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We propose a model for a thermally driven microswimmer in which three
spheres are connected by two springs with odd elasticity. We demonstrate
that the presence of odd elasticity leads to the directional locomotion of the
stochastic microswimmer.

Although micromachines such as proteins and enzymes
experience the influence of strong thermal fluctuations, they
often exhibit directional locomotion under nonequilibrium
conditions.1) To elucidate this type of phenomena, we
previously proposed a thermally driven elastic microswimmer
consisting of three spheres.2) In this model, the three spheres
were assumed to be in equilibrium with independent heat
baths characterized by different temperatures.

Recently, Scheibner et al. introduced the concept of “odd
elasticity”, which can arise from active and nonreciprocal
interactions.3) Importantly, the odd part of the elastic constant
tensor quantifies the amount of work extracted along
quasistatic deformation cycles. In this paper, we propose a
novel type of thermally driven microswimmer in which the
three spheres are connected with springs having not only even
elasticity,4) but also odd elasticity.3) We explicitly demon-
strate that the proposed stochastic “odd microswimmer” can
exhibit a directional locomotion as a result of odd elasticity.
Additionally, we provide a simple physical interpretation of
the average velocity within the nonequilibrium statistical
physics.

Consider a three-sphere microswimmer in which the
positions of the three spheres of radius a are given by xi
(i ¼ 1; 2; 3) in a one-dimensional coordinate system (see
Fig. 1).5) These three spheres are connected by two springs
that exhibit both even and odd elasticity. We denote the two
spring extensions as uA ¼ x2 � x1 � ‘ and uB ¼ x3 � x2 � ‘,
where ‘ is the natural length. Then, the forces FA and FB

conjugate to uA and uB, respectively, are given by F� ¼
�K��u� (�; � ¼ A;B). For an odd spring, the elastic constant
K�� is given by3)

K�� ¼ K e��� þ Ko���; ð1Þ
where K e and Ko are the even and odd elastic constants,
respectively, in the 2D configuration space spanned by uA and
uB (unlike the real 2D space in Ref. 3), ��� is the Kronecker
delta, and ��� is the 2D Levi-Civita tensor with �AA ¼
�BB ¼ 0 and �AB ¼ ��BA ¼ 1. The presence of odd elasticity
Ko in Eq. (1) reflects the nonreciprocal interaction between
the two springs such that uA and uB influence each other in a
different manner.6) The forces fi acting on each sphere are
given by f1 ¼ �FA, f2 ¼ FA � FB, and f3 ¼ FB. These forces
satisfy the force-free condition, i.e., f1 þ f2 þ f3 ¼ 0.

The odd microswimmer described above is immersed in a
fluid with a shear viscosity of η and temperature T. Then the
equations of motion for each sphere are given by2,4,5)

_xi ¼ Mij fj þ �i; ð2Þ
where _xi ¼ dxi=dt and Mij are the hydrodynamic mobility
coefficients5)

Mij ¼
1=ð6��aÞ (i ¼ j)

1=ð4��jxi � xjjÞ (i ≠ j)

(
: ð3Þ

In Eq. (2), the Gaussian white-noise sources �i have zero
mean h�iðtÞi ¼ 0, and their correlations satisfy the following
fluctuation–dissipation theorem:

h�iðtÞ�jðt 0Þi ¼ 2kBTMij�ðt � t 0Þ; ð4Þ
where kB is the Boltzmann constant.

It is convenient to introduce the characteristic time scale
	 ¼ 6��a=K e and the ratio between the two spring constants

 ¼ K o=K e. In the following analysis, we assume uA; uB �
‘ and a � ‘, and focus solely on the leading-order
contribution. The total velocity of the microswimmer is
given by V ¼ ð _x1 þ _x2 þ _x3Þ=3. After taking the statistical
average and using Eqs. (1)–(3), we obtain2)

hVi ¼ a

8‘2	
½hu2Bi � hu2Ai þ 
ð3hu2Bi þ 3hu2Ai � 2huAuBiÞ�

þ O½ða=‘Þ2; ðu=‘Þ3�; ð5Þ
where we use huAi ¼ huBi ¼ 0.

The equal-time correlation functions appearing in Eq. (5)
can be obtained from the reduced Langevin equations for
_uA ¼ _x2 � _x1 and _uB ¼ _x3 � _x2 as

_u� ¼ ���u� þ �� þ O½a=‘�; ð6Þ
where ��� and �� are

� ¼ � 1

	

2 þ 
 �1 þ 2


�1 � 2
 2 � 


 !
; � ¼ �2 � �1

�3 � �2

 !
: ð7Þ

Notice that ��� is nonreciprocal, i.e., �AB ≠ �BA when 
 ≠ 0.
By solving Eq. (6) in the Fourier domain and using Eq. (4),
we obtain the following equal-time correlation functions:2)

hu2Ai ¼
kBT

K e 1 � 


2ð1 þ 
2Þ
� �

þO½a=‘�; ð8Þ

hu2Bi ¼
kBT

K e 1 þ 


2ð1 þ 
2Þ
� �

þ O½a=‘�; ð9Þ

huAuBi ¼ � kBT

K e


2

2ð1 þ 
2Þ þ O½a=‘�: ð10Þ
Here, we neglect the cross-correlations h�i�ji with i ≠ j
because they only contribute to higher orders in a=‘. When

 ¼ 0, the above expressions reduce to hu2Ai ¼ hu2Bi ¼
kBT=K

e and huAuBi ¼ 0, reproducing the thermal equi-
librium situation. We have hu2Ai < hu2Bi when 
 > 0, because
the effective elastic constant of spring A is greater than that
of spring B.

