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a b s t r a c t

We discuss the non-equilibrium properties of a thermally driven micromachine consist-
ing of three spheres which are in equilibrium with independent heat baths characterized
by different temperatures. Within the framework of a linear stochastic Langevin de-
scription, we calculate the time-dependent average irreversibility that takes a maximum
value for a finite time. This time scale is roughly set by the spring relaxation time. The
steady-state average entropy production rate is obtained in terms of the temperatures
and the friction coefficients of the spheres. The average entropy production rate depends
on thermal and/or mechanical asymmetry of a three-sphere micromachine. We also
obtain the center of mass diffusion coefficient of a thermally driven three-sphere
micromachine as a function of different temperatures and friction coefficients. With
the results of the total entropy production rate and the diffusion coefficient, we finally
discuss the efficiency of a thermally driven micromachine.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Microswimmers are tiny machines that swim in a fluid and they are expected to be used in microfluidics and
icrosystems [1]. By transforming chemical energy into mechanical energy, microswimmers change their shape and move
fficiently in viscous environments. According to Purcell’s scallop theorem, reciprocal body motion cannot be used for
ocomotion in a Newtonian fluid [2,3]. As one of the simplest models showing non-reciprocal body motion, Najafi and
olestanian proposed a three-sphere swimmer [4,5], in which three in-line spheres are linked by two arms of varying
ength. Such a swimmer has been experimentally realized by using colloidal beads manipulated by optical tweezers [6]
r by controlling ferromagnetic particles at an air–water interface [7,8].
Recently, the present authors have proposed a generalized three-sphere microswimmer model in which the spheres

re connected by two harmonic springs, i.e., an elastic microswimmer [9,10]. Later, our model was further extended
o a thermally driven elastic microswimmer [11], suggesting a new mechanism for locomotion that is purely induced by
hermal fluctuations without any external forcing. The key setting of the model is that the three spheres are in equilibrium
ith independent heat baths characterized by different temperatures (as described later in Fig. 1). For this thermally driven
hree-sphere micromachine, the average velocity was calculated to be [11]

⟨V ⟩ =
kB(T3 − T1)
96πηℓ2

, (1)

where kB is the Boltzmann constant, T1 and T3 are the temperatures of the first and the third spheres (see Fig. 1), η is the
iscosity of the surrounding fluid, and ℓ is the natural length of the two springs. We have shown that a combination of
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eat transfer and hydrodynamic interactions among the spheres leads to directional locomotion in a steady-state, which
an be described in terms of ‘‘stochastic energetics’’ [12–14].
Systems in thermodynamic equilibrium obey detailed balance meaning that transition rates between any two mi-

roscopic states are pairwise balanced [15,16]. For non-equilibrium steady-state situations, however, detailed balance is
roken and a probability flux loop exists in a configuration phase space [17–20]. Recently, the present authors discussed
he non-equilibrium steady-state probability distribution function of a thermally driven three-sphere micromachine
nd calculated its probability flux in the corresponding configuration space [21]. The resulting probability flux can be
xpressed in terms of a frequency matrix to characterize a non-equilibrium steady-state [22,23]. Importantly, we have
btained a linear relation between the eigenvalue of the frequency matrix and the average velocity of a thermally driven
icromachine [21].
Since our model micromachine offers a new type of thermal ratchet [11], a more detailed analysis based on non-

quilibrium statistical mechanics is required in order to elucidate the physical mechanism for the locomotion of a
hermally driven three-sphere micromachine. One of the important quantities to measure the statistical irreversibility
f a non-equilibrium process is the entropy production rate [24–26]. In this paper, within the framework of a linear
tochastic Langevin description, we calculate the time-dependent average irreversibility of a thermally driven three-
phere micromachine in the absence of hydrodynamic interactions. The average irreversibility is important because its
nitial growth rate gives the average entropy production rate. Using this fact, we explicitly obtain the average entropy
roduction rate for a thermally driven three-sphere micromachine, and express it in terms of different temperatures and
riction coefficients. We examine in detail how the entropy production rate depends on the asymmetry of the temperatures
nd/or the friction coefficients of a three-sphere micromachine.
Although a micromachine does not exhibit any directional motion in the absence of hydrodynamic interactions [21], it

ndergoes a thermal Brownian motion. In addition to the above mentioned non-equilibrium quantities, we also calculate
he center of mass diffusion coefficient of a thermally driven three-sphere micromachine (even though we neglect the
nertia of the spheres). Using the results of the diffusion coefficient for a dimer and trimer, we predict a simple and
seful expression for the center of mass diffusion coefficient of an elastic n-sphere micromachine. We consider that our
xpression is useful because the center of mass diffusion is easier to measure than the center of friction diffusion [27].

Finally, we obtain the total entropy production rate including the center of mass motion, and further discuss the efficiency
of a thermally driven three-sphere micromachine. Our result shows that the efficiency becomes larger for specific
combinations of the temperatures.

In the next section, we briefly review the framework of a linear Langevin model and describe how the average
irreversibility and the entropy production rate are obtained in general. In Section 3, we explain our model of a thermally
driven three-sphere micromachine by introducing the coupled Langevin equations for the two spring lengths [21]. In
Sections 4 and 5, we explicitly calculate the average irreversibility and the average entropy production rate, respectively,
for a thermally driven three-sphere micromachine. The center of mass diffusion coefficient of a thermally driven
micromachine is given in Section 6. In Section 7, after calculating the total entropy production rate, we discuss the
efficiency of a micromachine. Finally, a summary of our work and some discussion are given in Section 8.

