMVP (SOMVP) by taking into account thermal fluctuations
of stochastic systems. We introduce an observable that is de-
termined by the system variables and it allows the OM integral
to explore trajectories deviating far from the most probable
path. We propose a modified OM integral that should be
maximized to obtain the cumulant-generating function (CGF)
of the observable. To demonstrate the usefulness of SOMVP,
we calculate the diffusion constant of a Brownian particle
embedded in a viscous fluid by optimizing the modified OM
integral. Notably, the obtained diffusion constant recovers the
Stokes-Einstein relation or the fluctuation-dissipation relation
without any additional requirements. To further demonstrate
that SOMVP can also be used for nonequilibrium phenomena,
we calculate the CGF of a Brownian particle subjected to a
steady shear flow. Finally, we argue possible applications of
SOMVP for internally driven active matter.
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II. OVP AND OMVP

Let us consider a system that is described by the state
variable x(r) and its change rate v(r). Here, both x(r) and
v(r) are functions of space r and they are independent of
each other. According to OVP, we minimize the Rayleighian
R[v(r), x(r)] with respect to v(r) to obtain the deterministic
equations for x(r) and v(r) [3,4]. The Rayleighian is given
by R = � + Ḟ + C, where � is the dissipation function, Ḟ is
the change rate of free energy, and C represents various con-
straints that are included by using Lagrange multipliers. The
advantage of OVP is that the obtained dynamical equations
automatically satisfy Onsager’s reciprocal relations and the
second law of thermodynamics. Notice that OVP determines
the instantaneous change rate v(r) at state x(r).

Next, we consider the time dependence of the variables
x(r, t ) and v(r, t ). We introduce the OM integral that is given
by the time integral of the Rayleighian [16,17]

O[v(r, t ), x(r, t )]

=
∫ τ

0
dt{R[v(r, t ), x(r, t )] − Rmin[x(r, t )]}, (1)

where Rmin is the minimum value of R in v-space, i.e.,
Rmin[x(r)] = minv(r) R[v(r), x(r)], and τ is the duration time.
OMVP is a global variational principle, and it states that
nature chooses the path that minimizes the OM integral [27].

III. STATISTICAL FORMULATION OF OMVP

In the presence of thermal fluctuations, stochastic dynam-
ics of x(r, t ) and v(r, t ) involve uncertainties. To discuss the
probability of a trajectory, Onsager and Machlup considered
the path probability under the initial condition x(r, 0) = x0(r)
as given by [16,17]

P[v(r, t ), x(r, t ); x0(r)] ∼ exp

(
−O[v(r, t ), x(r, t )]

2kBT

)
, (2)

where kB is the Boltzmann constant and T is the temperature
of the system.

Here, we propose a statistical formulation of OMVP
(SOMVP), where we introduce a stochastic observable X that
is determined by v(r, t ) and x(r, t ). Examples of X are the
trajectory of x(r, t ), the time average of v(r, t ) or x(r, t )
(see later examples), the irreversibility [30], and the edge
current [31]. Let us define the CGF of the observable X as

KX (q) = ln〈exp(qX )〉. (3)

In the above, the statistical average of a stochastic quantity A
is calculated by 〈A〉 = ∫

DvDx AP, where P is the path prob-
ability in Eq. (2) and

∫
DvDx indicates the path integral over

all the trajectories v(r, t ) and x(r, t ). Then, the nth cumulant
can be calculated from the CGF as

〈X n〉c = dn

dqn
KX (q)

∣∣∣∣
q=0

. (4)

By substituting Eq. (2) into Eq. (3) and employing the
saddle-point approximation used in the large deviation the-
ory [32,33], the approximate CGF is given by

KX (q) ≈ N + max
v(r,t ),x(r,t );x0 (r)

�[v(r, t ), x(r, t )], (5)

FIG. 1. A spherical particle of radius a is embedded in a three-
dimensional viscous fluid with viscosity η and temperature T .
The fluid velocity field v(r) fluctuates due to thermal fluctuations.
The velocity of the particle V is subjected to the random forces of
the surrounding fluid. The space filled with the fluid is denoted by V ,
whereas the particle surface is denoted by ∂V .

