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Dynamics of a bilayer membrane coupled to a two-dimensional cytoskeleton: Scale transfers of
membrane deformations
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We theoretically investigate the dynamics of a floating lipid bilayer membrane coupled with a two-dimensional
cytoskeleton network, taking into account explicitly the intermonolayer friction, the discrete lattice structure of the
cytoskeleton, and its prestress. The lattice structure breaks lateral continuous translational symmetry and couples
Fourier modes with different wave vectors. It is shown that within a short time interval a long-wavelength deforma-
tion excites a collection of modes with wavelengths shorter than the lattice spacing. These modes relax slowly with
a common renormalized rate originating from the long-wavelength mode. As a result, and because of the prestress,
the slowest relaxation is governed by the intermonolayer friction. Conversely, and most interestingly, forces
applied at the scale of the cytoskeleton for a sufficiently long time can cooperatively excite large-scale modes.
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I. INTRODUCTION

In biological materials, much attention has been paid to
the dynamics from the viewpoint of nonequilibrium physics,
because of the high complexity of composition, hydrodynamic
interactions, active components, etc. [1–3]. In particular, shape
relaxation and fluctuations of lipid bilayer membranes have
intensively been studied both in, or near, equilibrium [4–6]
and far from equilibrium [7–12]. The dynamics of a bilayer
membrane is determined by many factors, such as the viscosity
of the surrounding fluid [4], the membrane bending rigidity,
the intermonolayer friction caused by relative lateral motions
of two monolayers [6,13], and possibly active inclusions [7].
Red blood cell (RBC) membranes have further complexity
because of the cytoskeleton which is attached to the lipid
bilayer. It has been argued that the cytoskeleton plays crucial
roles in both the statics and the dynamics, e.g., drastic effective
tension increase in equilibrium [14–17], tension decrease in
the presence of adenosine triphosphate (ATP) [8,12], and
enhanced nonequilibrium fluctuations on the scale of the
cytoskeleton mesh size [9].

In RBCs, the cytoskeleton consists of spectrin filaments
forming a prestressed [12] two-dimensional (2D) triangular
lattice with a protein at each vertex embedded in the bilayer
membrane. The lattice spacing a ≈ 100 nm is quite large, and
therefore what matters in the membrane collective dynamics
is not only the modes whose wavelengths are much larger
than a, but also those having wavelengths smaller than a. To
understand simultaneously the dynamics on such a wide range
of spatial scales, we need to take into account explicitly the
discrete nature of the lattice structure. The latter breaks lateral
continuous translational symmetry, giving rise to a coupling
between modes on different length scales and thus to a rich
dynamical behavior.

This paper is organized as follows. In Sec. II, our model
free energy is constructed on the basis of the previous theories
for a bilayer membrane (without a cytoskeleton) [6] and for a
prestressed 2D cytoskeleton coupled to a membrane [16]. In
Sec. III, following Ref. [6], the hydrodynamic equations are
introduced, where we take into account the hydrodynamic
flows of the surrounding fluid and of the monolayers and

intermonolayer friction between the monolayers. Then we
obtain the coupled equations for the membrane variables by
integrating out the flow velocity fields. In Sec. IV, we discuss
how the cytoskeleton alters the dynamics of the membrane
when initially a large-scale deformation is imposed and when
force(s) are applied to small-scale mode(s) for a long time
(� 10 ms). Section V is devoted to a discussion and summary.
We also present our detailed calculations in the appendixes.

II. FREE ENERGY

We consider out-of-plane deformations of a RBC mem-
brane patch described by its height h(x,y) above a reference
plane z = 0. Our model free energy is given by F = F0 + Fc

as follows. We take into account the areal compression which is
necessarily coupled with h due to the finite thickness d ≈ 1 nm
of the monolayers [6]. Then the bilayer membrane free energy
F0 is given by

F0 =
∫

d2x

{
κ

2
(∇2h)2 + σ

2
(∇h)2

+ k

2

∑
ε=±

[ρε + εd(∇2h)]2

}
, (1)

where κ is the bare bending rigidity, σ the bare tension, k the
areal compression modulus, and ∇ = (∂x,∂y). In the above, ρ+
(ρ−) denotes the dimensionless projected excess lipid density
in the upper (lower) monolayer [6].

