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We consider the condensation transition of microemulsion droplets of oil which are dispersed in
water in the presence of surfactant. Since a macroscopic oil phase is formed due to this transition,
it is called “emulsification failure.” Based on the free energy approach, we determine the transition
lines between the spherical and the cylindrical droplet phases as well as the phase boundary lines of
the emulsification failure. The phase diagrams are calculated by changing the physical properties of
the surfactant monolayer such as the saddle-splay modulus and the spontaneous curvature. For a
negative saddle-splay modulus, the spherical droplet phase coexists with the excess oil phase. In
some cases, a re-entrant transition (sphere — cylinder— sphere) is expected to take place. For a
positive saddle-splay modulus, the system undergoes a direct transition from the cylindrical droplet
phase to the macroscopically phase separated state. The sphere-to-cylinder transition line
approaches the emulsification failure boundary as the saddle-splay modulus becomes larger.
© 2009 American Institute of Physics. [doi:10.1063/1.3212002]

I. INTRODUCTION

Microemulsions composed of oil, water, and surfactant
are thermodynamically stable fluid mixtures in which surfac-
tant molecules adsorb at oil-water interfaces to form
monolayers.l’2 Although such mixtures appear to be homo-
geneous on a macroscopic length scale, the internal structure
consisting of oil and water domains corresponds to a meso-
scopic length scale. Hence microemulsions are considered to
be a typical example of structured fluids.> Microemulsions
are not only interesting from the viewpoint of fundamental
colloid science but also useful for industrial applications
such as in the preparation of foods, drugs, cosmetic products,
or in the oil recovery systems. In biological systems, micro-
emulsions are relevant to the transport of fat or to other solu-
bilization phenomena.4

Various mesoscopic structures are known in microemul-
sions; the droplet phase where oil (water) droplets are dis-
persed in a continuous water (oil) region, or the bicontinuous
phase where both the oil and water domains form convoluted
structures in three dimensions. In the following, we consider
oil-in-water (O/W) microemulsion droplet systems, but the
same results apply for inverted water-in-oil (W/O) micro-
emulsions as well. The shape of droplets can be either
spherical or cylindrical depending on the composition or
temperature. The structures of microemulsion droplets can be
directly visualized such as using freeze fracture electron
mic1r0sc0py5 or cryogenic temperature transition electron
microscopy.

When either the amount of oil is too large or the amount
of surfactant is too small, oil droplets can contain only a
limited volume of oil so that the saturated droplet phase co-
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exists with an excess oil phase.7_9 Such a phenomenon was
later called “emulsification failure” by Safran and
Turkevich.'” As described below, they also suggested that,
along the emulsification failure boundary, the droplet struc-
ture is determined by the curvature elasticity of surfactant
monolayers. Various experimental techniques such as
NMR self-diffusion and light scattering,“’12 viscosity
measurement,13 small angle neutron scattering,14 or small
angle x-ray sceutering15 were used in order to identify the
droplet structure near the emulsification failure boundary. All
of these experiments showed that the droplets adopt a mini-
mum size and correspond to a spherical shape. Since emul-
sification failure is usually unfavorable in various applica-
tions, it is important to predict the condition under which this
macroscopic phase separation takes place.

From the theoretical point of view, the complex phase
behavior of microemulsions has been successfully described
by the Helfrich’s curvature energy for flexible surfactant
films.'®!” In this model, the total free energy of a surfactant
monolayer is given by

1
fC=UA+fdA|:EK(C1+C2—2CO)2+EC1C2 ’ (1)

where o is the surface tension, A the area of the surfactant
film, « the bending modulus, k the saddle-splay modulus, ¢
and ¢, the two principle curvatures, and ¢ the spontaneous
curvature. Based on this curvature elasticity model, the phase
diagrams of microemulsions showing various equilibrium
structures such as lamellae, spheres, cylinders, or networks
have been obtained.'®* In the work by Safran et al.,'® the
boundary line between the spherical droplet phase and the
region of emulsification failure was determined from the
condition under which the two length scales become equal.