�[v(r, t ), x(r, t )] = qX − O[v(r, t ), x(r, t )]

2kBT
+ �, (6)

where N is the normalization factor determined by the con-
dition KX (0) = 0. Equations (5) and (6) are the proposed
SOMVP in this paper. In the above, � is the modified OM in-
tegral to be maximized with respect to both v(r, t ) and x(r, t )
under the given initial condition x0(r). As shown in Eq. (6),
the original OM integral O is modified by the observable X ,
which allows the trajectories to deviate from the most proba-
ble path. Such a path exploration is essential to calculate the
CGF in the current framework. In Eq. (6), a trivial connection
between v and x is introduced by the term � since, unlike
OVP, the maximization in Eq. (5) is taken with respect to
both v and x. More specifically, we use � = ∫ τ

0 dt Hi(ẋi − vi ),
where H is the Lagrange multiplier and we have used the
Einstein summation convention (see later the case of a Brow-
nian particle in a shear flow).

IV. BROWNIAN PARTICLE IN A VISCOUS FLUID

As the simplest demonstration of SOMVP, we consider a
Brownian particle embedded in a viscous fluid in the presence
of thermal fluctuations. In the previous works, the Langevin
equation of a Brownian particle was derived by solving the
boundary problem of the fluctuating hydrodynamics [24,25].
Later, the drag coefficient of a Brownian particle was cal-
culated by connecting the fluctuating hydrodynamics and
the Hamiltonian dynamics [26]. Although the fundamental
concept of integrating the fluid degrees of freedom and casting
it to the motion of a Brownian particle is similar to the previ-
ous approaches, we show below a more systematic derivation
of the particle diffusion constant within SOMVP.

As shown in Fig. 1, we consider a spherical particle of
radius a immersed in a fluid with viscosity η and temperature
T . First, the dissipation function of the fluid moving with the
velocity v(r) is given by [3,4]

� = η

4

∫
V

d3r(∂iv j + ∂ jvi )
2, (7)
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where the integral is over the three-dimensional fluid region
r = (x, y, z) ∈ V and i, j = x, y, z. Second, there is no free
energy (potential energy) in the current problem. Third, we
employ two constraints on the fluid properties: the incom-
pressibility condition and the stick boundary condition at the
particle surface [34]. These conditions can be expressed by
the following terms:

C1 = −
∫
V

d3r p∂ivi, (8)

C2 =
∫

∂V
dSgi(vi − Vi), (9)

where p and g are the Lagrange multipliers, V is the particle
velocity, and ∂V represents the particle surface. Notice that
the particle displacement is given by Xi(τ ) = ∫ τ

0 dtVi(t ).
The Rayleighian is constructed as R = � + C1 + C2, and

the OM integral is obtained by using Eq. (1). In the current
problem, Rmin can be neglected since it does not depend on
x. We consider the CGF of the particle displacement X(τ )
up to time τ , i.e., KX(q) = ln〈exp[qiXi(τ )]〉, where q is the
wave vector conjugate to X(τ ). Since the OM integral does
not depend on X(t ), we obtain the modified OM integral � by
setting � = 0 in Eq. (6) [see Eq. (A1)].

Following Eq. (5) and maximizing �, i.e., δ� = 0, with
respect to v, V, p, and g, we obtain the following governing
equations (see Appendix A 1):

η∇2vi − ∂i p = 0, ∂ivi = 0 (r ∈ V ), (10)

vi = Vi (r ∈ ∂V ), (11)

qi − 1

2kBT

∫
∂V

dSn jσi j = 0. (12)

In Eq. (12), the stress tensor is given by σi j = η(∂iv j +
∂ jvi ) − pδi j , where p is the pressure. As shown in Fig. 1,
n is the unit normal vector pointing from the fluid to the
particle, and the fluid velocity is assumed to vanish at infinity,
v(r → ∞) = 0. We first need to solve the Stokes equations in
Eq. (10) to obtain the Stokes’ law. Then, we use Eq. (12) to
calculate V.