2. Linear Langevin system

In this section, we briefly review Ref. [23] and pick up the important results for our calculation. Let us consider a linear
stochastic Langevin equation given by [28]

dr(t)
dt

= Ar(t) + Fξ(t), (2)

where r is the N-dimensional state vector of real numbers, A is an N×N real matrix representing the linear deterministic
dynamics, F is an N×N real matrix representing the noise forcing. We require that all eigenvalues of A have a negative real
part so that the system will eventually reach a steady-state. In Eq. (2), ξ is N-dimensional Gaussian white noise satisfying
the statistical properties

⟨ξ(t)⟩ = 0, (3)

⟨ξ(t)ξ(t ′)T⟩ = Bδ(t − t ′), (4)

where B is an N × N matrix representing the variance of noise, and superscript T represents the transpose. Then the
diffusion matrix D is obtained by

D =
1
2
FBFT. (5)

Using the above Langevin model, we discuss the probability of observing trajectory segments. For any two states r0
nd r1, we consider the trajectory probability p(r0, r1, t) as the probability of finding a trajectory segment within the
ong trajectory which begins at r0 and ends at r1 a time t later. Such a trajectory probability can be expressed as

p(r , r , t) = p(r , t|r )p (r ), (6)
0 1 1 0 0 0

2
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Fig. 1. Thermally driven elastic three-sphere micromachine. Three spheres are connected by two identical harmonic springs characterized by the
elastic constant K and the natural length ℓ. The time-dependent positions of the spheres are denoted by xi(t) (i = 1, 2, 3) in a one-dimensional
oordinate system, and ζi is the friction coefficient for ith sphere. The three spheres are in equilibrium with independent heat baths having different
emperatures Ti .

here p(r1, t|r0) is the transition probability of finding the system in state r1 conditioned on the system being in state
r0 a time t earlier, and p0(r0) is the steady-state probability of finding the system in state r0. Similarly, the time-reversed
rajectory segment, one starting at r1 and ending at r0, has a probability

p(r1, r0, t) = p(r0, t|r1)p0(r1). (7)

The irreversibility σ (r0, r1, t) of a trajectory segment with initial state r0 and final state r1 is defined by [23]

σ (r0, r1, t) = ln
p(r0, r1, t)
p(r1, r0, t)

. (8)

he system is reversible when σ = 0, while forward and reverse trajectories are distinguishable when σ ̸= 0. By
ntroducing the probability P(σ ) of finding a trajectory segment with irreversibility σ , the fluctuation theorem can be
xpressed as [23–26]

P(σ )
P(−σ )

= eσ . (9)

Although this fluctuation theorem gives a constraint on P(σ ), it does not completely fix its functional form. How to obtain
P(σ ) for a linear Langevin system is separately explained in Appendix A.

Because the model in Eq. (2) is linear with additive Gaussian white noise, the probabilities in Eqs. (6) and (7) are also
Gaussian, and they can be written in terms of the covariance of the dynamics. Weiss showed that the time-dependent
average irreversibility ⟨σ (t)⟩ is given by [23]

⟨σ (t)⟩ = Tr
[
C0C−1

t (I − e2At ) − I
]
, (10)

here I is the N × N identity matrix. In the above, C0 is the steady-state covariance matrix satisfying the Lyapunov
quation [29]

AC0 + C0AT
+ 2D = 0, (11)

hich can be regarded as the fluctuation–dissipation relation [22]. Moreover, Ct is the time-dependent covariance matrix
f the transition probability and is given by

Ct = 2
∫ t

0
ds eA(t−s)DeA

T(t−s)
= C0 − eAtC0eA

Tt . (12)

otice that C0 and Ct are related by C0 = limt→∞ Ct .
In Ref. [23], it was further shown that the steady-state average entropy production rate ⟨σ̇ ⟩ is given by the zero-time

rowth rate of the average irreversibility in Eq. (10), i.e.,

⟨σ̇ ⟩ =
d⟨σ (t)⟩

dt

⏐⏐⏐⏐
t=0

= Tr [AG] . (13)

ere, G is the dimensionless gain matrix defined by

G = −(AC0D−1
+ I). (14)

he gain matrix G is directly related to the violation of detailed balance [22], and the product AG in Eq. (13) measures
he noise amplification per unit time [23].

It is worth mentioning that the same average entropy production rate in Eq. (13) can also be obtained directly from the
teady-state probability flux [23,30]. In fact, the latter approach is more standard [31]. For a three-sphere micromachine,
he steady-state probability flux was calculated in our previous paper [21].
3
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. Thermally driven three-sphere micromachine

In this section, we explain the model of a thermally driven elastic micromachine that has been introduced in our
revious studies [11,21]. As schematically shown in Fig. 1, the model consists of three hard spheres connected by two
armonic springs. We assume that the two springs are identical, and the common spring constant and the natural length
re given by K and ℓ, respectively. The positions of the three spheres in a one-dimensional coordinate system is defined

as xi(t) (i = 1, 2, 3).
Most importantly, we consider a situation where the three spheres are in thermal equilibrium with independent heat

baths at temperatures Ti [11,21]. When these temperatures are different, the system is driven out of equilibrium because
heat flux from a hotter sphere to a colder one is generated. The Langevin equations of motion of the three spheres are
given by

dx1
dt

=
K
ζ1

(x2 − x1 − ℓ) +

(
2T1
ζ1

)1/2

ξ1, (15)

dx2
dt

= −
K
ζ2

(x2 − x1 − ℓ) +
K
ζ2

(x3 − x2 − ℓ) +

(
2T2
ζ2

)1/2

ξ2, (16)

dx3
dt

= −
K
ζ3

(x3 − x2 − ℓ) +

(
2T3
ζ3

)1/2

ξ3, (17)

here ζi is the friction coefficient for ith sphere, and the Boltzmann constant kB is set to unity hereafter (except later in
ection 7). As we discuss later, the friction coefficient is generally proportional to the size of the sphere. Furthermore,
i(t) is a zero mean and unit variance Gaussian white noise, independent for all the spheres:

⟨ξi(t)⟩ = 0, (18)

⟨ξi(t)ξj(t ′)⟩ = δijδ(t − t ′). (19)

In contrast to Ref. [11], we do not consider hydrodynamic interactions acting between the different spheres. Although
the locomotion of a micromachine is not discussed in this paper (except in Section 7), we use a term ‘‘micromachine’’
for the above three-sphere system because it can undergo a directional motion in the presence of hydrodynamic
interactions [11]. The effects of hydrodynamic interactions will be separately discussed in Section 8.

To describe the configuration of a micromachine, it is convenient to introduce the following two spring extensions
with respect to ℓ:

r12 = x2 − x1 − ℓ, r23 = x3 − x2 − ℓ. (20)

From Eqs. (15)–(17), we obtain the reduced Langevin equations for r12(t) and r23(t) as [27]

dr12
dt

= −
K
ζ12

r12 +
K
ζ2

r23 +

(
2T12
ζ12

)1/2

ξ12, (21)

dr23
dt

=
K
ζ2

r12 −
K
ζ23

r23 +

(
2T23
ζ23

)1/2

ξ23. (22)

ere we have introduced the relevant effective friction coefficient

ζij =
ζiζj

ζi + ζj
, (23)

nd the friction-weighted average temperature

Tij =
ζjTi + ζiTj

ζi + ζj
. (24)

he definition of the effective temperature Tij arises from the requirement that the newly introduced noises ξ12(t) and
23(t) in Eqs. (21) and (22), respectively, satisfy the following statistical properties:

⟨ξ12(t)⟩ = ⟨ξ23(t)⟩ = 0, (25)

⟨ξ12(t)ξ12(t ′)⟩ = δ(t − t ′), (26)

⟨ξ23(t)ξ23(t ′)⟩ = δ(t − t ′), (27)

⟨ξ12(t)ξ23(t ′)⟩ = −
T2
ζ2

(
ζ12ζ23

T12T23

)1/2

δ(t − t ′). (28)

The reduced Langevin equations in Eqs. (21) and (22) can be conveniently represented in the matrix form of Eq. (2).
Using the notations for the two-dimensional vectors r = (r , r )T and ξ = (ξ , ξ )T, the 2 × 2 matrices A, F, and B are
12 23 12 23

4
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A =

(
−K/ζ12 K/ζ2
K/ζ2 −K/ζ23

)
, (29)

F =

⎛⎜⎜⎝
(
2T12
ζ12

)1/2

0

0
(
2T23
ζ23

)1/2

⎞⎟⎟⎠ , (30)

nd

B =

⎛⎜⎜⎝ 1 −
T2
ζ2

(
ζ12ζ23

T12T23

)1/2

−
T2
ζ2

(
ζ12ζ23

T12T23

)1/2

1

⎞⎟⎟⎠ , (31)

espectively. Then, according to Eq. (5), the 2 × 2 diffusion matrix D becomes

D =

(
T12/ζ12 −T2/ζ2
−T2/ζ2 T23/ζ23

)
. (32)

In our previous work, we obtained the steady-state probability distribution function p0(r) for a three-sphere microma-
hine [21]. Owing to the reproductive property of Gaussian distributions [15,16], p0(r) should also be a Gaussian function
or the present linear problem and is given by

p0(r) = N0 exp
[
−

1
2
rTC−1

0 r
]

. (33)

n the above, N0 is the normalization factor, and the steady-state covariance matrix C0 is given by

C0 =
1
K

(
T12 + ζ12∆ ζ2∆

ζ2∆ T23 + ζ23∆

)
, (34)

ith

∆ =
ζ12ζ23(T12 + T23 − 2T2)
(ζ12 + ζ23)(ζ 2

2 − ζ12ζ23)
. (35)

In the following sections, the above matrices are used to calculate the average irreversibility and the average entropy
production rate.

4. Irreversibility

In this section, we calculate the average irreversibility ⟨σ (t)⟩ in Eq. (10) for a thermally driven three-sphere microma-
chine by using A and C0 in Eqs. (29) and (34), respectively (notice that Ct is also given by A and C0 according to Eq. (12)).
In Fig. 2, we plot ⟨σ (t)⟩ as a function of dimensionless time Kt/ζ2. We also define the dimensionless temperature of the
three spheres by

τi =
2Ti
Kℓ2

, (36)

hich is the ratio between the thermal energy of each sphere and the spring elastic energy (recall kB = 1).
The chosen parameters in Fig. 2(a) are ζ1 = ζ2 = ζ3, τ1 = 1/900, τ2 = 41/900, and τ3 = 81/900, and those in Fig. 2(b)

are ζ1 = ζ2 = ζ3, τ1 = τ3 = 25/900, and τ2 = 41/900. For these two cases, the friction coefficients are all identical.
In Fig. 2(a) for which τ1 ̸= τ3, the average irreversibility first increases from zero and it vanishes in the long time limit