© 2009 American Institute of Physics
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The first length scale is obtained by the minimization of the
above curvature energy while assuming a spherical droplet
shape, i.e., ¢c;=c,=c. Neglecting the surface tension term,
this provides us with the typical length scale 1/¢,=(1/c)
X[(2k+K)/2k]. On the other hand, the incompressibility
condition gives the second length scale r=3ad,/ ¢, where a
is the surfactant size and ¢, and ¢, are the volume fractions
of oil and surfactant, respectively. When the amount of sur-
factant is large so that ¢yr<<1, the system is in a one-phase
state forming a spherical droplet phase. However, when ¢, is
small enough so that ¢yr> 1, a certain amount of oil cannot
be incorporated in the droplets and exists as an excess phase.
Hence the condition for the emulsification failure is given by
Gor=1.8

Although the above description captures the essential
feature of emulsification failure, it is not complete because
neither entropy nor size distribution of the droplets are taken
into account. In order to include these two effects, Sear and
Cuesta®* proposed a free energy formulation for spherical
microemulsion droplets. In addition to oil droplets, they also
considered the presence of micelles which do not contain any
oil. They determined the boundary of emulsification failure
according to the condition such that the total volume of oil
droplets diverges. Interestingly enough, they pointed out that
there is an analogy between emulsification failure and Bose—
Einstein condensation.”** This is because a macroscopic
condensed phase is formed in both phenomena even in the
absence of any interactions. It should be noted, however, that
they did not consider the presence of cylindrical droplets, nor
did they discuss how the phase behavior depends on the
surfactant material parameters such as the saddle-splay mod-
ules or the spontaneous curvature. Another similar free en-
ergy formulation was employed in Ref. 25 which explains
the closed-loop coexistence regions observed in nonionic
surfactant microemulsions.

In this paper, we use the model by Sear and Cuesta in
order to study the emulsification failure of both spherical and
cylindrical droplet phases. Such a study is necessary because
it was shown in some experiments that the excess oil phase
coexists not only with the spherical droplet phase but also
with either the cylindrical droplet phase or the network
phase.6’15 In addition to the emulsification failure, we also
discuss the morphological transition between the spherical
and the cylindrical droplet phases. We describe in detail how
the phase transition lines depend on the surfactant param-
eters such as k or c;. We will show that the sphere-to-
cylinder transition line approaches to the emulsification fail-
ure boundary as k becomes larger. When k is negative, the
spherical droplet phase coexists with the excess oil phase.
We also expect that a re-entrant transition (sphere
— cylinder — sphere) may occur for some parameter regions.
When « is positive and large enough, the system undergoes a
direct transition from the cylindrical droplet phase to the
macroscopically phase separated state.

In Sec. II, we first discuss the model describing the
emulsification failure and the morphological transition in
globular microemulsions. In Sec. III, we present the results
of the phase diagrams together with the free energies and the
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FIG. 1. Schematic representation of a cylindrical microemulsion droplet.
The two end caps consist of hemispheres of radius r, and the length of the
cylindrical part is €. A spherical droplet corresponds to €=0.

equilibrium distributions of microemulsion droplets. Some
discussions and comparisons to the other works are argued in
Sec. IV.

Il. MODEL

We consider O/W microemulsions where oil droplets are
dispersed in water with surfactant monolayers at oil/water
interfaces. We assume that the shape of oil droplets can be
either spherical or cylindrical. In addition to oil droplets, we
also consider the existence of spherical micelles which are
composed of surfactant molecules only. The possibility of
forming cylindrical micelles is excluded in the following.

In the following, all the quantities which have the di-
mension of length and energy are scaled by the surfactant
molecular size a and the thermal energy kg7, respectively
(kg is the Boltzmann constant and T the temperature). We
denote the dimensionless volume of oil droplet by v (scaled
by a®) which can vary as vy=<v =w. For a system with the
total volume V, the dimensionless free energy per unit vol-
ume F/V (measured in unit of kz7/a’) is given by

FIV= fo dvp(v)[log p(v) - 1 + f(v)]

vo
+ pm(IOg Pm— 1 +fm)’ (2)

where p(v) is the number density of the microemulsion drop-
let of volume v, f(v) is the internal energy of the microemul-
sion droplet, p,, is the number density of the micelle, f,, is
the internal energy of the micelle. The terms p(log p—1) and
pm(log p,,—1) are the mixing entropy terms of droplets and
micelles, respectively.