Here, we briefly summarize the solutions to the Stokes
equations in the presence of a spherical particle [35,36].
One solution is the Stokeslet vS

i = f jGi j/(8πη) and pS =
fiPi/(8π ), where fi are the coefficients fixed by the bound-
ary condition, Gi j = r−1δi j + r−3rir j , and Pi = 2r−3ri, with
r = |r|. The other is the potential dipole solution vPD

i =
h j∇2Gi j/(8πη) with unknown coefficients hi and pPD = p0,
where p0 is a uniform pressure that is assumed to be zero.
Adding these two solutions, vi = vS

i + vPD
i and p = pS + pPD,

we obtain the solution satisfying the boundary condition at
the particle surface. After some calculation, we obtain fi =
6πηaVi and hi = a2 fi/6 by using Eq. (11). Then, the surface
integral of the stress tensor becomes

∫
∂V dS n jσi j = fi [see

Eq. (A10)] [35,36]. From Eq. (12), the particle velocity V can
be obtained as

Vi = kBT qi

3πηa
. (13)

Next, we calculate the maximized � by substituting the
above results. The dissipation function in Eq. (7) becomes

FIG. 2. A Brownian particle in a steady shear flow. We use the
coordinate system in which the particle is fixed such that the origin
of the space, O, is fixed at the particle center. On the other hand, the
center of the shear flow (blue dot) is located at −X, where X is the
particle displacement.

� = ∫
∂V dSniσi jv j/2 = Vi fi/2 [see Eq. (A13)] [35], whereas

the constraint terms disappear, C1 = C2 = 0. Substituting
these results into � in Eq. (6), we obtain the CGF as

KX(q) = q2
i Dτ, (14)

where the diffusion coefficient D = kBT/(6πηa) recovers the
Stokes-Einstein relation without any additional requirements
for fluctuations. Notice that N in Eq. (5) vanishes because
KX(0) = 0. Then, the second-order cumulant or the mean-
squared displacement of the particle becomes

〈XiXj〉c = 2Dτδi j, (15)

recovering the required statistical property of a single Brown-
ian particle [4].

The above calculation demonstrates that SOMVP can be
used to integrate out the stochastic dynamics of the sur-
rounding fluid and to obtain the statistical properties of the
macroscopic observable. To further show that SOMVP also
works for nonequilibrium situations, we calculate the CGF of
a Brownian particle subjected to a steady shear flow.

V. BROWNIAN PARTICLE IN A SHEAR FLOW

Next, we consider a Brownian particle in a steady shear
flow, as shown in Fig. 2. We employ a coordinate system in
which the particle is fixed and the center of the shear flow is
located at −X. Here, X is the particle displacement from the
center of the shear flow. In this problem, the flow field can
be decomposed into the shear part and the remainig part as
vshear + v, where vshear

i = γ̇i j (r j + Xj ) and γ̇i j is the shear rate
tensor satisfying γ̇ii = 0.

We consider the Rayleighian for the remaining part v. The
dissipation function is the same as in Eq. (7), and the incom-
pressibility condition is also given by Eq. (8). The boundary
condition vshear + v = V at the particle surface is taken into
account by the following term:

C′
2 =

∫
∂V

dS gi[vi − Vi + γ̇i j (r j + Xj )]. (16)

Ignoring Rmin in Eq. (1) as before, we obtain the modified
OM integral � in Eq. (6) by using the Rayleighian R =
� + C1 + C′

2 [see Eq. (B1)]. Unlike the previous case, � is
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a functional of both v and V as well as the particle position
X. Due to the dependence on X, we need an additional term
� = ∫ τ

0 dtHi(Ẋi − Vi ) in �, ensuring Ẋ = V. Maximizing �

with respect to v, V, X, p, g, and H, we obtain Eq. (10) and
the following set of equations (see Appendix B 1):

vi = Vi − γ̇i j (r j + Xj ) (r ∈ ∂V ), (17)

qi − Hi − 1

2kBT

∫
∂V

dSn jσi j = 0, (18)

− Ḣi + γ̇ ji(q j − Hj ) = 0, Hi(τ ) = 0. (19)

In the current problem, the solution to the Stokes equation
in Eq. (10) can be constructed as vi = vS

i + vPD
i + vSD

i + v
PQ
i ,

where vS
i and vPD

i are the flows due to the Stokeslet and the po-
tential dipole solution, respectively, as before. The additional
terms are the Stokes dipole solutions vSD

i = ξ jk∂kGi j and
pSD = ηξi j∂ jPi and the potential quadrupole solutions v

PQ
i =

ζ jk∂k∇2Gi j and pPQ = p0, where the coefficients ξi j and ζi j

should be fixed by the boundary condition in Eq. (17) [35,36].
After some calculation (see Appendix B 2), all the coefficients
can be determined as

fi = 6πηa(Vi − γ̇i jXj ), hi = a2 fi/6, (20)

ξi j = 5a3γ̇ S
i j/6 + a3γ̇ A

i j /2, ζi j = a2ξi j/10, (21)

where γ̇ S
i j = (γ̇i j + γ̇ ji )/2 and γ̇ A

i j = (γ̇i j − γ̇ ji )/2 are the
symmetric and antisymmetric parts of the shear rate tensor,
respectively.