Note that in our paper the surface tension is not considered
as a constant. The quantity σ in Eq. (1) is only the background
tension for a flat membrane with homogeneous, reference
lipid density (ρ± = 0). The actual tension fluctuates about
the zeroth-order tension σ according to a model that is
closely related to the area-difference-elasticity model [18].
Indeed, the term proportional to k in Eq. (1) that involves
the variables ρ+ and ρ− is the excess energy associated
with a local compression or dilation of the lipids in each
monolayer. The actual tension (without the cytoskeleton) is
σ + k(ρ+ + d∇2h) and σ + k(ρ− − d∇2h) in the upper and
lower monolayers, respectively.
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(b) Cytoskeleton lattice (c) Reciprocal lattice
FBZ
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FIG. 1. (a) Illustration of the model red blood cell (RBC)
membrane. (b) Cytoskeletal network. (c) Reciprocal lattice. The
yellow region represents the first Brillouin zone (FBZ).

The other contribution, Fc, arises from the membrane-
cytoskeleton coupling. We assume, to simplify, that the
cytoskeleton network is a uniform triangular lattice without
defects. An anchoring protein at each lattice site is embedded
in the membrane and interacts with its nearest neighbor
through an effective spring of relaxed length a0 and stiffness
ks [Fig. 1(a)]. In the ground state (ρ = h = 0), the network
forms a regular triangular lattice, and the lattice points {R�} are
expressed in terms of the primitive lattice vectors eα (α = 1,2)
as R� = Rα

� eα , with Rα
� ∈ Z positive or negative integers [see

Fig. 1(b)]. The lattice spacing is a = |eα|. If the out-of-plane
deformation of the membrane is sufficiently small, Fc is given
by [16]

Fc = ν

4

∑
�

∑
n

[h(R�) − h(R� + n)]2, (2)

where ν = ks(1 − a0/a) is the effective stiffness of the
harmonic potentials associated with the out-of-plane defor-
mations, and

∑
n denotes the sum over the nearest-neighbor

sites. Note that ν is nonzero only if the lattice is prestressed
(a �= a0). In Ref. [12], as a result of fitting their experimental
data, it has been shown that the cytoskeleton in healthy
RBCs is naturally stretched (by about 4%), while the bare
membrane tension can be negative. Let us introduce the
in-plane Fourier transform asFq[· · · ] ≡ ∫

d2x (· · · )e−iq·x and
the reciprocal vectors eα satisfying eα · eβ = δα

β , the Kronecker
δ [see Fig. 1(c)]. Because Fc breaks the lateral continuous
translational symmetry, modes with different wave vectors are
coupled to one another. As shown in Appendix A, the modes
coupled to a given q belong to the subset

Qq = {q + 2πmαeα|mα ∈ Z}. (3)

III. DYNAMIC EQUATIONS

Following Seifert and Langer [6], we regard each mono-
layer as a compressible 2D fluid having the shear viscosity
μ and the bulk viscosity ζ . The upper and lower monolayers

can have different fluid velocities, v+ and v−, respectively
[Fig. 1(a)]. The full dynamic equations consist of (i) lateral
force balance for each monolayer, (ii) force balance normal to
the bilayer, and (iii) the continuity equation for lipids in each
monolayer.

We use the Stokes equation for the solvent velocity field V
and the pressure field p, with the shear viscosity η,

η∇̂2V − ∇̂p = 0, ∇̂ · V = 0, (4)

where ∇̂ = (∂x,∂y,∂z) is the 3D nabla operator. No-slip
boundary condition is employed at the membrane surface,
v±

i = Vi (i = x,y) and Vz = ∂h/∂t at z → 0±. We also
impose V → 0 and p → p0 as z → ±∞. The 2D viscous
stress tensors in the monolayers are given by

τ±
ij = μ(∂iv

±
j + ∂jv

±
i ) + (ζ − μ)δij∇ · v±, (5)

where the superscript “+” (“−”) denotes the upper (lower)
monolayer. Then the lateral force balance equation in each
monolayer reads

−∂i

(
δF

δρ±

)
+ ∂j τ

±
ij ± T ±

iz ∓ b(v+
i − v−

i ) = 0, (6)

where T +
ij (T −

ij ) is the stress tensor Tij = −pδij + η(∂iVj +
∂jVi) in the solvent fluid evaluated at z → 0+ (z → 0−). The
last term is due to the intermonolayer friction, with the friction
coefficient b [6]. In the normal direction, the force exerted by
the surrounding fluid is balanced with the restoring force of
the membrane,

T +
zz − T −

zz = δF

δh
. (7)

At linear order in v± and ρ±, which are both considered to be
small, the continuity equation in each monolayer is given by

∂ρ±

∂t

 −∇ · v±. (8)

The velocities, V and v±, can be eliminated from the
dynamic equations by integrating the Stokes equations along
z for each mode q (see Appendix B ). This yields coupled
linear equations for ĥ ≡ h/d and ρ ≡ (ρ+ − ρ−)/2:

4ηd2q
∂ĥ(q,t)

∂t
= −Fq

[
δF

δĥ

]
+ uh(q,t), (9)

2c(q)

q2

∂ρ(q,t)

∂t
= −Fq

[
δF

δρ

]
+ uρ(q,t), (10)

where c(q) = 2b + 2ηq + (μ + ζ )q2, with q = |q|. We
have added uh and uρ , representing external forces applied
mechanically (e.g., by active molecules) which act on the
variables ĥ and ρ, respectively. Since Fq[δF/δh] includes
ĥ(q ′) for ∀ q ′ ∈ Qq , these equations actually consist of sets
of coupled equations for the variables {ĥ(q ′),ρ(q ′)} in each
set Qq (see Appendix A ).