Next we need the expression of the internal energy f of a
droplet coated by surfactant molecules. By modeling the sur-
factant monolayer as an elastic sheet, f can be given by the
Helfrich’s curvature energy f,. in Eq. (1). Hereafter, we use
the notation such that o (scaled by kgT/a?), k (scaled by
kgT), Kk (scaled by kgT), and ¢, (scaled by 1/a) are all di-
mensionless quantities. We will use the convention that the
positive curvature corresponds to the case when the surfac-
tant sheet is curved toward oil. We consider a cylindrical
microemulsion droplet which consists of a cylindrical part
and two hemispheres as shown in Fig. 1. The radius and the
length of the cylindrical part are denoted by r and ¢ (both in
unit of a), respectively. A spherical droplet corresponds to
the case when €=0. Here the polydispersity in the length of
the cylindrical part is not considered because it has only little
effect on the phase behavior.”' Then the internal energy of a
cylindrical droplet f in Eq. (2) is given by
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f(r)=4m(o+ 2KC(2))1"2 +2m(ol + 2KC(2)€ —8kcy)r

¢
+4m(2+ K= Keyl) + (3)
r

Here the variable has been changed from v to r according to
the relation v=(47r’/3)+mw(r*. Since the radius of a spheri-
cal micelle is taken to be equal to the surfactant size a, its
internal energy f,,, can be obtained by setting =0 and r=1
in the above equation. Then we have

fm=dm(o+ 2KC(2))— 167kcy+ 47 (2K + K). (4)

In microemulsions, there are two imposed constraints,
i.e., both the total amount of surfactant (denoted by &) and
the total amount of oil (denoted by ¢) should be conserved.
These conditions can be written as

&= J dvsp(v) + P, (5)
and
¢=f dvvp(v). (6)

In Eq. (5), s=4mr*+2ar{ and s,,=47 are the surface areas
of a microemulsion droplet and a spherical micelle, respec-
tively.

The equilibrium distribution of microemulsion droplets
can be obtained by the minimization of Eq. (2) under the
constraints of Egs. (5) and (6). This is equivalent to requiring

i(F/V+ NE— ) =0, (7)
op

where A\ is the Lagrange multiplier and w the chemical po-
tential. Then we can obtain the equilibrium distribution of
microemulsion droplets as

p=exp(=f—\s+puv). (®)

Similarly, the equilibrium distribution of micelles is obtained
by minimizing Eq. (2) with respect to p,, under the con-
straints of Egs. (5) and (6). Then we get

Pm = eXP(— fm - )\Sm) . (9)

In order to discuss the condition for emulsification fail-
ure, we look at the dependence of ¢ on v [see Egs. (6) and
(8)]. In Eq. (8), both f and s are irrelevant in the limit of v
— o0 because they are proportional to 7. Hence the distribu-
tion of droplets asymptotically behaves as p~e”’ when
v—. For =0, the distribution p approaches zero and ¢
takes a finite value. For >0, on the other hand, p diverges
so that ¢ becomes infinitely large. Notice that the case of
¢—0 corresponds to the formation of a macroscopic oil
phase, and hence the emulsification failure. Therefore the
condition for emulsification failure is set by u=0.

By substituting back the equilibrium distributions of
droplets p and micelles p,, into Eq. (2), we obtain the equi-
librium free energy as
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FIV==\é+ pud—v—pns (10)

where vy is defined by

y=f dvp(v). (11)

0

When the amount of oil is large enough to induce the emul-
sification failure, the free energy does not change any more
even if the oil is further added. Then the free energy becomes

FIV == Ngr€ = Yer — PmEF> (12)

where the subscript “EF” denotes the corresponding values
at u=0. In the following calculations, the integral over the
droplet volume v is replaced with the integral over the radius
r by using the relation dv=(4mr>+2m€r)dr. The integral
range of r spans from 1 to % since the radius of the smallest
microemulsion droplet is equal to the surfactant size a. We
comment that the present formulation cannot deal with non-
globular structures such as the network or the lamellar
phases since the globular volume v is not well specified in
these structures.

lll. RESULTS

Based on the model described in Sec. II, we present the
results of the free energies, phase diagrams, and equilibrium
distributions of microemulsion droplets by changing k and ¢
systematically. We especially pay attention to the depen-
dence of the emulsification failure boundary and the sphere-
to-cylinder transition line on the surfactant parameters or the
length of cylindrical droplets. Since the obtained results
qualitatively differ between negative and positive k, we dis-
cuss them separately.

