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ABSTRACT

We theoretically investigate the coexistences of lamellar phases both in binary and in ternary
surfactant solutions. The previous free energy of a lamellar stack is extended to take into account
the translational entropy of membrane segments. The obtained phase diagram for binary surfac-
tant solutions (surfactant/water mixtures) shows a phase separation between two lamellar phases
and also exhibits a critical point. For lamellar phases in ternary surfactant solutions (surfactant/
surfactant/water mixtures), we explore the possible phase behaviors and show that the phase
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diagrams exhibit various three-phase regions as well as two-phase regions in which different
lamellar phases coexist. We also find that finite surface tension suppresses the undulation
fluctuations of membranes and leads to a wider three-phase and two-phase coexistence regions.

1. Introduction

One of the simplest mesoscale structures found in
mixtures of water and surfactant molecules is the
lamellar phase in which the bilayers of amphiphilic
molecules form roughly parallel sheets separated by
water [1]. In some surfactant/water binary systems, it
is known that the lamellar phase can be swollen almost
without limit. For example, in the mixture of
Ci2Es (n-akylpolyglycolether) and water, the repeat
distance of the lamellar phase can exceed 3,000 A
[2]. The transition from the bound lamellar phase to
the unbound phase is generally called the “unbinding
transition” [3]. Although it is very rare, the coexis-
tence of two lamellar phases in thermodynamic equi-
librium has been also reported for binary surfactant/
water solutions typically containing DDAB (didode-
cyldimethylammonium bromide) [4-7]. In this case, a
higher-density condensed lamellar phase is in equili-
brium with a lower-density swollen lamellar phase.
However, the reason why such a lamellar-lamellar
coexistence is so rare in binary surfactant solutions is
still a matter of debate and even puzzling [8, 9].

In contrast to binary mixtures, lamellar-lamellar
coexistence is fairly common in ternary systems such
as surfactant/surfactant/water mixtures [10-15] or
polymer/surfactant/water mixtures [16-18]. Here, the
surfactant molecules assemble into stacked bilayers,
while they are organized as coexisting lamellar phases.

The fact that ternary solutions typically exhibit a lamel-
lar-lamellar coexistence can be explained if the bilayers
with different components have different interactions
across the water layer [19]. In such a lamellar-lamellar
phase separation, it is known that a long-ranged repul-
sive interactions such as electrostatic interaction and/or
steric repulsive interaction play an important role. The
latter interaction is known as the Helfrich steric inter-
action which arises from the reduced undulation
entropy of fluctuating membranes [20, 21]. In other
words, the excluded volume of the neighboring mem-
branes limits the configuration of a membrane and
hence reduces its entropy.

For example, Harries et al. investigated the phase
separations of charged surfactants by taking into
account both the electrostatic and the nonelectrostatic
interactions within a mean-field theory [22]. They
found that the lamellar-lamellar phase separation is
controlled by nonelectrostatic interactions between the
counterions, and also by the interactions between the
neutral and charged surfactants. On the other hand,
lamellar-lamellar coexistences in charged membranes
were described only by electrostatic interactions in the
other work [23].

For electrically neutral bilayer membranes, the com-
bination of the steric repulsive interaction and other
direct microscopic interactions, such as long-ranged
van der Waals attraction and short-ranged hydration
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repulsion, determines whether membranes bind each
other or unbind to have an infinite separation between
them. Lipowsky and Leibler pointed out that a simple
superposition of the Helfrich steric repulsion and other
direct interactions within a mean-field level gives incor-
rect (first-order) description of the unbinding transi-
tion [24]. An appropriate treatment of this problem
using a functional renormalization-group method
showed that the unbinding transition should be a con-
tinuous second-order transition (known as the critical
unbinding transition).

Later, Milner and Roux proposed a theory for the
unbinding transition in a bulk of lamellar phase follow-
ing the spirit of a mean-field theory for polymers [25].
In their argument, the Helfrich estimate of the entropy
is taken into account accurately, whereas the other
direct microscopic interactions are approximately
incorporated as a correction to the hard-wall result
for the second virial coefficient. Their theory correctly
accounts for the second-order nature of the critical
unbinding transition. Furthermore, it has been used
to predict both the unbinding and preunbinding beha-
viors of a lamellar stack in binary surfactant solu-
tions [26].

