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Abstract – We investigate the microphase separation in a membrane composed of charged lipids,
by taking into account explicitly the electrostatic potential and the ion densities in the sur-
rounding solvent. While the overall (membrane and solvent) charge neutrality is assumed, the
membrane can have a non-zero net charge. The static structure factor in the homogeneous state
is analytically obtained without using the Debye-Hückel approximation and is found to have a
peak at an intermediate wave number. For a binary membrane composed of anionic and neutral
lipids, the characteristic wave number corresponds to a scale from several to tens of nanometers.
Our numerical calculation further predicts the existence of nano-domains in charged membranes.
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Introduction. – Much attention has been paid to
phase separations in artificial multi-component lipid mem-
branes. In these systems, many degrees of freedom such
as lipid composition and membrane shape deformation
are coupled to each other, leading to complex phase be-
haviors [1]. In particular, long-lived small domains in
membranes may play important biological roles [2–4]. In
general, charge-induced microphase formation has been
intensively investigated in soft matter such as polyelec-
trolytes [5,6], electrolyte fluid mixtures [7–9], and charged
Langmuir monolayers [10,11]. Several authors have stud-
ied the microphase formation in membranes composed of
both anionic and cationic lipids for which the net charge
within the membrane vanishes [12–14].

In the last decade, researchers have investigated phase
separations in giant unilamellar vesicles (GUVs) com-
posed of anionic and neutral lipids [15–19]. In these
experiments, GUVs have a non-zero net charge. From
a theoretical viewpoint, Guttman and Andelman origi-
nally predicted a microphase separation in binary charged
membranes within the Debye-Hückel (DH) approxima-
tion [20]. However, no evidence for a charge-induced mi-
crophase formation on the scale of the optical resolution
was found in refs. [15–19]. Hence some theories for a
macrophase separation in such charged membranes have
been developed [21–23]. Recently, Puff et al. reported the

formation of nanoscale domains, whose scale is smaller
than the optical resolution, with the addition of ganglio-
side GM1 [24]. In their mixtures, GM1 is anionic while the
other components are all neutral. Given these experimen-
tal observations, it is necessary to study the competition
between the macrophase and microphase separations in
charged membranes, as well as the characteristic length
scale associated with the microphase separation.

The DH approximation is justified when bκ ≫ 1, where
b and κ are the Gouy-Chapman length and the Debye
wave number, respectively. Notice that b is inversely pro-
portional to the surface charge density. In a strongly segre-
gating charged membrane, each domain usually has a large
surface charge density, and thus the DH approximation is
no more valid [14]. Furthermore, for membranes that have
non-zero net charge, the DH approximation is inapplica-
ble even to homogeneous nor to weakly segregated states.
For a binary membrane composed of anionic and neutral
lipids (as discussed later in more detail), we can estimate
φb ∼ 1 Å with φ being the fraction of the anionic lipid,
whereas for a 1:1 electrolyte solution, κ is in the range
10−3–10−1 Å−1. Hence the DH condition bκ ≫ 1 is not
satisfied unless φ is very small, and it is imperative to go
beyond it.

In this letter, we investigate the microphase forma-
tion in binary membranes composed of charged lipids
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for general ionic strength. We assume the overall (mem-
brane and solvent) charge neutrality, while the mem-
brane can have a non-zero net charge. Solving the full
non-linear Poisson-Boltzmann equation (PBE), we discuss
i) the scale of the microphase structures, and ii) the con-
ditions for the microphase formation. Our theory predicts
a microphase endpoint (MEP) [25] in the composition-
temperature plane at which the macrophase spinodal line
meets an end of the microphase spinodal line. This point
cannot be obtained within the DH approximation. We
also find that the characteristic length scale of the mi-
crophase separation is in the range from several to tens of
nanometers except in the vicinity of the MEP.