A. Negative saddle-splay modulus («<0)

Some parameters are fixed to 0=0 and x=1 because
their values do not affect the phase behavior. The others are
varied as ¢y=0.1,0.6, k=—0.6,-0.3, and £=0,20,50. In the
present formulation, the length of the cylindrical droplet €
cannot be determined from the minimization principle. So
we regard it as a model parameter.

In Fig. 2, we show the plots of the free energy densities
F/V as a function of the oil amount ¢ when the surfactant
amount is fixed to £=60. In each of the graph, the solid lines
are calculated from Egs. (6) and (10) by finding the combi-
nations of N\ and u which satisfy the fixed £(=60) value. The
dashed lines are obtained by setting x=0 at which the emul-
sification failure occurs. The filled circles give the crossing
points between the solid and dashed lines for each €. Hence
they mark the onset of emulsification failure. Although not
shown, each free energy curve is horizontal when ¢ exceeds
the emulsification failure point. At the filled squares, the free
energy of the spherical droplet crosses that of the cylindrical
droplet. The possible coexistence between the spherical and
cylindrical droplet phases”’w’zo is not considered here be-
cause we are interested in how the transition lines between
them are dependent on the surfactant parameters or the
length of the cylindrical part. For ¢,=0.1 [Figs. 2(a) and
2(b)], we see that the spherical droplet phase (€=0; black
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FIG. 2. Free energies per unit volume F/V as a function of the amount of oil
¢ when the amount of surfactant is £=60. The black, red, and blue solid
lines indicate the free energies for €=0, 20, and 50, respectively. The dashed
lines mark the emulsification failure boundary. The filled circles denote the
points of emulsification failure. Although not shown, each free energy curve
is horizontal when ¢ exceeds the emulsification failure point. The filled
squares denote the transition points between the spherical and the cylindrical
droplets. The parameters are chosen as (a) ¢,=0.1 and k=-0.6, (b) ¢y=0.1
and k=-0.3, (c) ¢y=0.6 and k=—0.6, and (d) ¢,=0.6 and k=-0.3.

lines) has the lowest energy compared to the cylindrical
droplet phase (£=20; red line, or €=50; blue line) at the
emulsification failure point. In these cases, the spherical
droplet phase coexists with an excess oil phase. On the other
hand, when ¢ is smaller than the values corresponding to the
filled squares, the cylindrical droplet phase is more stable
than the spherical droplet phase. Although it is not shown in
Figs. 2(a) and 2(b), the spherical droplet becomes more
stable again when the oil amount is made smaller than
¢=10 (£=20).

For ¢;=0.6 as shown in Figs. 2(c) and 2(d), the spherical
droplet phase coexists with an excess oil phase similar to the
case of cy=0.1. However, the sphere-to-cylinder transition
does not occur when c(,=0.6. Generally speaking, the spheri-
cal shape is energetically more favorable than the cylindrical
shape when k<<0. Moreover, since the number of cylindrical
droplets for ¢,=0.6 is much larger than that of ¢,=0.1 (see
later Fig. 5), the spherical droplet phase is far more stable.
These are the reasons why the cylindrical phase does not
show up here. In Fig. 2(c), even a very small amount of oil
leads to the emulsification failure of the cylindrical droplet
phase (hence the red and blue lines are not visible). Figure
2(d) clearly shows that the free energy of the spherical phase
is always smaller than that of the cylindrical droplet phase.

These sequences of morphological transitions are sum-
marized in Figs. 3 and 4 for =20 and 50, respectively. We
have obtained these phase diagrams by changing the value of
& between 0 and 100. The boundary line of the emulsification
failure is determined by fixing u=0 and changing \. As the
oil amount ¢ is increased from zero in Figs. 3(a) and 4(a),
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FIG. 3. Calculated boundaries of emulsification failure and phase transition
lines between the spherical and the cylindrical droplet phases in the case of
£=20. ¢ is the total amount of oil and £ is the total amount of surfactant. S
and C denote the spherical and the cylindrical droplet phases, respectively,
while S+0O indicates the coexistence between the spherical droplet phase
and the excess oil. The parameters are chosen as (a) ¢,=0.1 and k=-0.6, (b)
¢o=0.1 and k=-0.3, (c) ¢,=0.6 and k=-0.6, and (d) ¢,=0.6 and k=-0.3.