In this article, we investigate the coexistences of lamellar
phases both in binary surfactant solutions (surfactant/
water mixtures) and in ternary surfactant solutions (sur-
factant/surfactant/water mixtures) within a mean-field the-
ory. We consider a situation when the surfactant molecules
are electrically neutral, or the electrostatic interaction is
sufficiently screened in the presence of electrolyte. By tak-
ing into account the translational entropy of membrane
segments, we extend the mean-field theory by Milner and
Roux in order to properly account for the phase behaviors
in binary and ternary surfactant solutions.

Based on the proposed phenomenological free energy,
we first discuss the phase diagrams of binary systems in
which we find a lamellar-lamellar coexistence that ends in
a critical point, as found in one of the experiments [5]. By
considering three interaction parameters (virial coeffi-
cients) between different components, we further discuss
ternary mixtures and explore the possible types of ternary
phase diagrams (Gibbs triangles). The phase behavior is
very rich, and three-phase coexistences as well as two-
phase coexistences between different lamellar phases are
predicted for a certain range of the interaction parameter
values. We investigate both symmetric and asymmetric
cases in terms of the two surfactant/water interactions. In
the symmetric case, the interactions (or the virial coeffi-
cients) between the same surfactant species are identical,
whereas they are different in the asymmetric case. We also
discuss the effects of finite membrane surface tension on
the phase behavior of ternary surfactant solutions.

In the next section, we explain the extension of the
mean-field theory by Milner and Roux. Using the
extended free energy, we first calculate the phase dia-
grams of binary surfactant solutions. In Section 3, we
consider the phase behavior of ternary surfactant solu-
tions. Various types of ternary phase diagrams are
obtained for both the symmetric and the asymmetric
cases. In Section 4, we also calculate the ternary phase
diagrams in the presence of finite surface tension acting
on the membranes. The summary of our work and
some discussions are given in Section 5.

2. Lamellar phases in binary mixtures

Bilayer fluid membranes experience steric repulsion
arising from their reduced undulation entropy [1].
The corresponding interaction energy per unit area
of membrane was considered by Helfrich and is
given by [20, 21]
b(ksT)*

vs(€) _K(€—8)2' (1)
Here kg is the Boltzmann constant, T is the tempera-
ture, « is the bending rigidity, € is the average repeat
distance between bilayers, as shown in Fig. 1, and a
constant § is the membrane thickness that is used as the
smallest cutoff length. Note that € — § in the denomi-
nator corresponds to the intermembrane distance in
which membranes can undergo out-of-plane fluctua-
tions. The numerical prefactor b was calculated to be
b =37%/128 ~ 0.23 in the original work by Helfrich
[20], but its value is debatable in the literatures [27-29].
For example, Monte Carlo simulations in Ref. [29]
yielded a lower value of b =~ 0.12, almost a half of the
above value. In the present study, the exact value of b
does not affect the results because we rescale all the
energy densities by including the factor b [see later
Eq. (4)].

In order to describe the free energy of a lamellar stack
in a binary surfactant/water solution, we first introduce
the membrane volume fraction ¢ = §/¢ > 0. Here, we
have assumed that all the surfactant molecules constitute
bilayers. Extending the argument by Milner and Roux
[25], we consider the following grand potential per unit
volume of a lamellar stack:

£(9) =L g(10g ¢ — 1) — kn Tig?
b(k T)Z ¢3 _ (2)
T e M

Here, the first term represents the translational entropy
of membrane segments, which was not considered
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Figure 1. Schematic representation of two coexisting lamellar phases in binary surfactant/water solutions. € and § are the lamellar
repeat distance and the bilayer thickness, respectively. For such a lamellar structure, the surfactant volume fraction is given by ¢
= 6/¢. The dilute lamellar phase (left) is characterized by a smaller ¢ value, while the condensed one (right) has a larger ¢ value.

before [25]. This term, however, plays an essential role
when we calculate the phase diagrams within equili-
brium thermodynamics. In general, the translational
entropy term should be given by ¢log¢ + (1 —
¢)log(l — ¢) [21, 30], and the first term in Eq. (2)
corresponds to its lowest order expansion in terms of
small ¢ < 1. However, since such a generalization does
not result in any essential modification, we shall study
the above grand potential in this article. Our approx-
imation is justified because the term (1 — ¢) log(1 — ¢)
vanishes when ¢ — 1, while the third term in Eq. (2)
diverges, as explained below.