Free energy and PBE. – As shown in fig. 1, we con-
sider a flat fluid membrane composed of A- and B-lipid
molecules having electric charges eZJ (J = A, B), where e
is the elementary charge and ZJ is the valence number. In
water, these lipid molecules form a bilayer structure. Here
the hydrophobic tails face each other and the hydrophilic
head groups are in contact with water. Any interactions
between different monolayers are neglected although there
are situations in which inter-monolayer coupling plays a
role [22,23]. Then we are allowed to consider only a two-
dimensional (2D) monolayer located at z = 0 which is in
contact with the solvent occupying the region of z > 0 in
a three-dimensional (3D) space. We use the abbreviations
x = (x, y) and X = (x, y, z).

We assume that the molecular area a2 occupied by an
A-lipid is the same as that occupied by a B-lipid. The
area fraction of A-lipid is denoted by φ(x), and that of
B-lipid is 1 − φ(x) under the areal incompressibility con-
dition. For simplicity, we assume that the solvent is a 1:1
dilute electrolyte solution. The cation and anion number
densities are denoted by n+(X) and n−(X), respectively.
In our work, the overall charge neutrality is assumed;
∫

d2x [ZAφ+ZB(1−φ)]+
∫

d3X (n+−n−) = 0, where the
integration

∫

d2x is taken over the range −∞ < x, y < ∞,
while

∫

d3X is for the range z > 0 and −∞ < x, y < ∞.
The total free energy functional F = Fm + Fb is given by
the sum of the membrane contribution, Fm (in the absence
of the electrostatics contribution), and the bulk contribu-
tion, Fb. The former is given by

Fm

T
=

∫

d2x
[

f(φ) +
c

2
(∇∥φ)2

]

, (1)

where T is the temperature (we have set the Boltzmann
constant kB to unity), f(φ) is the scaled free energy (with-
out the electrostatic contribution) per unit area for a ho-
mogeneous state, and the second term is the standard
squared-gradient form with a positive dimensionless co-
efficient c. Note that ∇∥ = (∂x, ∂y) is the 2D gradient
operator.

The charged lipids in the membrane and the ions in
the solvent generate a gradient of the electrostatic po-
tential Ψ(X) satisfying the Poisson equation, ε∇2Ψ =
−4πe(n+ − n−), where ε is the dielectric constant of

A-lipid

B-lipid

1:1 electrolyte solution
dielectric constant

Fig. 1: Schematic illustration of a cross section of a charged
membrane in an electrolyte solution of the dielectric constant ε.
The electric charges of A-lipid and B-lipid are eZA and eZB,
where ZJ (J = A, B) is the valence number and e is the ele-
mentary charge.

water, and ∇ = (∂x, ∂y, ∂z) is the 3D gradient operator.
The areal charge density of the membrane is given by
σ(φ) = [ZB + (ZA − ZB)φ]/a2 in units of e. Then the
boundary condition at z = 0 is ε∂zΨ|z=0 = −4πeσ(φ).
The bulk part of the free energy Fb consists of the entropy
of ions and the electrostatic energy,

Fb

T
=

∫

d3X

[

∑

i=±

ni{ln(niλ
3
i ) − 1} +

ε

8πT
(∇Ψ)2

]

, (2)

where λi is the thermal de Broglie length of the i-th ion
species.

In equilibrium, the ion densities n1 and n2 approach to
a common constant value n∞ as z → 0. The electrostatic
potential Ψ also becomes constant far from the mem-
brane (without loss of generality, we can assume Ψ → 0
as z → ∞). We then introduce the grand potential
Ω = F −

∫

d2x
∑

i niµi∞−h
∫

d3X (φ−φ0), where µi∞ =
T ln(n∞λ3

i ) is the ion chemical potential far from the mem-
brane and φ0 is the average composition. In the mean-field
theory, the equilibrium state is obtained by minimizing Ω
with respect to both ni and φ. With the aid of the rela-
tion δ(ε|∇Ψ|2) = 2ε∇ · (Ψ∇δΨ) + 8πeΨ(δn+ − δn−), we
derive the nonlinear PBE as the minimization condition
with respect to ni [26]