By evaluating the surface integral of the stress tensor [see
Eqs. (A10) and (B17)], Eq. (18) becomes the following differ-
ential equation:

Vi = γ̇i jXj + 2D(qi − Hi ), (22)

where Vi = Ẋi. Hereafter, we consider the simplest shear flow
in the xy plane, γ̇i j = γ̇ δixδ jy. To find the optimum trajec-
tory X(t ), we first solve Eq. (19) to obtain Hx = Hz = 0 and
Hy = γ̇ qx(t − τ ), where we have used the final condition
Hi(τ ) = 0. With these solutions, Eq. (22) can be rewritten as
Vx = γ̇Y + 2Dqx, Vy = −2D(Hy − qy), and Vz = 2Dqz. Solv-
ing these equations with the initial condition X0 = 0, we get
the optimum trajectory as

X (t ) = 2D[qxt − γ̇ 2qx(t3/6 − t2τ/2) + γ̇ qyt
2/2], (23)

Y (t ) = 2D[qyt − γ̇ qx(t2/2 − tτ )], (24)

Z (t ) = 2Dqzt . (25)

The dissipation function becomes � = (Vi − γ̇i jXj ) fi/2 +
�0, where �0 = −γ̇ jk

∫
∂V dSniσi j rk/2 does not depend on

q [see Eq. (B22)]. Substituting the optimal trajectories in
Eqs. (23)–(25), we obtain

� − �0 = 2kBT D
{
q2

x + q2
z + [qy − γ̇ qx(t − τ )]2

}
. (26)

Then, the CGF in the presence of the shear flow becomes

KX(q) = D
[
q2

i τ + qxqyγ̇ τ 2 + q2
x γ̇

2τ 3/3
]
, (27)

where we have fixed N to satisfy KX (0) = 0 and �0 has been
canceled by N .

Finally, the second-order cumulants are obtained from the
CGF as

〈X 2〉c = 2Dτ + 2Dγ̇ 2τ 3/3, (28)

〈Y 2〉c = 〈Z2〉c = 2Dτ, (29)

〈XY 〉c = Dγ̇ τ 2. (30)

These results recover those in Refs. [37–40], and Eq. (28)
is different from Eq. (15) due to the shear flow. Notice that
the correction term is proportional to τ 3 [38,39]. As shown
in Eq. (30), the shear flow also leads to the cross-correlation
between X and Y being proportional to τ 2. From Eq. (27),
we further find that the higher-order cumulants vanish, i.e.,
〈Xn〉c = 0 for n � 3, which has not been obtained by the
classical approaches. The above calculation demonstrates that
SOMVP can be applied not only for systems in thermal
equilibrium but also for out-of-equilibrium systems driven by
external flows.

VI. SUMMARY AND DISCUSSION

In this paper, we have proposed a statistical formulation
of OMVP (SOMVP) as shown in Eqs. (5) and (6). Using
this method, one can systematically obtain the cumulants of
any stochastic observable. SOMVP reproduces the established
results for Brownian particles in thermal equilibrium [see
Eqs. (15)] and in an out-of-equilibrium case such as with an
applied shear flow [see Eqs. (27)]. SOMVP can be applied for
other stochastic systems that cannot be described by trivial
governing equations due to complicated geometries of the
problem.

The other advantage of SOMVP is that we can reuse the
Rayleighian considered for different soft matter [4], such as
polymers [6], liquid crystals [3], and membranes surrounded
by bulk fluids [8,9]. Moreover, various boundary conditions
can be systematically taken into account in SOMVP by using
Lagrange multipliers. On the other hand, one limitation of the
present SOMVP is that it cannot deal with active nonthermal
fluctuations. To include nonequilibrium fluctuations, a further
extension of SOMVP is required.

Similar to the OM integral, the Feynman-Kac formal-
ism [41,42] and the Martin–Siggia–Rose–Janssen–de Do-
minicis formalism [43–46] also allow us to describe stochastic
dynamics via a path integral method. Although the basic
concept is common in these formulations, the problems for
which these methods can be applied are very different. The
OM integral is particularly suitable for soft matter because
the dissipation can be naturally taken into account in the
Rayleighian to make use of the path integral method.