The second term in Eq. (2) is the correction to the
entropic hard-wall result, and ¥ is the second virial
coefficient obtained from

X=3 [ - epl-U/BT), @)
where v =~ §° is the volume of the membrane segment,
U,(r) is the interaction between bits of membrane of
volume v, and r is a three-dimensional vector. All the
direct microscopic (van der Waals, hydration, and elec-
trostatic) interactions are taken into account through
U,(r). The third term in Eq. (2) is due to the Helfrich
steric repulsion, and the factor of (1 — ¢) > comes from
the finite membrane thickness [see also Eq. (1)] [31].
Finally, the chemical potential, 4, is needed for the con-
servation of the surfactant volume fraction ¢. A similar
free energy to Eq. (2) was also proposed in other works to
describe the unbinding transition [32-34] but without the
translational entropy term that we have introduced. We
note again that the first translational entropy term in Eq.
(2) is not accounted for by the Helfrich steric repulsion
term which also has an entropic origin. Without the
translational entropy term, the behavior of the free energy

is thermodynamically inappropriate around ¢ ~ 0 and
one cannot describe the correct phase behaviors.

It is convenient to rescale all the energy densities by
2b(kpT)*/(k8%). Then, Eq. (2) can be presented in a
dimensionless form as

S
=a¢p(logp — 1) — — -
(9) = aplogg = 1) —x¢" + -

where a = «/(2bkgT) is a numerical factor of order
unity, and hence can be set as a =1 in the following

ud,  (4)

discussion for simplicity, while y = yx8>/(2bksT) is a
dimensionless interaction parameter. The equation of
state is then given by minimizing the grand potential,

Of /0¢ = 0, and becomes
3¢ ¢’
+ .
(1=¢) (1-¢)

Using the above grand potential density, we can
obtain the spinodal from the condition [35]:

Pf(¢)
O¢?

/«t=log¢—2x¢>+2 (5)

=0. (6)

With the use of Eq. (4), it can be written as

11 3¢ 6¢° 3¢°
== |-+ + + V)
2T - -
The conditions for the critical point is given by
PFG) . PG ©

O¢? T o¢?

These conditions and Eq. (5) can be numerically solved to
obtain  the  critical point as  (x., ¢, 4.) =
(3.16,0.23, —2.76).
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On the other hand, the thermodynamic equilibrium
between the two coexisting phases denoted as “1” and
“2” and characterized by ¢, and ¢, satisfies the follow-
ing conditions [35]:

(@) _o(9)
9 |, 0f
We have numerically solved the above set of conditions

to obtain the phase diagrams.

The calculated phase diagrams in the (y,¢) and
(x,¢) planes are shown in Fig. 2. The red solid lines
are binodal lines, and the black dashed lines are spino-
dal lines. When x> 3.16, the binary mixture separates

=0, f(¢)=1(4y). (9

2

into two lamellar phases characterized by different ¢
values indicated by the horizontal tielines (see also
Fig. 1). Notice that there is a critical point at
(Xo» $er ) = (3.16,0.23, —2.76) where the two lamellar
phases become identical. For y<3.16, on the other
hand, the complete unbinding of the lamellae occurs

2 1 1 1 1
0 02 04 06 08 1

¢

upon swelling with excess water [36, 37]. In the (x, ¢)
phase diagram, such a transition occurs when we take
the limit of ¢ — 0.

The calculated phase diagram in Fig. 2(a) resembles
that obtained for DDAB/water binary mixtures [4-7] if
we assume that the interaction parameter y is inversely
proportional to the temperature. In these experiments,
the existence of a critical point and associated critical
phenomena were experimentally evidenced by various
scattering methods [5].

3. Lamellar phases in ternary mixtures

Next, we consider the lamellar phases in ternary sur-
factant/surfactant/water solutions in which bilayer
membranes are composed of two different types of
surfactant, say surfactant A and surfactant B, as
shown in Fig. 3. Let us define the volume fractions of
surfactant A and B by ¢ and v, respectively. Then, the

4 3 2

Figure 2. Phase diagrams of a binary surfactant solution as a function of (a) the surfactant volume fraction ¢ and the (scaled) virial
coefficient y and (b) the surfactant chemical potential y and the virial coefficient . The red solid lines are binodal lines and the black
solid lines are tielines separating two distinct lamellar phases. The black dashed lines are spinodal lines. The black circles represent

the critical point at (X., ¢., uo) = (3.16,0.23, - 2.76).