∇2ψ = κ2 sinhψ, (3)

where ψ = eΨ/T is the dimensionless potential, and
κ = [8πe2n∞/(εT )]1/2 is the Debye wave number.
Minimization with respect φ yields

h

T
≡

∂f

∂φ
− c∇2

∥φ + ψ
∂σ

∂φ
= const. (4)

Fluctuations about the homogeneous state. – At
high temperatures, the translational entropy of the lipid
molecules dominates inter-molecular interactions, leading
to a homogeneous state, φ = φ0. In this state, all the
variables are constant in the lateral xy-direction, while
ni and ψ depend on z because of the electric charges of
the lipid molecules. Therefore ψ obeys a one-dimensional
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(1D) PBE ∂2
zψ = κ2 sinhψ with the boundary condition

∂zψ|z=0 = −4πℓσ0, where σ0 = σ(φ0) and ℓ = e2/εT
is the Bjerrum length. It is convenient to introduce a
dimensionless number η = κ/(2πℓσ0) which can be either
positive or negative. Note here that the Gouy-Chapman
length is given by b = 1/(2πℓ|σ0|) = |η|/κ.

The 1D PBE has a well-known exact solution [26],

ψ0(z) = 2 ln
1 + Γe−κz

1 − Γe−κz
. (5)

In the above, the dimensionless number Γ is the
root of Γ2 + 2ηΓ − 1 = 0 and is given by
Γ = −η ±

√

η2 + 1 (η ≷ 0). The ion densities in equilib-
rium are expressed as n±0(z) = n∞e∓ψ0(z). In the DH
condition |η| ≫ 1 which corresponds to a high salt and/or
small surface charge condition, we have Γ ≃ 1/(2η) and
obtain ψ0 ≃ 2e−κz/η.

In order to see the fluctuations about the homoge-
neous state, we superimpose the variations, φ0 → φ0 +
δφ(x) and ni0(z) → ni0(z) + δni(X). We then exam-
ine the free energy deviation ∆F up to the bilinear order
in the variations, δφ and δni. Since we are interested in
the fluctuations of δφ, we further minimize ∆F with re-
spect to δni. Here we introduce the in-plane Fourier trans-
form of a function g(x) as gk =

∫

d2x e−ik·xg(x), where
k = (kx, ky) is the 2D wave vector. In the Fourier space,
∆F is written as

∆F

T
=

1

2

∫

d2k

(2π)2

[

∂2f(φ0)

∂φ2
0

+ ck2 + θ2
0Pk(0)

]

|δφk|2,

(6)

where k = |k| and θ0 = ∂σ(φ0)/∂φ0 = (ZA − ZB)/a2. In
the above, Pk(0) = Pk(z = 0) where Pk(z) satisfies

[

∂2
z − k2 − κ2 cosh ψ0(z)

]

Pk(z) = 0, (7)

with the boundary condition ∂zPk(z)|z=0 = −4πℓ. One
can easily find that ψ0 + θ0

∫

d2k/(2π)2 eik·xPk(z) δφk

is a solution of the PBE under the boundary condition
∂zψ(z)|z=0 = −4πℓ[σ0 +θ0δφ(x)] when the surface charge
heterogeneity θ0 δφ(x) is sufficiently small.

In the DH condition |η| ≫ 1 , we can set cosh ψ0 ≃ 1 in
eq. (7) and obtain

Pk(z) ≃
4πℓ√

k2 + κ2
exp

(

−z
√

k2 + κ2
)

. (8)

The above expression was obtained in ref. [20] and used in
simulations [13]. Notice that θ2

0Pk(0) in eq. (6) does not
depend on φ0 within the DH condition.