the spherical droplet phase (S) appears first, and it will trans-
form to the cylindrical droplet phase (C) when & is large
enough (such as £=60). When ¢ is further increased, the
cylindrical droplet phase (C) transforms into the spherical
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FIG. 4. Calculated boundaries of emulsification failure and phase transition
lines between the spherical and the cylindrical droplet phases in the case of
£=50. ¢ is the total amount of oil and £ is the total amount of surfactant. S
and C denote the spherical and the cylindrical droplet phases, respectively,
while S+0O indicates the coexistence between the spherical droplet phase
and the excess oil. The parameters are chosen as (a) ¢,=0.1 and k=-0.6, (b)
¢o=0.1 and k=-0.3, (c) ¢,=0.6 and k=-0.6, and (d) ¢,=0.6 and k=-0.3.
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FIG. 5. Equilibrium size distribution of microemulsion droplets. r is the
radius of the microemulsion droplet and p is its number density. The black,
red, and blue lines correspond €=0, 20, and 50, respectively. The amount of
surfactant is £€=60. The parameters are chosen as (a) ¢,=0.1 and k=-0.6,
(b) ¢p=0.1 and k=-0.3, (c) ¢,=0.6 and k=-0.6, and (d) ¢,=0.6 and
k=-0.3.

droplet phase (S) again. This sequence of sphere(S)
— cylinder(C) — sphere(S) implies a re-entrant transition.
Addition of more oil results in the emulsification failure
(S+0). A similar re-entrant transition exists in Figs. 3(b) and
4(b) although the region of the spherical droplet phase and
the sphere-to-cylinder transition line located at ¢p=0.1 is not
visible there. However, the re-entrant transition does not oc-
cur in Fig. 3(c), Fig. 3(d) Fig. 4(c), or Fig. 4(d) because the
cylindrical droplet phase does not appear. [Notice that Figs.
3(c) and 3(d) are identical to Figs. 4(c) and 4(d).] We point
out that, for all the phase diagrams in Figs. 3 and 4, the
excess oil phase always coexists with the spherical droplet
phase.

We argue next how the changes in the spontaneous cur-
vature ¢, and/or the saddle-splay modulus k affect the phase
behavior. We see from Figs. 3 and 4 that the region of emul-
sification failure becomes smaller when either ¢, is made
smaller or « is made larger. The reason being that the droplet
size becomes larger and the droplet phase is more stable. In
other words, larger droplets can contain more oil even if the
total amount of surfactant is kept the same. The sphere-to-
cylinder transition line approaches the emulsification failure
boundary as k is increased from —0.6 to —0.3. This is be-
cause the spherical droplet phase becomes less stable as k is
increased. We also find that the region of the cylindrical
phase for £=50 is larger than that for €=20.

Corresponding to the filled circles in Fig. 2, we show in
Fig. 5 the equilibrium size distributions of droplets at the
emulsification failure boundary when £=60. Different colors
indicate different lengths of the cylindrical droplet. The mini-
mum radius of a droplet is =1 which is taken to be the
surfactant molecular size a. Hence the droplets with r=1 do
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FIG. 6. Calculated boundaries of emulsification failure and phase transition
lines between the spherical and cylindrical droplet phases in the case of ¢
=20. ¢ is the total amount of oil and ¢ is the total amount of surfactant.
C+0 indicates the coexistence between the cylindrical droplet phase and the
excess oil phase, while the other notations are the same with Fig. 3. The
parameters are chosen as (a) ¢,=0.1 and k=0.3, (b) ¢,=0.1 and k=0.6, (c)
¢o=0.6 and k=0.3, and (d) ¢y=0.6 and k=0.6.

not contain any oil. We see that the droplet size r tends to be
larger when either ¢, is made smaller or k is made larger.
This is consistent with the argument in Sec. I where we
discussed that the optimum droplet size is given by 1/¢,
=(1/¢o)[(2x+k)/2k] for a spherical shape at the emulsifica-
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FIG. 7. Calculated boundaries of emulsification failure and phase transition
lines between the spherical and the cylindrical droplet phases in the case of
€=50. ¢ is the total amount of oil and ¢ is the total amount of surfactant.
The notations of the phases are the same with Fig. 6. The parameters are
chosen as (a) ¢;=0.1 and k=0.3, (b) ¢,=0.1 and ¥=0.6, (c) ¢;=0.6 and
k=0.3, and (d) ¢y=0.6 and k=0.6.
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FIG. 8. Equilibrium size distribution of microemulsion droplets. r is the
radius of the microemulsion droplet and p is its number density. The black,
red, and blue lines correspond €=0, 20, and 50, respectively. The amount of
surfactant is §=60. The parameters are chosen as (a) ¢,=0.1 and k=0.3, (b)
¢p=0.1 and k=0.6, (c) ¢y=0.6 and k=0.3, and (d) ¢;=0.6 and k=0.6.

tion failure boundary. We have checked that the relative peak
position of the size distribution does not change appreciably
even if the & value is varied.