Figure 3. Schematic representation of lamellar phases in ternary surfactant solutions, i.e., surfactant/surfactant/water mixtures. Each
bilayer consists of surfactant A (blue) and surfactant B (red) whose volume fractions are ¢ and g, respectively. (a) A single lamellar
phase having a unique repeat distance that is fixed by the total surfactant volume fraction ¢ + ¢. (b) An example of three coexisting
lamellar phases characterized either by different repeat distances or by A/B relative compositions.
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volume fraction of water (solvent) is automatically fixed
by 1 — ¢ — ¥ due to the incompressibility condition. As
a generalization of Eq. (4), we consider the following
dimensionless grand potential per unit volume for tern-
ary mixtures:

8(¢,y) = ¢(log¢ — 1) + y(logy — 1)
_X¢¢¢2 - XWV’Z - Xw‘/"/’
3
.2 o)
20—=¢—vy)
In the above, the first two terms represent the transla-
tional entropy of each surfactant component, the next
three terms describe the different interactions charac-
terized by the three dimensionless virial coefficients
Xog» Xyy» and x4, which are assumed as independent

(10)
- M(p(p - I/‘WW

parameters. The first term in the third line corresponds
to the Helfrich steric repulsion acting between mixed
membranes. Notice here that the total surfactant
volume fraction ¢ + y corresponds to the volume frac-
tion of membranes. Several other assumptions that lead
to this expression are separately discussed in Section 5.
Furthermore, y; and y,, are the chemical potentials for

the two surfactants. When, for example, surfactant B is
absent and hence v = 0, Eq. (10) reduces to Eq. (4), as
it should.

In order to discuss the stability of the above grand
potential with two independent variables, we consider
the 2 x 2 Hessian matrix of g(¢, y) given by [35]

>rg 0%

_ | 9¢* O¢oy

H= Fg g (11)
oyogp  Oy?

At the spinodal, the Hessian defined as the determinant
of the matrix, H = detH, vanishes, i.e., H = 0. The
critical point can be obtained by considering another
2 X 2 matrix

d*g O%g
a2

N T R
9 oy

and its determinant H' = det H'. Then, the conditions
for the critical point are given by [35]

H=0, H =0. (13)

For ternary mixtures, the thermodynamic equili-
brium between the two coexisting phases denoted as
“1” and “2” and characterized by (¢,, y,) and (¢,,v,)
satisfies the conditions [35]:

SOFT MATERIALS (&) 5

og(e,v)|  Og(d,v)|
o6 |, op |, " 1
ogl,v)| Og(e,v)|
v L oy |, (13
g((plal’ﬁ) :g<¢27WZ)' (16)

Similarly, for a three-phase coexistence between phases
“1,” “2,” and “3”, the following set of conditions should
be satisfied [35]:

og(e,v)| Og(e, )| Og(d,v)|
o |, 0¢ |,  0¢ 3_0’ (17)
g, v)|  Ogle, )|  Ogld,v)|
vy |, oy |, Oy 3_0’ (18)

8¢, v)) = g(dy,v,) = g(ds,v3). (19)

For lamellar phases under consideration, an example of
three-phase coexistence is schematically presented in
Fig. 3(b). In the following, we present the numerically
calculated ternary phase diagrams (Gibbs triangles) for
different interaction parameters.