Fig. 1. (Color online) Odd microswimmer in a fluid with a viscosity η and
temperature T. Three spheres of radius a are connected by two springs with a
natural length ‘. Each spring has both even elastic constantKe and odd elastic
constant Ko. The positions of the spheres are denoted as xi (i ¼ 1; 2; 3), and
the spring extensions with respect to ‘ are denoted as uA and uB.
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By substituting Eqs. (8)–(10) into Eq. (5), we obtain the
average velocity as

hVi ¼ 7akBT


8‘2K e	
þ O½ða=‘Þ2; ðu=‘Þ3�: ð11Þ

Here, hVi is proportional to the odd elastic constant K o that
can take either positive or negative value. Because hVi is also
proportional to kBT, thermal fluctuations are responsible for
the locomotion of the odd microswimmer. Therefore, our
model provides a novel type of Brownian ratchet.

Next, we discuss the nonequilibrium statistical properties
of the odd microswimmer.7,8) For the time-dependent
probability distribution function pðuA; uB; tÞ, the Fokker–
Planck equation corresponding to Eq. (6) can be written as
_p ¼ �@� j�, where @� ¼ @=ð@u�Þ and j� is the probability flux
given by7)

j� ¼ ���u�p � D��@�p: ð12Þ
Here, D�� is the diffusion matrix

D ¼ kBT

6��a

2 �1
�1 2

 !
; ð13Þ

which satisfies the relationship h��ðtÞ��ðt 0Þi ¼ 2D���ðt � t 0Þ
according to Eq. (4).

Owing to the reproductive property of Gaussian distribu-
tions, the steady-state probability distribution function that
satisfies _p ¼ 0 is given by a Gaussian function7)

pðuA; uBÞ ¼ 1

2�
ffiffiffiffiffiffiffiffiffiffiffi
detC

p exp � 1

2
ðC�1Þ��u�u�

� �
: ð14Þ

Here, C�� ¼ hu�u�i is the covariance matrix obtained from
Eqs. (8)–(10) as

C ¼ kBT

K e

1

1 þ 
2
1 � 
=2 þ 
2 �
2=2

�
2=2 1 þ 
=2 þ 
2

 !
; ð15Þ

and ðC�1Þ�� is the inverse matrix of C��. For our purposes,
we explicitly show that

detC ¼ kBT

K e

� �2
4 þ 7
2 þ 3
4

4ð1 þ 
2Þ2 : ð16Þ

In Fig. 2, we plot the steady-state probability distribution
function in Eq. (14) and corresponding probability flux in
Eq. (12) when 
 ¼ 1. The probability distribution function is
distorted by the negative correlation (CAB ¼ CBA � �
2=2)
between uA and uB. One can see a counter-clockwise loop
of the probability flux. Such a probability flux becomes
clockwise for 
 < 0 and vanishes when 
 ¼ 0. The existence
of a probability flux loop indicates that the detailed balance is
broken in the nonequilibrium steady state.

The steady-state probability flux can be conveniently
expressed in terms of a frequency matrix ��� as
j� ¼ ���u�p.7) For the proposed odd microswimmer, the
frequency matrix is given by

� ¼ 3


	ð4 þ 3
2Þ
�
2 �2 þ 
 � 2
2

2 þ 
 þ 2
2 
2

 !
; ð17Þ

which is traceless. Then, the two eigenvalues of ��� are
given by

� ¼ �i 3


	ð4 þ 3
2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 þ 7
2 þ 3
4

p
: ð18Þ

Because these eigenvalues are purely imaginary, the
probability current in the configuration space is rotational.
Comparing Eq. (11) with Eqs. (16) and (18), we obtain the
following simple expression for the average velocity:

jhVij ¼ 7a

12‘2

ffiffiffiffiffiffiffiffiffiffiffi
detC

p
j�j: ð19Þ

Here, 7a=ð12‘2Þ is the geometrical factor,5)
ffiffiffiffiffiffiffiffiffiffiffi
detC

p �
kBT=K

e is the explored area in the configuration space, and
j�j � 	�1 is the speed of the rotational probability flux.7)

Finally, we consider the work that can be extracted when
odd elasticity exsits.3) For the stochastic odd microswimmer,
the average power can be evaluated as h _Wi ¼ �K��h _u�u�i,
where W ¼ R

du� F�. From Eq. (6), we obtain h _uAuBi ¼
�h _uBuAi ¼ �3kBT
=ð2K e	Þ and h _uAuAi ¼ h _uBuBi ¼ 0. By
using these results, we can estimate the power of the odd
microswimmer as h _Wi ¼ 3kBT


2=	. We have confirmed that
this power coincides with the average entropy production rate
obtained by the expression h _�i ¼ �Tr½�ð�CD�1 þ IÞ�,8)
where I is the identity matrix. Therefore, all the extracted
work due to odd elasticity is converted into the entropy
production. It is also useful to note that the average velocity
can be alternatively written as hVi ¼ 7a=ð12‘2Þh _uBuAi.
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Fig. 2. (Color online) Steady-state scaled probability distribution function
~p ¼ pkBT=K

e and steady-state scaled probability flux ~j ¼ j	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=Ke

p
(arrows) in the configuration space spanned by uA and uB when 
 ¼
Ko=Ke ¼ 1.
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