B. Positive saddle-splay modulus («>0)

Next we shall present the results when the saddle-splay
modulus k is positive. All the parameters are the same as
before except k=0.3 and 0.6. By calculating the free energies
as in Fig. 2, we obtained the phase diagrams in a similar way.
In Figs. 6 and 7, we show the corresponding phase diagrams
for €=20 and 50, respectively. By comparing Figs. 6(a) and
6(b), for example, we see that the region of the cylindrical
phase (C) expands when k is larger. Hence the sphere-to-
cylinder transition line approaches the emulsification failure
boundary as in the case of k<<(0. The cylindrical droplet
phase coexists with the excess oil phase (C+0O) for ¢y=0.6
[see Figs. 6(c), 6(d), 7(c), and 7(d)]. Such a situation occurs
when the sphere-to-cylinder transition line approaches and
crosses the emulsification failure boundary line. The exis-
tence of C+0O or S+O region is consistent with the experi-
mental observation.’®

When the surfactant amount £ is small in Fig. 6(c), the
spherical droplet phase undergoes the emulsification failure
(S+0) as ¢ is increased. When £ is large, the cylindrical
droplet phase coexists with the excess oil phase (C+0O). By
increasing the oil amount ¢ while fixing the surfactant
amount to £=~20, we see a rather complicated sequence of
morphological transitions. First the spherical droplet phase
(S) transforms into the cylindrical droplet phase (C) which
undergoes the emulsification failure (C+0). As ¢ is further
increased, the system exhibits the spherical droplet phase (S)
which again undergoes the emulsification failure (S+0). For
longer cylindrical droplets (€=50), the region of ¢ which
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shows this complex morphological transitions becomes
smaller [see Fig. 7(c)]. This kind of complex sequence of
various phases is also alluded in the previous experiments.6’7

In Fig. 8, we show the equilibrium size distributions of
the droplets at the emulsification failure boundary. Similar to
the case of k<<0, the average size is larger when « is made
larger and/or ¢ is made smaller. The same argument men-
tioned before applies here as well.

IV. DISCUSSION

Several points merit further discussion. In Figs. 3(a),
3(b), 4(a), and 4(b), we have explained that the system ex-
hibits the re-entrant transition (sphere — cylinder— sphere)
as the oil amount ¢ is increased. The mechanism of this
transition can be understood as follows. In the above phase
diagrams, we have shown that the spherical droplet phase is
more stable than the cylindrical droplet phase when ¢ is
either small or large. This is because a spherical structure is
more favored when « is negative. In the intermediate oil
concentration, the cylindrical droplet phase appears for the
following reason. We have assumed that the surfactant mol-
ecules form either monolayers or spherical micelles. In gen-
eral, the formation of spherical micelles having a large cur-
vature costs energy especially when ¢y is small. In the
intermediate oil concentration, the number of created mi-
celles associated with spherical oil droplets is larger than that
associated with cylindrical oil droplets. In fact, spherical
droplets need less surfactant to incorporate a fixed amount of
oil so that the remaining surfactant molecules inevitably
form micelles which cost high energy. As a whole, the cylin-
drical droplet phase can lower its energy with respect to the
spherical droplet phase. It should be noted that, close to the
emulsification failure boundary, almost all of the surfactant
molecules are used to cover oil droplets so that micelles
hardly exist.