We first consider the symmetric case between the two
surfactants A and B, ie, Xos = Xyy- Figure 4 shows a
ternary phase diagram when y,, = y,, = 3 (symmetric)

and x,, = —3. This is the case when each surfactant/water

binary solution does not exhibit lamellar-lamellar phase

Figure 4. Phase diagram of a ternary surfactant solution when
the interaction parameters are yg¢ = Yypy= 3 and Xgy = —3. “A”
and “B” stand for surfactant A and surfactant B, respectively,
while “S” indicates solvent such as water. The phase diagram is
symmetric with respect to the equal A/B relative compositions.
The red solid lines are binodal lines, and the black solid lines
are tielines separating two distinct lamellar phases. The blue
triangle represents the region of three-phase coexistence, and
the black dashed line is a spinodal line. The upper white region
corresponds to the one-phase lamellar region. The black circles
represent the critical points at (¢, .) = (0.026,0.23) and
(0.23,0.026).
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separation because y,, = X, < 3.16 (see Fig. 2). The

obtained phase diagram is always symmetric with respect
the line ¢ = . Due to the strong repulsion between the A
and B components (Xsbw = —3), there is a wide region of

two-phase coexistence (red solid lines) with horizontal
tielines (black solid lines). In the upper part of the triangle,
there is a region of three-phase coexistence (blue triangle)
associated with two wings of two-phase coexistence. These
two-phase coexistence regions end in two corresponding
critical points (black circles). The black dashed lines indi-
cate the spinodal lines that appear inside the coexistence
regions. When we make ,, larger such as y,, = 3 (not
shown), only the two-phase coexistence region remains in
the lower part of the triangle with horizontal tielines, and
the three-phase region disappears.

In Fig. 5, we present the ternary phase diagrams
wh?n X.¢¢ = Xyy = 4 (symmetric), while the A/B inter-
action is changed as (a) Xoy = 5, (b) Xoy = 3, and (¢)
Xgy = 0. These are the cases when each surfactant/
water binary solution exhibits lamellar-lamellar phase
Xyy = 3-16 (see Fig. 2), as
represented on the two S-A and S-B sides of the trian-
gles. In the case of Fig. 5(a), these two-phase regions
merge to form a single two-phase region with tilted
tielines in the upper part of the triangle. In the lower

separation because Xog =

part of the triangle, on the other hand, there is a region
of two-phase coexistence with horizontal tielines. This
two-phase region ends in a critical point. When Xy 18

made smaller as in Fig. 5(b), the upper two-phase
coexistence region separates into distinct two-phase
regions that also end in two corresponding critical
points. For even smaller Xoy 38 in Fig. 5(c), the three

two-phase regions meet each other forming a three-
phase coexistence region similar to Fig. 4. As a result,
all the three critical points disappear.

In Fig. 6, we show the ternary phase diagrams for an
asymmetric case of y,, =4>3.16 and x,, = 3<3.16,
while the A/B interaction is chosen as (a) Xoy = 4 and

(b) x4, = —3. In this case, only the binary A/S mixture
exhibits the phase separation, while the binary B/S does
not. Here, Fig. 6(a) should be compared with Fig. 5(b).

The two two-phase regions end in the respective critical
points. When x, is made smaller as in the case of

Fig. 6(b), the two two-phase coexistence regions are
connected to each other with the appearance of a
three-phase coexistence region. This three-phase region
accompanies another small two-phase region and a
critical point on the S-B side of the triangle. In this
asymmetric case, the tielines are not horizontal and
tilted especially in the upper part of the phase diagram.

Figure 5. Phase diagrams of a ternary surfactant solution when the interaction parameters are Xy4 = x,,, = 4 (symmetric) and (a)
Xpp = 5, (b) Xpy = 3, (0) Xgy = 0. The meanings of different lines are explained in Fig. 4. One and three critical points exist in (a)
and (b) (black circles), respectively, while a three-phase coexistence region appears in (c) (blue triangle).
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Figure 6. Phase diagrams of a ternary surfactant solution when the interaction parameters are (a) Xpp = 4, X,y = 3, Xpy = 4 and (b)
Xpp = 4 Xyy = 3, Xpyp = —3. These phase diagrams are asymmetric with respect to the equal A/B relative compositions. The
meanings of different lines are explained in Fig. 4. Two and one critical points exist in (a) and (b) (black circles), respectively, while a

three-phase coexistence region appears in (b) (blue triangle).