→ ∞. This is because p(x0, x0, 0) = p(x1, x1, 0) for t = 0, whereas the transition probability becomes a stationary one
or t → ∞. Since the average irreversibility is positive semidefinite for all time and goes to zero as t → 0 and t → ∞,
here is a typical time Kt∗/ζ2 ≈ 0.39 for which ⟨σ (t)⟩ takes a global maximum value. Notice that ζ2/K corresponds to the
pring relaxation time, and t∗ gives a characteristic time scale of the irreversible fluctuations. When τ1 = τ3 as in Fig. 2(b),
n the other hand, ⟨σ (t)⟩ vanishes for all t . In this case, the system is in apparent equilibrium because the micromachine

is thermally balanced [21].
Keeping the temperature parameters τi the same as in Fig. 2(a) and (b), we introduce asymmetry in the friction

coefficients in Fig. 2(c) and (d) for which we set ζ1/ζ2 = 0.5 and ζ3/ζ2 = 5. Although the time evolutions in Fig. 2(a)
nd (c) are similar, the maximum value of ⟨σ ⟩ in Fig. 2(c) is about 4.5 times larger than that in Fig. 2(a). Hence the
symmetry in the friction coefficients increases the average irreversibility. In Fig. 2(d), the irreversibility is non-zero and
5
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Fig. 2. The average irreversibility ⟨σ (t)⟩ given by Eq. (10) as a function of dimensionless time Kt/ζ2 . The parameters are (a) ζ1 = ζ2 = ζ3 , τ1 = 1/900,
2 = 41/900, and τ3 = 81/900; (b) ζ1 = ζ2 = ζ3 , τ1 = τ3 = 25/900, and τ2 = 41/900; (c) ζ1/ζ2 = 0.5, ζ3/ζ2 = 5, τ1 = 1/900, τ2 = 41/900, and
3 = 81/900 (these temperatures are the same as in (a)); (d) ζ1/ζ2 = 0.5, ζ3/ζ2 = 5, τ1 = τ3 = 25/900, and τ2 = 41/900 (these temperatures are
he same as in (b)).

Fig. 3. The dimensionless average entropy production rate ζ ⟨σ̇ ⟩/K given by Eq. (38) as a function of T1/T2 and T3/T2 . The average entropy production
ate vanishes along the diagonal white line T1 = T3 .

σ (t)⟩ ≥ 0 even τ1 = τ3. This is because the system is not thermally balanced, namely, T12 ̸= T23, and the micromachine
is in out-of-equilibrium. It is worth mentioning that the average irreversibility ⟨σ (t)⟩ depends only on the ratios of the
temperatures such as T1/T2 and T3/T2.

In general, the irreversibility σ is a measure of non-equilibrium fluctuations, and one can distinguish forward from
reverse trajectories segments when σ is non-zero. The result in Fig. 2 clearly indicates that the asymmetry of either
the temperatures or the friction coefficients are necessary to drive a three-sphere micromachine out of equilibrium. The
maximum value of ⟨σ ⟩ in Fig. 2 directly reflects the magnitude of the irreversibility. It is useful to note that the asymmetry
of both the temperatures and the friction coefficients can enhance the maximum value of ⟨σ ⟩ (compare Figs. 2(a) and (c)).
As we will discuss in the next section, the larger the maximum value of ⟨σ ⟩ is, the larger the average entropy production
rate of a thermally driven micromachine becomes.
6
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Fig. 4. The dimensionless entropy production rate ζ ⟨σ̇ ⟩/K given by Eq. (38) as a function of T2/T1 for T3/T1 = 1, 3, 5, and 7.

. Entropy production rate

Next we calculate the steady-state average entropy production rate of a thermally driven micromachine. In the
teady-state, the entropy production rate balances with the entropy extraction rate, and both quantities become zero
t equilibrium [32]. Substituting A, D, and C0 in Eqs. (29), (32), and (34), respectively, to Eqs. (13) and (14), we obtain
fter some calculation

⟨σ̇ ⟩ =
K [ζ1(T3 − T2) + ζ3(T2 − T1)]2

(ζ1T2T3 + ζ2T3T1 + ζ3T1T2)(ζ1ζ2 + ζ2ζ3 + 2ζ1ζ3)
. (37)

his is an important result of this paper. Obviously, we have ⟨σ̇ ⟩ ≥ 0. When the system is in thermal equilibrium,
.e., T1 = T2 = T3, the entropy production rate vanishes for any combination of the friction coefficients. We note that
q. (37) does not depend on the spring natural length ℓ because we are considering only the fluctuations around ℓ as
efined in Eq. (20).
When the three friction coefficients are all identical, i.e., ζ1 = ζ2 = ζ3 = ζ , Eq. (37) reduces to

⟨σ̇ ⟩ =
K (T1 − T3)2

4ζ (T1T2 + T2T3 + T3T1)
. (38)

Using Eq. (38), we give in Fig. 3 a color representation of the dimensionless average entropy production rate ζ ⟨σ̇ ⟩/K as a
function of T1/T2 and T3/T2. Here ⟨σ̇ ⟩ vanishes when T1 = T3 and it increases as the difference between T1 and T3 becomes
larger. To see the role of the temperature T2 of the middle sphere in Eq. (38), we plot in Fig. 4 the steady-state average
entropy production rate ζ ⟨σ̇ ⟩/K as a function of T2/T1 (not T1/T2) for four different values of T3/T1. From this plot, one
can clearly see that ⟨σ̇ ⟩ becomes smaller as T2/T1 is increased.