In this work, we have applied our formulation to an exter-
nally driven nonequilibrium system under a shear flow. The
method of SOMVP can also be used for internally driven
active systems in which additional work W is generated by
active elements owing to the energy input or chemical re-
actions. In this case, the Rayleighian is extended as R =
� + Ḟ + Ẇ + C, including the power of active work Ẇ [14].
Following a similar procedure, one can systematically discuss
statistical properties of active systems, such as the diffusion
constant of internally driven objects.
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For example, we can consider a chemically activated Janus
particle for which chemical reactions take place on half of the
particle surface [47,48]. We use the volume fraction of the
chemical product φ(r) to express the dissipation function and
the free energy of a binary mixture. To describe the chemical
reaction occurring on the half of the particle surface ∂+V ,
we use the fixed-concentration condition φ(r) = 1 (r ∈ ∂+V ).
Such a formulation would help us to understand the enhanced
self-diffusion of a catalytic enzyme molecule [49].

Another example is the observed active diffusion in liv-
ing cells [50] driven by active force dipoles [51,52]. The
power due to active force dipoles can be described by Ẇ =
cm

∫
V d3rei(r)e j (r)∂iv j (r), where c is the concentration of

the dipole, m is the magnitude of the force dipole, and e is
a unit vector representing the direction of a dipole. Adding Ẇ
and the dissipation function describing the rotational motion
of dipoles to the Rayleighian, one can discuss the Brownian
motion of a tracer particle in active fluids.

In this work, we have obtained the CGF by analyti-
cally solving the obtained dynamical equations derived from
SOMVP. When such an approach is difficult, one can also
numerically optimize the modified OM integral. In such a

situation, it may be useful to use techniques in machine learn-
ing, such as reinforcement learning [53,54].
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APPENDIX A: BROWNIAN PARTICLE IN A VISCOUS FLUID

1. Derivation of Eqs. (10) and (12)

We show the derivation of the governing equations in Eqs. (10) and (12). The modified OM integral is constructed from
Eqs. (7)–(9) as

� = qi

∫ τ

0
dtVi − 1

2kBT

∫ τ

0
dt

∫
V

d3r
[η

4
(∂iv j + ∂ jvi )

2 − p∂ivi

]
− 1

2kBT

∫ τ

0
dt

∫
∂V

dSgi(vi − Vi ). (A1)

According to SOMVP in Eq. (5), the maximum of � determines CGF. The first variation of the OM integral δ� is defined by
�[v + εδv, V + εδV] ≈ �[v, V] + ε(δ�) + ε2(δ2�)/2 and it is given by

δ� = qi

∫ τ

0
dtδVi − 1

2kBT

∫ τ

0
dt

∫
V

d3r [η(∂iv j + ∂ jvi )∂ jδvi − p∂iδvi]

− 1

2kBT

∫ τ

0
dt

∫
∂V

dSgiδvi + 1

2kBT

∫ τ

0
dtδVi

∫
∂V

dSgi. (A2)

Performing integration by parts and using the incompressibility condition, ∂ivi = 0, we obtain

δ� = 1

2kBT

∫ τ

0
dt

∫
V

d3r[η∇2vi − ∂i p]δvi − 1

2kBT

∫ τ

0
dt

∫
∂V

dS[ηn j (∂iv j + ∂ jvi ) − ni p + gi]δvi

+
∫ τ

0
dtδVi

[
qi + 1

2kBT

∫
∂V

dS gi

]
. (A3)

For the maximization of � with respect to both v and V, we require δ� = 0. Then, we have

η∇2vi − ∂i p = 0 (r ∈ V ), (A4)

n jη(∂iv j + ∂ jvi ) − ni p + gi = 0 (r ∈ ∂V ), (A5)

qi + 1

2kBT

∫
∂V

dSgi = 0. (A6)

Hence, we obtain the governing equations in Eqs. (10) and (12).
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2. Calculation of the surface integrals

Next, we calculate the surface integral of the stress tensor σi j that is necessary to determine Vi in Eq. (13) and the dissipation
function �. First, we write the stress tensor as follows:

σi j = σ S
i j + σ PD

i j , σ S
i j = η

(
∂iv

S
j + ∂ jv

S
i

) − pSδi j, σ PD
i j = η

(
∂iv

PD
j + ∂ jv

PD
i

)
. (A7)