Perturbation solution of nonlinear PBE. – In
order to go beyond the DH approximation and discuss
general values of η, we may seek the solution of eq. (7)
perturbatively in powers of k2. This is because the solu-
tion is P0(z) = ∂ψ0/∂σ0 for k = 0. Introducing the di-
mensionless quantities z̄ = κz and k̄ = k/κ, we substitute

Pk(z) = R(z̄)P0(z) into eq. (7) and obtain

R′′ + (ln P 2
0 )′R′ − ϵ̂k̄2R = 0, (9)

where the prime denotes the derivative with respect to
z̄, and we have introduced a “book keeping parameter” ϵ̂
which will be set equal to unity at the end. We expand R
in powers of ϵ̂ such that R = R0 + ϵ̂R1 + · · · . Then up to
the first order in ϵ̂, we have

R′′
0 + (ln P 2

0 )′R′
0 = 0, (10)

R′′
1 + (ln P 2

0 )′R′
1 = k̄2R0, (11)

and we may obtain the perturbation solution. However, it
turns out that a secular term appears in ϵ̂R1, and hence
the perturbation solution is only locally valid in the vicin-
ity of the boundary, but not uniformly valid in the entire
region z > 0.

In order to cure the breakdown of such a perturbation
calculation, apparently different but almost equivalent
ways have been developed [27–30]. Among these we use
the renormalization group (RG) method in refs. [29,30].
Given the solution G(z̄0) at any point z̄0 > 0, we first seek
the solution of eqs. (10) and (11) such that Pk = RP0 → 0
as z̄ → ∞. Some calculation yields

R(z̄; z̄0) =

G

[

1 −
ϵ̂k̄2

2

{

(z̄ − z̄0) +
Γ2

2

(

e−2z̄ − e−2z̄0

)

}]

+ O(ϵ̂2).

(12)

Here the term proportional to ϵ̂(z̄ − z̄0) is a secular term
that becomes large as z̄ − z̄0 is increased, leading to the
breakdown of the regular perturbation calculation. To ob-
tain a uniformly valid solution, we impose in eq. (12) the
RG equation, ∂R/∂z̄0|z̄=z̄0

= 0. This yields the differen-
tial equation for G as

∂G

∂z̄0
+

ϵ̂k̄2

2

(

Γ2e−2z̄0 − 1
)

G = 0. (13)

Using the solution G(z̄0), we obtain the improved solution
as R(z̄; z̄0 = z̄) = G(z̄), which is uniformly valid up to
the order of ϵ̂ [30]. Geometrically, the improved solution
G(z̄) is the envelope of the family of curves {R(z̄; z̄0)}z̄0

parametrized by z̄0. It is tangent at each point z̄ = z̄0 to
a member of the family R(z̄; z̄0) that is locally valid in the
vicinity of z̄0 [29].

Solving eq. (13) under the boundary condition
∂Pk/∂z̄|z̄=0 = −2/(ησ0), we finally obtain Pk(z) as

Pk(z) ≃
P0(z)

1 + γk̄2
exp

[

−
k̄2

2

{

z̄ +
Γ2

2

(

e−2z̄ − 1
)

}]

, (14)

where γ = η2Γ/(η + Γ) ≥ 0. For the DH condition |η| ≫
1, eq. (14) reduces to eq. (8) within the approximation
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(k2 + κ2)1/2 ≃ κ(1 + k̄2/2). For a general value of η,
it can be shown that eq. (14) provides a good approxi-
mation for any z > 0 if k̄ ≪ 1. Even if k̄ ≪ 1 is not
satisfied, it is still a good approximation for sufficiently
small z satisfying k̄2(ηΓ + Γ2z̄)2 ≪ 1. This region, where
eq. (14) is accurate for not so small k̄, indeed exists if
(k̄ηΓ)2 ≪ 1. For a low salt and/or large surface charge
condition, |η| ≪ 1, the region is given by k2(b + z)2 ≪ 1
if (kb)2 ≪ 1. Equation (14) is enough for our purpose be-
cause we only need Pk(0) to calculate the compositional
structure factor (see eq. (6)).