When the friction coefficients are different between the three spheres, Eq. (37) implies that the average entropy
production rate is non-zero, ⟨σ̇ ⟩ > 0, even when T1 = T3. In general, ⟨σ̇ ⟩ becomes larger when either ζ1/ζ2 or ζ3/ζ2 is
increased. As an example of asymmetric situations, we give in Fig. 5 a color representation of the dimensionless average
entropy production rate ζ2⟨σ̇ ⟩/K as a function of ζ1/ζ2 and ζ3/ζ2 when T1/T2 = 0.2 and T3/T2 = 5. The value of ⟨σ̇ ⟩ is
asymmetric with respect to the line ζ1 = ζ3, and it becomes larger when ζ3/ζ2 becomes smaller.

In multidimensional systems, it was generally discussed that enhanced fluctuation (or noise amplification) occurs not
through some additional forcing, but through violation of detailed balance which is measured by the gain matrix G in
Eq. (14) [22]. Hence, according to Eq. (13), the entropy production rate reflects the noise amplification that occurs when
detailed balance is not satisfied [23]. It is also known that the entropy production rate is related to the heat flow in a
system [30].

As we can see from Eq. (1) for the average velocity ⟨V ⟩ and Eq. (38) for the average entropy production rate ⟨σ̇ ⟩ of a
thermally driven three-sphere micromachine, the temperature difference between the first and the third spheres, T1 −T3,
plays an essential role to characterize its non-equilibrium behaviors. According to their dependence on T1 − T3, we see
a proportionality relation such that ⟨σ̇ ⟩ ∼ ⟨V ⟩

2. In our previous work [11], we showed that the average velocity ⟨V ⟩ of a

three-sphere micromachine is proportional to the net heat flow between the first and the third spheres.

7
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Fig. 5. The dimensionless entropy production rate ζ2⟨σ̇ ⟩/K given by Eq. (37) as a function of ζ1/ζ2 and ζ3/ζ2 . Here the temperature ratios are fixed
to T1/T2 = 0.2 and T3/T2 = 5.

6. Diffusion coefficient

In this section, we discuss the Brownian motion of a thermally driven three-sphere micromachine. We introduce the
center of mass position of a micromachine by

X(t) =
1
3
[x1(t) + x2(t) + x3(t)], (39)

ven though we neglect the inertia of the spheres. From Eqs. (15)–(17), the Langevin equation for X can be written in
erms of r12 and r23 as

dX
dt

=
K
3

(
ζ2 − ζ1

ζ1ζ2

)
r12 +

K
3

(
ζ3 − ζ2

ζ2ζ3

)
r23 +

√
2
3

(
T1
ζ1

+
T2
ζ2

+
T3
ζ3

)1/2

ξX , (40)

where ξX (t) is a zero mean and unit variance Gaussian white noise defined by

ξX =

(
T1
ζ1

+
T2
ζ2

+
T3
ζ3

)−1/2
[(

T1
ζ1

)1/2

ξ1 +

(
T2
ζ2

)1/2

ξ2 +

(
T3
ζ3

)1/2

ξ3

]
, (41)

nd satisfies the following statistical properties

⟨ξX (t)⟩ = 0, (42)

⟨ξX (t)ξX (t ′)⟩ = δ(t − t ′). (43)

Using Eqs. (21) and (22) for the dynamics of r12 and r23, respectively, the mean squared displacement of the center of
ass position becomes

⟨X2(t)⟩ = 2Dt, (44)

here the diffusion coefficient is obtained as

D =
ζ1T1 + ζ2T2 + ζ3T3
(ζ1 + ζ2 + ζ3)2

. (45)

ee Appendix B for the detailed derivation. When the temperatures are all identical, T1 = T2 = T3, Eq. (45) becomes

D =
T2

ζ1 + ζ2 + ζ3
, (46)

s expected for the equilibrium case.
On the other hand, when the three friction coefficients are all identical, ζ1 = ζ2 = ζ3 = ζ , Eq. (45) reduces to

D =
T1 + T2 + T3

, (47)

9ζ
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hich is proportional to the sum of the three temperatures. Introducing an average temperature by

TX =
T1 + T2 + T3

3
, (48)

e can rewrite Eq. (47) as D = TX/(3ζ ).
In general, the diffusion coefficient of a thermally driven n-sphere swimmer is predicted to be

Dn =

∑n
i=1 ζiTi(∑n
i=1 ζi

)2 . (49)

his expression can be explicitly confirmed also for n = 2. For n = 2, the diffusion coefficient for the center of friction
as obtained in Ref. [27], and it is different from that of the center of mass diffusion. This difference is not physically
ssential because it only depends on the choice of the coordinate system. Nevertheless, we consider that the center of
ass diffusion is much easier to be measured in the experiments.

. Efficiency

Finally, we shall estimate the efficiency of a thermally driven micromachine. When the three friction coefficients are
ll identical and given ζ , the average velocity is given by Eq. (1) which can be rewritten as [11]

⟨V ⟩ =
kB(T3 − T1)a

16ζℓ2
. (50)

ere a is the radius of the spheres, and we employ the Stokes relation ζ = 6πηa for the friction coefficient. Notice that
e recover the Boltzmann constant kB in this section for the sake of clarity. The above result indicates that the swimming
irection is from a colder sphere to a hotter one, and the velocity does not depend on the temperature of the middle
phere [11].
Following Ref. [5], we define the efficiency of a thermally driven micromachine by

ε =
3ζ ⟨V ⟩

2

kB⟨Σ̇⟩TX
, (51)

here ⟨Σ̇⟩ is the total entropy production rate and the average temperature TX is given by Eq. (48). Notice that the
ntropy production rate ⟨σ̇ ⟩ in Eq. (38) takes into account only the internal motions (r12 and r23) of a micromachine and

it also vanishes when T1 = T3.
In order to obtain ⟨Σ̇⟩, one needs to take into account the center of mass motion X given by Eq. (39), and solve