It is known that these stress tensors are given by [35]

σ S
i j = −3 fkr−5rir jrk/(4π ), σ PD

i j = −3hkr−5(δi j rk + δikr j + δ jkri − 5r−2rir jrk )/(2π ). (A8)

Since the surface integral on a spherical particle is
∫
∂V dS = a2

∫ 2π

0 dφ
∫ π

0 dθ sin θ , the following identities hold:
∫

∂V
dS = 4πa2,

∫
∂V

dSnin j = 4πa2

3
δi j . (A9)

Using these identities and ri = −ani (r ∈ ∂V ), we have∫
∂V

dSniσ
S
i j = f j,

∫
∂V

dSniσ
PD
i j = 0. (A10)

Hence, we obtain the well-known relation
∫
∂V dSniσi j = f j [35,36].

Let us calculate the dissipation function by using the above results. Performing integration by parts in Eq. (7), we have

� = η

2

[∫
∂V

dSni(∂iv j + ∂ jvi )v j −
∫
V

d3r(∇2v j )v j

]
, (A11)

where we have used the incompressibility condition ∂ivi = 0. With the Stokes equation, η∇2vi − ∂i p = 0, in Eq. (10), and by
repeating integration by parts, we obtain [36]

� = 1

2

∫
∂V

dSniσi jv j . (A12)

Using the boundary condition, vi = Vi, in Eq. (11) and the result of the surface integral of the stress tensor, we arrive at

� = Vj

2

∫
∂V

dSniσi j = Vj f j

2
. (A13)

APPENDIX B: BROWNIAN PARTICLE IN A SHEAR FLOW

1. Derivation of Eqs. (10), (18), and (19)

Here, we show the derivation of the governing equations in Eqs. (10), (18), and (19). The modified OM integral is constructed
from Eqs. (7), (8), and (16) as

� = qi

∫ τ

0
dtVi − 1

2kBT

∫ τ

0
dt

∫
V

d3r
[η

4
(∂iv j + ∂ jvi )

2 − p∂ivi

]

− 1

2kBT

∫ τ

0
dt

∫
∂V

dSgi(vi − Vi + γ̇i jXj ) +
∫ τ

0
dtHi(Ẋi − Vi ). (B1)

Taking the variation of � with respect to v, V, and X, we obtain

δ� = qi

∫ τ

0
dtδVi − 1

2kBT

∫ τ

0
dt

∫
V

d3r[η(∂iv j + ∂ jvi )∂ jδvi − p∂iδvi] − 1

2kBT

∫ τ

0
dt

∫
∂V

dSgiδvi

+ 1

2kBT

∫ τ

0
dtδVi

∫
∂V

dSgi − γ̇i j

2kBT

∫ τ

0
dtδXj

∫
∂V

dSgi +
∫ τ

0
dtHiδẊi −

∫ τ

0
dtHiδVi. (B2)

Performing integration by parts for the space and time and using the incompressibility condition ∂ivi = 0, we have

δ� = 1

2kBT

∫ τ

0
dt

∫
V

d3r[η∇2vi − ∂i p]δvi − 1

2kBT

∫ τ

0
dt

∫
∂V

dS[n jη(∂iv j + ∂ jvi ) − ni p + gi]δvi

+
∫ τ

0
dtδVi

[
qi + 1

2kBT

∫
∂V

dS gi

]
− γ̇i j

2kBT

∫ τ

0
dtδXj

∫
∂V

dSgi

+ Hi(τ )δXi(τ ) − Hi(0)δXi(0) −
∫ τ

0
dtḢiδXi −

∫ τ

0
dtHiδVi. (B3)
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Notice that δXi(0) = 0 because the initial condition X(0) = X0 is fixed. We require δ� = 0 for arbitrary δvi, δVi, and δXi to
obtain

η∇2vi − ∂i p = 0 (r ∈ V ), (B4)

n jη(∂iv j + ∂ jvi ) − ni p + gi = 0 (r ∈ ∂V ), (B5)

qi − Hi + 1

2kBT

∫
∂V

dSgi = 0, (B6)

− Ḣi − γ ji

2kBT

∫
∂V

dSg j = 0, (B7)

Hi(τ ) = 0, (B8)

where we have used ∂ivi = 0. Then, we arrive at Eqs. (10), (18), and (19).