Conditions for microphase separation. – Using the
definition p = P0(z = 0) = 2/[σ0(Γ + η)], we substitute
Pk(0) ≃ p/(1 + γk̄2) into eq. (6) and obtain the structure
factor S(k) = ⟨|δφk|2⟩. Here both p and γ are positive.
The positivity of p means that the electrostatic interaction
tends to prevent the instability towards a macrophase sep-
aration [23]. In addition, the positivity of γ implies the
possibility of the microphase formation when the temper-
ature is decreased. If c < θ2

0pγ/κ2 is satisfied, S(k) takes
a maximum value at an intermediate wave number

k∗ =
κ

γ1/2

[

(

θ2
0pγ

cκ2

)1/2

− 1

]1/2

. (15)

When the temperature is decreased to a certain value,
S(k∗) diverges and the modes δφk with |k| = k∗ become
unstable. This leads to the microphase separation charac-
terized by a typical wave length 2π/k∗.

For the sake of further discussion, we assume that
the free energy density f(φ) is given by the Bragg-
Williams form, f(φ) = [φ ln φ + (1 − φ) ln(1 − φ) +
χφ(1 − φ)]/a2, where χ is dimensionless and is roughly
proportional to 1/T . With this choice, the instability
condition towards the microphase separation is written as
χ > χ∗ with

χ∗ = χs −
a2cγ

2κ2
(k∗)4. (16)

Here χs = [{φ0(1 − φ0)}−1 + a2θ2
0p]/2 is the spinodal for

the macrophase separation. Equation (16) defines the mi-
crophase endpoint (MEP) [25], χE = χ∗ = χs, at which
an end of the macrophase spinodal meets the microphase
spinodal. The MEP can be a Lifshitz point when it is also
the critical point of the macrophase separation. We note
that the critical point has been previously discussed, and it
is located at (φ0, χ)c = ((3−

√
3)/2, 2+

√
3) ≈ (0.634, 3.73)

in the low salt limit [21–23].

Membranes composed of anionic and neutral
lipids. – Following the previous experiments [15–19,24],
we hereafter set ZA = −1 and ZB = 0 (note that cationic
lipids are not so common in biomembranes). For typical
lipid membranes in water, we set ℓ = 7 Å and a = 8 Å [31,
32]. Then we have φ0b = a2/(2πℓ) = 1.46 Å. The Debye
wave number κ is usually in the range 10−3–10−1 Å−1 for
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 0.8

 1.2

10-2 10-1 1 10-2 10-1 1

 (a)  (b)

Fig. 2: (Colour online) The scaled characteristic wave number
k∗a as a function of the scaled Debye wave number κa for (a)
c = 0.15 and (b) 0.4. The filled circles are the microphase
endpoints (MEPs) at which k∗a vanishes, and correspond
to κE.

1:1 electrolyte solutions. The parameter η < 0 is then esti-
mated to be φ0|η| ∼ 10−3–10−1. Hence the DH condition
|η| ≫ 1 is not satisfied even for a high salt solution, except
for a very small fraction φ0 of the charged lipid. In neutral
membranes, the line tension τ ∼ T (c/a2)1/2 between the
coexisting phases has been measured to be several pN [33].
Then we may estimate that c is in the range 0.1–1.

In the present case, we can rewrite eq. (15) as

k∗ =
κ

γ1/2

[

{

|Γ|(φ∗/φ0)3

(Γ + η)2

}1/2

− 1

]1/2

(17)

with φ∗ = [a2/(2cπ2ℓ2)]1/3. Here the factor |Γ|/(Γ + η)2

is a monotonic decreasing function of |η| and is less than
unity. Therefore, k∗ cannot exist for any κ when φ0 > φ∗.
In fig. 2, the maximum wave number k∗ is plotted as a
function of κ, where we set (a) c = 0.15 (corresponding to
φ∗ = 0.76) and (b) c = 0.4 (φ∗ = 0.4). For κb ≪ 1, we
may set η ≃ 0, Γ ≃ −1 and γ ≃ η2 in eq. (17) to obtain
k∗b ≃ [(φ∗/φ0)3/2 − 1]1/2, which is independent of κ. As
κ is increased, k∗ decreases and eventually vanishes at
κ = κE(φ0) (marked with filled circles in fig. 2) when the
MEP condition (φ∗/φ0)3 = (Γ + η)2/|Γ| holds. It should
be noted that the predicted value of 2π/k∗ corresponds to
the scale in the range from several to tens of nanometers
unless κ is very close to κE.