Eqs. (21), (22), and (40) simultaneously. For the three-dimensional vectors r = (r12, r23, X)T and ξ = (ξ12, ξ23, ξX )T, the
corresponding 3 × 3 matrices A, F, and D are shown in Appendix C. Repeating the same calculation as in Section 5, we
obtain the following total entropy production rate

⟨Σ̇⟩ =
K

12ζT1T2T3
(T 2

1 T2 + 4T1T 2
2 + 4T 2

1 T3 + T 2
3 T2 + 4T3T 2

2 + 4T1T 2
3 − 18T1T2T3), (52)

hen the friction coefficients are identical. Unlike ⟨σ̇ ⟩ in Eq. (38), ⟨Σ̇⟩ in Eq. (52) vanishes only when T1 = T2 = T3,
.e., thermal equilibrium. It should be noted here that, although the above total entropy production rate ⟨Σ̇⟩ takes into
ccount all the three positional degrees of freedom of the spheres, it still does not include hydrodynamic interactions
cting between different spheres, which have been neglected throughout this paper. Hence, the maximum of ε in Eq. (51)
s not necessarily unity. Nevertheless, ε gives a useful measure of the ratio between the hydrodynamic dissipation of a
icromachine and its total entropy production rate due to the sphere motions.
With the above result, the efficiency ε in Eq. (51) can be obtained as

ε =
27a2kBT1T2T3(T1 − T3)2

64Kℓ4(T1 + T2 + T3)(T 2
1 T2 + 4T1T 2

2 + 4T 2
1 T3 + T 2

3 T2 + 4T3T 2
2 + 4T1T 2

3 − 18T1T2T3)
. (53)

learly, ε vanishes when T1 = T3 as it should. The important outcome of Eq. (53) is that the efficiency scales as (a/ℓ)2
nd is proportional to the temperature T2 of the middle sphere. By using the dimensionless temperature τ2 = 2T2/(Kℓ2),

we give in Fig. 6 a color representation of the scaled efficiency 128ℓ2ε/(27a2τ2) as a function of T1/T2 and T3/T2. The
efficiency also becomes smaller when the temperatures are highly asymmetric.

On the other hand, the efficiency ε becomes larger along a certain characteristic curve. Such a dependence on the
temperatures can be explained as follows. The numerator of ε (hydrodynamic dissipation) always vanishes for T1 = T3,
nd all the contour lines are parallel to the line T1 = T3. On the other hand, the denominator of ε (total entropy production

rate) increases when T1 and T3 are either small or large even for T1 = T3 (the minimum occurs at T1 = T2 = T3), and
the contour lines are perpendicular to the line T1 = T3. These different temperature dependences between the numerator
and the denominator give rise to the nontrivial increase of ε as shown in Fig. 6.
9



I. Sou, Y. Hosaka, K. Yasuda et al. Physica A 562 (2021) 125277

l

8

c
U
i
i
s
i
o

c
m
r
F
o

a
d
b
t
w
t
W

o
W

Fig. 6. The scaled efficiency 128ℓ2ε/(27a2τ2) given by Eq. (53) as a function of T1/T2 and T3/T2 . The efficiency vanishes along the diagonal white
ine T1 = T3 .

. Summary and discussion

In this paper, we have discussed the non-equilibrium behaviors of a thermally driven elastic three-sphere microma-
hine. In our model, the three spheres are in contact with independent heat baths having different temperatures [11,21].
sing the formulation of a linear stochastic Langevin dynamics [22,23], we have calculated the time-dependent average
rreversibility ⟨σ (t)⟩ in Eq. (10). When the temperatures and/or the friction coefficients are asymmetric, the average
rreversibility is non-zero and takes a global maximum value for a finite time. The corresponding characteristic time
cale is roughly set by the spring relaxation time ζ2/K . We have further obtained the average entropy production rate ⟨σ̇ ⟩

n Eq. (37) which is the zero-time growth rate of the average irreversibility. This quantity decreases as the temperature
f the middle phase increases.
We have also discussed the Brownian motion of a thermally driven three-sphere micromachine and calculated its

enter of mass diffusion coefficient D as in Eq. (45). The obtained expression can be generalized for a many-sphere
icromachine. When the friction coefficients are identical, an average temperature TX can be introduced as in Eq. (48). Our

esult is different from the diffusion coefficient for the center of friction obtained for a non-equilibrium dimer model [27].
inally, with the results of the total entropy production rate and the average temperature, we have estimated the efficiency
f a micromachine in Eq. (53).
Our model of a three-sphere micromachine has a similarity to that of two over-damped, tethered spheres coupled by

harmonic spring and also confined between two walls [17,20]. In these works, the authors numerically showed that
isplacements obey a Gaussian distribution and also found probability flux loops that demonstrate the broken detailed
alance [17,20]. The two displacements r12 and r23 in Eq. (20) correspond to the sphere positions in their model. However,
he presence of the middle sphere changes the structure of the frequency matrix for a three-sphere micromachine
hen T2 ̸= 0 [21]. Moreover, a two-sphere micromachine in a viscous fluid cannot have a directed motion even if the
emperatures are different [11]. Recently, Li et al. used the two-sphere model to calculate the entropy production rate [30].
e note that our result in Eq. (38) reduces to their expression when T2 = 0.
In this work, we have neglected long-ranged hydrodynamic interactions acting between different spheres and we

have not considered the locomotion of a micromachine [11]. If hydrodynamic interactions are taken into account in
the present analysis, the covariance matrix in Eq. (34) is modified in non-equilibrium situations. Such hydrodynamic
corrections should be proportional to a/ℓ within the lowest-order expansion. Moreover, these corrections should vanish
in thermal equilibrium, i.e., T1 = T2 = T3 because hydrodynamic interactions should not affect equilibrium statistical
properties.
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ppendix A. Irreversibility distribution P(σ)