Next we discuss why the cylindrical droplet phase un-
dergoes a direct transition to the emulsification failure when
k>0 [see Figs. 6(c), 6(d), 7(c), and 7(d)]. In order to under-
stand it, we look at the size distributions of droplets given by
Fig. 8(d). The peak positions are located at r=2.2 for €=0
(spheres) or r=1 for £=20 and 50 (cylinders). We can also
check that the optimum radius obtained by the minimization
of the curvature energy coincides with the corresponding
peak position of the size distribution. Since most of the cy-
lindrical droplets has r=1, they cannot incorporate a large
amount of oil. Hence the number of cylindrical droplets be-
comes large as seen in Fig. 8(d). Due to the same mechanism
described in the previous paragraph, the cylindrical droplet
phase becomes relatively stable compared with the spherical
droplet phase. Moreover, cylindrical droplets are energeti-
cally favorable when k is positive. According to these rea-
sons, the cylindrical droplet phase can undergo a direct tran-
sition to the emulsification failure without changing into the
spherical droplet phase.

We discuss here how our results are related to the exist-
ing experimental observations. Although many phase dia-
grams are explored in experimental works, it is not straight-
forward to compare them directly with ours because their
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axes are often different. Nevertheless, some qualitative com-
parisons are possible. In general, the spontaneous curvature
co decreases as the temperature is increased. In some experi-
ments, it was shown that the emulsification failure region
becomes smaller and the droplet size becomes larger, as the
temperature is increased.®”'*!* The phase diagrams and the
equilibrium size distributions obtained from our model ex-
hibit the same tendencies when c is decreased. On the other
hand, the values of the bending modulus and the saddle-
splay modulus can be deduced from interfacial tension mea-
surements or neutron spin-echo spectroscopy.s’26 Most of the
experimental results suggest that k takes a negative value so
that the cylindrical droplet phase becomes more stable as
co is decreased. For a ternary mixture of
dodecane/C,E5/ water,”’ it was shown that the transition
from the spherical droplet phase to the cylindrical droplet
phase takes place as the temperature is increased. When «
<0 (see Figs. 3 and 4), the cylindrical droplet phase does not
exist in the phase diagrams for c,=0.6. However, the cylin-
drical droplet phase becomes more stable than the spherical
droplet phase as ¢, is decreased. Hence our result predicts
that the transition from the sphere to cylinder may occur as
the temperature is increased. This is consistent with the ex-
perimental observation.”’

In the present theory, we treated the length of the cylin-
drical part € as a parameter. Blokhuis and Sagelr21 assumed
that the polydispersity in the cylinder length obeys the
Schultz distribution. This assumption is well supported by
the experiment.28 However, it was shown that the phase dia-
grams hardly change even if the average cylinder length is
used instead of taking into account the polydispersity
distribution.”! Moreover, one of the main purposes of this
paper is to reveal the dependence of the transition lines on
the cylinder length. These are the reasons why we did not
minimize the free energy with respect to €.

Finally, we compare our results with the previous theo-
ries. Safran er al.'® analyzed the relative stability among
spherical, cylindrical, and planar monolayers and pointed out
that the ratio x/k is an important parameter. While restrict-
ing only to the case of k<<0, they showed that the sphere-
to-cylinder transition approaches to the emulsification failure
boundary when k is increased. This is in agreement with our
phase diagrams given such as in Figs. 3(a) and 3(b). They
also showed that only the spherical droplet phase coexists
with the excess oil phase, which is again in agreement with
our result. When x>0, a direct transition from the cylindri-
cal droplet phase to the emulsification failure was anticipated
in Refs. 20 and 21. The corresponding phase diagram is, for
example, Fig. 6(d) in our paper. We also mention that Safran
et al. argued the coexistence between the spherical and cy-
lindrical droplet phases,”’lg’zo and the volume fractions of
sphere and cylinder in this coexistence region was calculated
later in Ref. 21. However, since we are interested in the
dependence of the transition lines on the surfactant param-
eters or the cylinder length, we did not take into account the
possible phase coexistence for clarity.
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V. CONCLUSION

In this paper, we have considered the emulsification fail-
ure of the microemulsion droplet phases. By taking into ac-
count both the cylindrical and the spherical droplet phases,
we have obtained both the sphere-to-cylinder transition line
and the emulsification failure boundary. We have discussed
the effects of the saddle-splay modulus k and the spontane-
ous curvature ¢, on the phase behavior. When k<0, the
spherical droplet phase coexists with the excess oil phase. A
re-entrant transition (sphere — cylinder — sphere) is expected
for small ¢( cases. When x>0, a direct transition from the
cylindrical droplet phase to the emulsification failure would
occur as long as ¢, is large. In some case, emulsification
failure may occur twice as the oil amount is increased. In
general, the sphere-to-cylinder transition line approaches the
emulsification failure boundary as k is increased.
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