In figs. 3(a) and (b), we plot χ∗ as a function of κ for
c = 0.15 and 0.4, respectively. All the curves for dif-
ferent φ0 values exhibit non-monotonic dependence on κ
(though it is not apparent for φ0 = 0.74 in (a) and for
φ0 = 0.53 in (b)). When κ is varied for fixed φ0 values,
one can show that χ∗ takes a maximum value when κ
satisfies c = 2b2θ2

0Γ
3/σ0 if the inequality c < 2b2θ2

0/|σ0|
holds. In these plots, the MEP is located at χE = χ∗(κE)
(marked with filled circles). For κ < κE, the inequal-
ity χs > χ∗ always holds for each curve, indicating that
the macroscopic (k = 0) mode is more stable than the
modes with the characteristic non-zero wave number k∗

(see eq. (16)).
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Fig. 3: (Colour online) Stability diagrams in the (κ, χ)-plane
((a) and (b)) and in the (φ0, χ)-plane ((c) and (d)). The pa-
rameters are c = 0.15 in (a) and (c), and c = 0.4 in (b) and
(d). The spinodal lines of the microphase separation are plot-
ted with solid lines, while those of the macrophase separation
are shown by the dotted lines. The MEP for each curve is
marked with a filled circle. The four crosses in (c) correspond
to the numerical simulations in fig. 4.

In figs. 3(c) and (d), we plot χ∗ as a function of φ0

for c = 0.15 and 0.4, respectively. For κa = 0.01 and
for φ0 " 0.01, we are allowed to set Γ ≃ −1 and η ≃ 0
in eq. (17). In this case, the MEP is almost located at
(φ0, χ)E = (φ∗, χ∗(φ∗)). For a larger value of κ, φE ex-
hibits a downward shift. Because k∗ does not depend
on φ0 within the DH approximation, it cannot predict
any MEP on the (φ0, χ)-plane (see also below eq. (8)).
Indeed, within the DH approximation, the condition for
the existence of k∗ is given by c < 2πℓθ2

0/κ3 that is
independent of φ0. With our choice of ℓ and a, this in-
equality becomes κa < 1.76c−1/3 and is always satisfied
for the parameter values used in figs. 2 and 3. In general,
the DH approximation overestimates the possibility of the
microphase separation.

Numerical simulation. – Finally, we numerically in-
tegrate the equilibrium conditions, eqs. (3) and (4). We
set ZA = −1 and ZB = 0 as before. We prepare in
the xy-plane a membrane of size (85.3a)2 that is in con-
tact with an electrolyte solution at z = 0. The size Lz

of the solvent container is set to 16.25a. At z = Lz,
we impose the boundary condition, ψ(Lz) = 0, which
is justified when κLz ≫ 1. A periodic boundary con-
dition is employed in the lateral xy-directions. We then
solve simultaneously the fictitious dynamic equations,
∂φ/∂t = −h + ⟨h⟩ and ∂ψ/∂t = ∇2ψ − κ2 sinhψ, where
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Fig. 4: (Colour online) Equilibrium composition profiles φ(x).
The membrane size is measured in units of a. The values of
χ and φ0 are (A) (φ0, χ) = (0.55, 3.72), (B) (0.6, 3.67), (C)
(0.68, 3.9) and (D) (0.73, 4.05) while c = 0.15 and κa = 1.0
are fixed. These four cases are marked with crosses (A)–(D) in
fig. 3(c). Corresponding to these cases, we have (A) (k∗a, χ∗) =
(1.90, 3.65), (B) (1.65, 3.64) and (C) (0.219, 3.72), whereas in
(D) the characteristic wave number k∗ does not exist and the
macrophase separation occurs at χs = 3.87.