Following Ref. [23], we show how to calculate the probability density function of irreversibility P(σ ) for a system
escribed by the linear Langevin dynamics in Eq. (2). We remind that P(σ ) satisfies the fluctuation theorem in Eq. (9).
We first introduce a 2N-dimensional state space

z =

(
r0
r1

)
, (A.1)

here r0 and r1 are the initial and final states. The probability density function of irreversibility P(σ ) is given by

P(σ ) =

∫
d2Nz δ(σ − zTRz/2)p(r0, r1, t), (A.2)

here R = R10 − R01 is the 2N × 2N matrix and we have used the matrices

R10 =

(
C−1
t −C−1

t eAt

−eA
TtC−1

t eA
TtC−1

t eAt + C−1
0

)
, (A.3)

nd

R01 =

(
eA

TtC−1
t eAt + C−1

0 −eA
TtC−1

t
−C−1

t eAt C−1
t

)
. (A.4)

The characteristic function of the probability density function is defined by

P[k] =

∫
dσ P(σ )eikσ . (A.5)

or linear Langevin systems, it is shown that the characteristic function can be expressed as [23]

P[k] =
1∏2N

m=1
√
1 − ikλm

, (A.6)

here λm are the 2N eigenvalues of the matrix R−1
01 R. Then the probability density function of irreversibility in Eq. (A.2)

an be obtained by the inverse transform of Eq. (A.7):

P(σ ) =
1
2π

∫
dk P[k]e−ikσ . (A.7)

We discuss here the four eigenvalues for a thermally driven micromachine. When T1 = T3, we find that all the
igenvalues vanish, i.e., λm = 0. In this thermally balanced situation, the characteristic function is simply P[k] = 1 and
he probability density function of irreversibility is P(σ ) = δ(σ ).

As the simplest non-equilibrium situation, we consider the case when T1 = T2 = 0 but T3 ̸= 0. Then the four
igenvalues can be obtained in the short time limit as

λ1 ≈

√
3
8

(2t̄ − 1)(t̄ + 2)
√
t̄(23t̄ + 8), (A.8)

λ2 ≈ −

√
3
8

(2t̄ − 1)(t̄ + 2)
√
t̄(23t̄ + 8), (A.9)

λ3 ≈ −
(2t̄ − 1)

t̄

[
3 −

√
3
8

(t̄ + 2)2
√
(t̄ + 2)(7t̄ + 6)

]
, (A.10)

λ4 ≈ −
(2t̄ − 1)

t̄

[
3 +

√
3
8

(t̄ + 2)2
√
(t̄ + 2)(7t̄ + 6)

]
, (A.11)

here t̄ = Kt/ζ is the dimensionless time. The above expressions are valid when t̄ ≪ 1.
2
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ppendix B. Derivation of diffusion coefficient

In this Appendix, we show the derivation of the diffusion coefficient in Eq. (45). We first integrate Eq. (40) over time,
nd obtain the mean squared displacement of a three-sphere micromachine as

⟨X2(t)⟩ =
K 2

9

(
ζ2 − ζ1

ζ1ζ2

)2 ∫ t

0
dt1

∫ t

0
dt2 ⟨r12(t1)r12(t2)⟩

+
K 2

9

(
ζ3 − ζ2

ζ2ζ3

)2 ∫ t

0
dt1

∫ t

0
dt2 ⟨r23(t1)r23(t2)⟩

+
2
9

(
T1
ζ1

+
T2
ζ2

+
T3
ζ3

)∫ t

0
dt1

∫ t

0
dt2 ⟨ξX (t1)ξX (t2)⟩

+
2K 2

9

(
ζ2 − ζ1

ζ1ζ2

)(
ζ3 − ζ2

ζ2ζ3

)∫ t

0
dt1

∫ t

0
dt2 ⟨r12(t1)r23(t2)⟩

+
2
√
2K
9

(
ζ2 − ζ1

ζ1ζ2

)(
T1
ζ1

+
T2
ζ2

+
T3
ζ3

)1/2 ∫ t

0
dt1

∫ t

0
dt2 ⟨r12(t1)ξX (t2)⟩

+
2
√
2K
9

(
ζ3 − ζ2

ζ2ζ3

)(
T1
ζ1

+
T2
ζ2

+
T3
ζ3

)1/2 ∫ t

0
dt1

∫ t

0
dt2 ⟨r23(t1)ξX (t2)⟩. (B.1)

ur task is to calculate the various noise correlation functions in the above expression.
Let us introduce the Fourier transform of a function f (t) by

f [ω] =

∫
∞

−∞

dt f (t)eiωt , f (t) =
1
2π

∫
∞

−∞

dω f [ω]e−iωt . (B.2)

hen we can solve the Langevin equations in Eqs. (21) and (22) in the Fourier domain as

r12[ω] = −

(
ζ2

ζ23
+

iζ2ω
K

)(
2T12
ζ12

)1/2

ξ12[ω] +

(
2T23
ζ23

)1/2

ξ23[ω]