4, Effects of surface tension

In this section, we consider lamellar phases in ternary
surfactant solutions in which surface tension, o, is acting
on membranes. It is known that finite surface tension
significantly suppresses membrane undulations, and the
range of fluctuation-induced interaction between tense
membranes becomes shorter. Although the calculation of
this interaction is complicated in general, Seifert provided a
simple self-consistent calculation [38]. He showed that the
energy per unit area of membrane in the presence of sur-
face tension is given by

b(ksT)* [ (€—-9)/¢ ]2
sinh[(€ — 8)/¢]| ’

vs(€;€) =

k(€ — 5)? 20)

where ¢ = (2ksT/mo)"/? is the characteristic length
arising from the competition between the thermal
energy and the surface energy. When the surface ten-
sion o is small (¢ — 00), the above expression reduces
to Eq. (1) for a tensionless membrane and recovers the
long-range algebraic decay. When the surface tension ¢
is large (£ — 0), on the other hand, Eq. (20) decays
exponentially with distance €, consistent with the
renormalization-group result [3] and Monte Carlo
simulations [29]. The reduction of membrane undula-
tions in the presence of surface tension was experimen-
tally observed in Ref. [39].

Using Eq. (20) in the presence of surface tension, we
consider a modified grand potential per unit volume for
ternary surfactant solutions as [31]

8(¢,¥:x) = ¢(logp — 1) + y(logy — 1)
_X¢¢¢2 - XWWZ - X¢W¢W
2 (¢ + 1/’)3 _ _
xG(x) 1—¢—y) Hod — 1y Y-

(21)

Here, the dimensionless quantity x is defined by

N1—¢-—
x= (—) ey (22)
§) ¢ty
whereas the scaling function G(x) is given by
G() : (23)
X)=——5.
2sinh*x

We note that x depends also on ¢ and y, while §/{ is a
dimensionless parameter that can be given externally.

Figure 7 shows the calculated ternary phase dia-
grams when x,, = x,, = 4 (symmetric) and y,, =5,
while the parameter controlling the surface tension is
(a) /£ =10 and (b) §/& = 20. These phase diagrams
should be compared with that in Fig. 5(a) for which
0/€ = 0. As shown here with finite surface tension, the
phase separation is dramatically enhanced and the
upper two two-phase coexistence regions extend down
to the middle part of the triangle. At the expense of the
critical point in Fig. 5(a), there appears a large three-
phase coexistence region in the middle part. This three-
phase coexistence region is connected to the lower two-
phase region with horizontal tielines. As we see in
Fig. 7(b), the three-phase coexisting region further
expands when §/¢ is made larger. Therefore, surface
tension promotes the phase separation between differ-
ent lamellar phases. The fact that dense lamellar phases
coexist with an excess water on the two S-A and S-B
sides of the triangles is in accordance with the experi-
ment [39]. In the presence of finite surface tension, they
observed membranes merging one by one into bundles
at mutually adhering membranes. Also, the water
between the membranes was driven into a small num-
ber of compact water pockets [39].
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Figure 7. Phase diagram of a ternary surfactant solution in the presence of membrane surface tension. The interaction parameters
are Xpp = Xy = 4 (symmetric), X3y = 5, while the tension parameters are (a) /¢ = 10 and (b) §/¢ = 20. These phase diagrams
should be compared with that in Fig. 5(a) for which 6/¢ = 0. The wide three-phase coexistence region (blue triangle) further

expands when 6/¢ becomes larger.

5. Summary and discussion

In this article, we have investigated the coexistences of
lamellar phases both in binary and in ternary surfactant
solutions. To calculate the phase diagrams, we have
extended the previous free energy of a lamellar stack
[25] by taking into account the translational entropy of
membrane segments. The obtained phase diagrams for
a binary surfactant solution show a phase separation
between two lamellar phases and also exhibit a critical
point. For lamellar phases in ternary surfactant solu-
tions, we have further extended the free energy to take
into account the different interactions between three
species and explored the possible phase behaviors.
The calculated phase diagrams include various coexis-
tences between three different lamellar phases (three-
phase regions) or between two lamellar phases (two-
phase regions). A systematic change of the phase beha-
vior has been observed by changing the interaction
parameter between the two surfactant species. Finally,
we have looked at the effects of finite surface tension
which suppresses membrane fluctuations and leads to a
wider three-phase coexistence region.

We stress again that the addition of translational
entropy terms in the free energies [see Egs. (2) and
(10)] is essential in calculating the correct phase dia-
grams. Without these terms, one cannot obtain the
coexistence between two lamellar phases having differ-
ent repeat distances. The original free energy by Milner
and Roux was considered in order to explain the
unbinding transition in surfactant solutions [25].
Although their phase diagram exhibits a coexistence
between a lamellar phase and excess water (i.e.,
unbound lamellar phase), a coexistence between two
distinct lamellar phases does not occur. We consider
that these translational entropy terms should be
included in addition to the Helfrich steric interaction
which also has an entropic origin.