⟨· · · ⟩ =
∫

d2x (· · · )/
∫

d2x denotes the areal average in the
membrane. Although the dynamics itself has no physical
meaning, the equilibrium pattern can be efficiently ob-
tained as a stationary state.

In fig. 4, we present the numerically obtained equilib-
rium profiles of φ(x). We examine the phase separation
by varying the composition φ0 and the χ values as marked
with the four crosses (A)–(D) in fig. 3(c). As expected,
we clearly see microphase separations in (A)–(C) and a
macrophase separation in (D). In (A) and (B), hexagonal
and stripe patterns are obtained, respectively. In these
two cases, the parameters are chosen so that the modes
with k = k∗ are unstable wheareas the macroscopic mode
(k = 0) is linearly stable. The characteristic lengths are
approximately (A) 2.6 nm and (B) 3.0 nm within our pa-
rameters. In fig. 4(C), where both macroscopic (k = 0)
and intermediate (k = k∗) modes are unstable, there is no
periodic pattern but ring-like aggregates are formed. For
the parameter values in (C), a macrophase separated state
is also a metastable state where the composition profile is
similar to that in (D). We have found that the value of
the grand potential Ω for the microphase is smaller than
that of the macrophase. This suggests that the transi-
tion between the micro and the macro phases is discon-
tinuous when the parameters (φ0, χ and κ) are varied. In
ref. [12], the authors have discussed the strong segregation
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limit of membranes with no net charge. Assuming the
DH approximation, they also found a discontinuous tran-
sition between the micro and the macro phases as κ is
varied.

Conclusion. – In this letter, we have investigated the
microphase formation in charged membranes, where the
membrane can have non-zero net charge. Without assum-
ing the DH condition, we obtained the solution eq. (14)
of the nonlinear PBE when the charge heterogeneity in
the membrane is small. Using the solution, we have dis-
cussed the microphase separation in a binary membrane
composed of anionic and neutral lipids, for which the DH
approximation is not justified except for a very small frac-
tion of the charged lipid. Our theory reveals that the
characteristic wave number k∗, at which S(k) takes a max-
imum value, corresponds to the scale in the range from
several to tens of nanometers except in the vicinity of the
MEP. This explains why microphase separated structures
have not been observed by optical microscopy measure-
ments. We further predict a charge-induced MEP in the
composition-temperature (φ0, χ)-plane, which cannot be
obtained within the DH approximation. The numerical
simulation also shows that our model exhibits both the
microphase and macrophase separations depending on the
composition and/or the temperature.

We make further remarks. i) For small scales corre-
sponding to our predicted values of k∗, it would be prefer-
able to use a microscopic density functional free energy
for Fm rather than the mean field f(φ) and the gradient
expansion form in eq. (1). Nevertheless, we believe that
the present approximation provides reliable predictions of
the nano-domain formation. ii) The DH approximation
is valid for a very small charge density σ0 in the homo-
geneous state and/or in the weak segregation regime, as
discussed in this letter. However, even if σ0 is very small,
it is not justified in the strong segregation regime where
the charge density in each domain becomes large. With-
out assuming the DH condition, Naydenov et al. discussed
the strong segregation regime (as well as the weak segre-
gation regime) of a membrane that has no net charge,
i.e., σ0 = 0 [14]. In the weak segregation limit where the
DH approximation is justified for membranes with σ0 = 0,
their result coincides with eq. (8). iii) The solution eq. (14)
has further applications, such as the electrostatic contribu-
tion to the bending rigidity [20], and the charge regulation
effect [26] on a surface which has a spatially heterogeneous
ionizable group distribution.
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