ζ2

K
ω2 − iζ2

(
1

ζ12
+

1
ζ23

)
ω +

K
ζ2

(
1 −

ζ 2
2

ζ12ζ23

) , (B.3)

r23[ω] = −

(
ζ2

ζ12
+

iζ2ω
K

)(
2T23
ζ23

)1/2

ξ23[ω] +

(
2T12
ζ12

)1/2

ξ12[ω]

ζ2

K
ω2 − iζ2

(
1

ζ12
+

1
ζ23

)
ω +

K
ζ2

(
1 −

ζ 2
2

ζ12ζ23

) . (B.4)

Calculating the products of the noise and taking the average, we obtain for example

⟨r12(t1)r12(t2)⟩ =

[
(ζ2ζ12 + ζ2ζ23 + ζ12ζ23H)T12

2KHζ12(ζ12 + ζ23)
−

2ζ12(ζ 2
2 T12 + ζ12ζ23T23 − 2ζ12ζ23T2)

KH(ζ12 + ζ23)(ζ2ζ12 + ζ2ζ23 + ζ12ζ23H)

]
× exp

[
−

K (ζ2ζ12 + ζ2ζ23 + ζ12ζ23H)
2ζ2ζ12ζ23

|t1 − t2|
]

+

[
−

(ζ2ζ12 + ζ2ζ23 − ζ12ζ23H)T12
2KHζ12(ζ12 + ζ23)

+
2ζ12(ζ 2

2 T12 + ζ12ζ23T23 − 2ζ12ζ23T2)
KH(ζ12 + ζ23)(ζ2ζ12 + ζ2ζ23 − ζ12ζ23H)

]
× exp

[
−

K (ζ2ζ12 + ζ2ζ23 − ζ12ζ23H)
2ζ2ζ12ζ23

|t1 − t2|
]

, (B.5)

here

H =

(
4 +

ζ 2
2

ζ 2
12

+
ζ 2
2

ζ 2
23

−
2ζ 2

2

ζ12ζ23

)1/2

. (B.6)

he other noise correlation functions can be obtained in a similar way. However, it should be noted that, for non-
quilibrium situations, the time-reversal invariance is not generally satisfied for the cross correlation functions, i.e.,
r12(t1)r23(t2)⟩ ̸= ⟨r12(t2)r23(t1)⟩. On the other hand, the time-translational invariance of the noise correlation functions is
lways satisfied because we are dealing with steady-states.
Collecting all the noise correlation functions and taking the limit of t → ∞, we finally obtain

D = lim
⟨X2(t)⟩

=
ζ12(ζ1 − ζ2)2(ζ 2

2 T12 + ζ12ζ23T23 − 2ζ12ζ23T2)
2 2 2
t→∞ 2t 9ζ1 (ζ2 − ζ12ζ23)

12
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a

+
ζ23(ζ3 − ζ2)2(ζ 2

2 T23 + ζ12ζ23T12 − 2ζ12ζ23T2)
9ζ 2

3 (ζ
2
2 − ζ12ζ23)2

+
1
9

(
T1
ζ1

+
T2
ζ2

+
T3
ζ3

)
+

2ζ12ζ23(ζ1 − ζ2)(ζ2 − ζ3)(ζ 2
2 T12 + ζ 2

2 T23 − ζ 2
2 T2 − ζ12ζ23T2)

9ζ1ζ2ζ3(ζ 2
2 − ζ12ζ23)2

+
2ζ12(ζ2 − ζ1)(ζ1ζ2ζ23T3 − ζ1ζ3ζ23T2 + ζ1ζ2ζ3T2 − ζ 2

2 ζ3T1)
9ζ 2

1 ζ2ζ3(ζ 2
2 − ζ12ζ23)

+
2ζ23(ζ2 − ζ3)(ζ2ζ3ζ12T1 − ζ1ζ3ζ12T2 + ζ1ζ2ζ3T2 − ζ1ζ

2
2 T3)

9ζ1ζ2ζ 2
3 (ζ

2
2 − ζ12ζ23)

. (B.7)

Notice that the different lines in Eq. (B.1) correspond to the different lines in the above equation. The right hand side of
Eq. (B.7) reduces to Eq. (45).

Appendix C. 3 × 3 matrices

Let us consider the three coupled Langevin equations Eqs. (21), (22), and (40). By introducing the three-dimensional
vectors r = (r12, r23, X)T and ξ = (ξ12, ξ23, ξX )T, the corresponding 3 × 3 matrices A, F, and D are given by

A =

⎛⎜⎝
−K/ζ12 K/ζ2 0
K/ζ2 −K/ζ23 0

K
3

(
ζ2 − ζ1

ζ1ζ2

)
K
3

(
ζ3 − ζ2

ζ2ζ3

)
0

⎞⎟⎠ , (C.1)

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
2T12
ζ12

)1/2

0 0

0
(
2T23
ζ23

)1/2

0

0 0

√
2
3

(
T1
ζ1

+
T2
ζ2

+
T3
ζ3

)1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (C.2)

nd

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
T12/ζ12 −T2/ζ2

1
3

(
T2
ζ2

−
T1
ζ1

)
−T2/ζ2 T23/ζ23

1
3

(
T3
ζ3

−
T2
ζ2

)
1
3

(
T2
ζ2

−
T1
ζ1

)
1
3

(
T3
ζ3

−
T2
ζ2

)
1
9

(
T1
ζ1

+
T2
ζ2

+
T3
ζ3

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (C.3)

respectively. The above matrices are the generalization of Eqs. (29), (30), and (32) to a higher dimension.
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