In the present work, we have assumed that the
lamellar phase is the only lyotropic liquid crystaline
phase that is formed for any temperature (interac-
tion) and composition. In real surfactant solutions,
however, this is certainly not the case, because typical
phase diagrams contain other phases such as the
micellar phase, the hexagonal phase, and the cubic
phase [2]. Rather than reproducing realistic phase
diagrams by considering all the possible phases in
surfactant solutions, our purpose is to investigate in
detail the competition between the Helfrich steric
repulsion and other direct microscopic (van der
Waals, hydration) interactions especially in ternary
mixtures. This is why we have extended the free
energy of a lamellar stack by Milner and Roux and
calculated various coexistences only between the
lamellar phases. A similar theoretical approach was
made by Noro and Gelbart who also discussed lamel-
lar-lamellar phase separations in surfactant solutions
[19]. We also note that the steric repulsive interac-
tion acting between neighboring cylinders in the hex-
agonal phase is discussed in Ref. [1], which can be
used to extend our treatment.

Another simplification in our work is that we have
not taken into account the composition dependence of
the bending rigidity « or the surface tension ¢ when a
membrane is composed of two surfactants A and B.
Usually, a membrane made of an A/B surfactant mix-
ture will show an intermediate bending rigidity
between those of pure membranes. In principle, such
a change in the bending rigidity affects the Helfrich
steric interaction. One of the possible ways to describe
the intermediate behavior is to linearly interpolate
between the two pure limits. This approximation can
be justified when the bending rigidities of the pure
components are not so different. When they are very
different, such as in membranes composed of surfactant
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and amphiphilic polymer, a nonlinear effect on the
bending  rigidity = becomes  important  [40].
Furthermore, a detailed discussion on the surface ten-
sion in a mixed membrane was recently given by some
of the present authors [41].

Although the phase diagrams calculated in this arti-
cle may not be simply compared with experimentally
obtained ones because of the previously mentioned
reason, it is still useful to discuss the ternary phase
diagrams of glycolipid/cationic surfactant/water mix-
tures at room temperature [14]. In this ternary mixture,
they found the two-phase regions between the coexist-
ing lamellar phases on both sides of the Gibbs triangle.
More interestingly, they further identified two corre-
sponding critical points and also the region of the
three-phase coexistence according to the phase rule.
Such a phase behavior is very reminiscent of the
phase diagrams in Fig. 5(b) and (c). Although not yet
done, we expect that one can reproduce the experimen-
tally obtained phase diagram by further tuning the
three interaction parameters in our model.

In this article, we have considered a situation in
which the surfactants are electrically neutral or the
electrostatic interaction is sufficiently screened. As is
clear from Eq. (1), the Helfrich steric repulsion is
important only when the membrane is flexible,
k =~ kgT. For strongly charged and unscreened mem-
branes (no electrolyte), on the other hand, the domi-
nant repulsion originates from the electrostatic
interactions between flat membranes. The interplay
between the electrostatics and fluctuations of a stack
of membranes (without van der Waals and hydration
forces) was studied before by Pincus et al. [42]. When
electrostatic interactions are strong enough (Gouy-
Chapman regime) compared with the Helfrich steric
repulsion, they showed that out-of-plane membrane
fluctuations become smaller than the intermembrane
separation € — 8. In the other weaker electrostatic
regimes, on the other hand, the suppression of mem-
brane fluctuations is less important, and in some cases,
the screened electrostatic interactions can be comple-
tely neglected [42]. Our assumption for charged mem-
branes is justified for such situations.

Our results indicate that the lateral phase separation
in mixed membranes causes different intermembrane
distances. Recently, much efforts have been made to
study the statics and dynamics of multicomponent lipid
membranes [43], mainly using giant unilamellar vesi-
cles in the experiments [44]. In the future, it is inter-
esting to study the phase behaviors of multilamellar
vesicles composed of more than two types of lipid by
taking into account the interactions between
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neighboring membranes. The present work would pro-
vide us with a useful theoretical guide for such a
research direction.
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