2. Solution to the Stokes equations

Next, we discuss the solution to the Stokes equations in Eq. (10) with the boundary condition in Eq. (17). As mentioned in
the main text, the solution can be constructed as vi = vS

i + vPD
i + vSD

i + v
PQ
i . Considering the symmetry of the flow field, the

boundary condition in Eq. (17) can be decomposed into two parts as

vS
i + vP

i = Vi − γ̇i jXj, vSD
i + v

PQ
i = −γ̇i j r j (r ∈ ∂V ). (B9)

For vS
i + vP

i , we can construct a solution by using that for a static fluid with the shift Vi → Vi − γ̇i jXj to obtain Eq. (20).
The additional part, vSD

i + v
PQ
i , has the following form:

vSD
i + v

PQ
i = ξ jk

(
−δi j rk

r3
+ δikr j

r3
+ δ jkri

r3
− 3

rir jrk

r5

)
+ 6ζ jk

(
−δi j rk

r5
− δikr j

r5
− δ jkri

r5
+ 5rir jrk

r7

)
(r ∈ V ). (B10)

By using the relation ζi j = a2ξi j/10, the boundary condition becomes[
−3(ξi j + ξ ji )

5
− (ξi j − ξ ji ) + 2δi jξkk

5

]
r j

a3
+ γ̇i j r j = 0 (r ∈ ∂V ). (B11)

Using the relation ξii = 0 originating from γ̇ii = 0, we have

−3(ξi j + ξ ji )

5
+ a3γ̇ S

i j = 0, −(ξi j − ξ ji ) + a3γ̇ A
i j = 0. (B12)

Then, we can determine the coefficient ξi j as

ξi j = 5a3γ̇ S
i j/6 + a3γ̇ A

i j /2, (B13)

which is Eq. (21).

3. Calculation of the surface integrals

Here, we calculate the surface integral of the stress tensor σi j = σ S
i j + σ PD

i j + σ SD
i j + σ

PQ
i j . We further define σ SD

i j = η(∂ jv
SD
i +

∂iv
SD
j ) − δi j pSD and σ

PQ
i j = η(∂ jv

PQ
i + ∂iv

PQ
j ).

First, we consider
∫
∂V dSniσi j . The surface integrals of σ S

i j and σ PD
i j are already given in Eq. (A10). For σ SD

i j and σ
PQ
i j , we have

σ SD
i j = − 6ηξkl r

−5(δil r jrk + δ jl rirk + δkl rir j − 5r−2rir jrkrl ), (B14)

σ
PQ
i j = − 12ηζkl r

−5[δi jδkl + δikδ jl + δilδ jk − 5r−2(δi j rkrl + δikr jrl + δil r jrk + δ jkrirl + δ jl rirk + δkl rir j ) + 35r−4rir jrkrl ].
(B15)

Using the identities ∫
∂V

dSni = 0,

∫
∂V

dSnin jnk = 0, (B16)

we find ∫
∂V

dSniσ
SD
i j = 0,

∫
∂V

dSniσ
PQ
i j = 0. (B17)
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Hence, we obtain
∫
∂V dSniσi j = f j as before [35,36]. The dissipation function is

� = 1

2

∫
∂V

dSniσi jv j = (Vj − γ̇ jkXk )

2

∫
∂V

dSniσi j + �0, (B18)

with �0 = −(γ̇ jk/2)
∫
∂V dSniσi j rk . Then the surface integral becomes � = (Vi − γ̇i jXj ) fi/2 + �0, leading to Eq. (26) with the

use of Eqs. (23)–(25).
Second, we consider

∫
∂V dSniσi j rk appearing in �0. From Eq. (B16), we find∫

∂V
dSniσ

S
i j rk = 0,

∫
∂V

dSniσ
PD
i j rk = 0. (B19)

Using the fourth-order identity ∫
∂V

dSnin jnknl = 4πa2

15
(δi jδkl + δikδ jl + δilδ jk ) (B20)

and Eq. (A9), we obtain∫
∂V

dSniσ
SD
i j rk = −8πηξlm(−δ jkδlm + 4δ jlδkm − δ jmδkl )/5,

∫
∂V

dSniσ
PQ
i j rk = 0. (B21)

Using Eq. (B13), we get

�0 = −γ̇ jk

∫
∂V

dSniσ
SD
i j rk/2 = 4πη(4ξ jk γ̇ jk − ξ jk γ̇k j )/5 = 2πηa3γ̇ jk γ̇ jk, (B22)

which is independent of q.
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