Without the cytoskeleton, the modes for different wave
vectors are not coupled in Eqs. (9) and (10). Then, ĥ(q)
and ρ(q) exhibit two relaxation rates, γ

(0)
+ (q) > γ

(0)
− (q),

associated with some linear combinations of ĥ(q) and ρ(q).
Seifert and Langer discussed these relaxation modes for
vanishing tension [6]. They found a crossover wave number
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TABLE I. List of the parameter values used in numerical calculations.

σ κ k d ν a η b μ + ζ

(N/m) (J) (N/m) (m) (N/m) (m) (J s/m3) (J s/m4) (J s/m2)

10−11 2 × 10−20 7 × 10−2 10−9 10−6 10−7 10−3 2 × 108 2 × 10−9

qc = 2ηk/(bκ̃) ≈ 4.4 × 106 m−1, at which the relaxation be-
havior of the membrane changes qualitatively. Here we set κ =
2 × 10−20 J as in [15] (the value of κ measured in experiments
lies in quite a wide range, 1 to 30 × 10−20 J [4,8,12,17],
but the following results remain almost unchanged even with
these different values). For large scales satisfying q 
 qc, the
rates correspond to ρ relaxing quickly followed by h relaxing
slowly, with ρ being slaved [19]. For small scales, q � qc,
conversely, they correspond to h relaxing quickly followed by
ρ relaxing slowly, with h being slaved. Hence, the dynamics on
the small scales is dominated by the inter-monolayer friction,
whereas that on the large scales is dominated by the solvent
viscosity. In the presence of tension, their results hold for σ 

σc ≡ (2ηk)2/(κ̃b2), except at very large scales (see Refs. [19–
21] and Appendix C). However, for σ � σc the dynamics is
dominated at all scales by the intermonolayer friction, with
γ

(0)
+ 
 (σq + κq3)/(4η) > γ

(0)
− ≈ kq2/(2b) [19].

IV. RESULTS

A. Relaxation of a large-scale deformation

The cytoskeleton shifts the mode relaxation rates by an
amount that depends on the prestress ∼ν, and at the same times
it couples all the modes belonging to a common set Qq . Let us
first discuss how the rates of the large-scale modes, with q 

qc 
 2π/a, are shifted by the cytoskeleton. For such modes,
the dependence on the direction of q is negligible. In the
following, analytical expressions will be given systematically
at first order in a perturbative expansion in a power series of ν

(see Appendix C ). The parameter values used in the following
numerical calculations are summarized in Table I.

From the dynamic equations (9) and (10), we find that the
rates of the large-scale modes, γ+ > γ−, are shifted according
to

γ+ 
 σeffq + κeffq
3

4η
, γ− 


(
k

2b
+

√
3d2b

4η2
ν

)
q2, (11)

where σeff = σ + √
3ν and κeff = κ − √

3νa2/16 are the
tension and the bending rigidity renormalized by the
cytoskeleton [12,16]. Note that the fast and slow rates
have been exchanged with respect to their bare value
γ

(0)
+ 
 kq2/(2b) > γ

(0)
− 
 (σq + κq3)/(4η) because we

anticipate σeff � σc > σ for large-enough ν. The other rates
γ±(q ′) of the subset q ′ ∈ Qq associated with q are also
shifted from their bare values γ

(0)
± (q ′); they correspond to

wavelengths comparable to or smaller than the cytoskeleton
mesh size and are much faster than those in Eq. (11). Our
detailed calculations show that the shifts of these rates are
small (see Appendix C), but this does not mean that the
small-scale modes are not affected by the cytoskeleton

The relaxation of a large-scale mode q excites all the small-
scale modes in Qq (Fig. 2). To investigate this effect, we set the
initial condition ĥ(x) = eiq·x and ρ(x) = 0, with q = 106 m−1

in the direction q/q = (
√

3/2,1/2), and we integrate numer-
ically the dynamical equations up to the cutoff 20 × π/a, of
the order of the inverse membrane thickness. Experiments
indicate σeff ≈ ν ≈ 10−7–10−5 N/m, with σ very small or
even negative [5,10,12,17]. Accordingly, besides the values
already given, we set σ = 10−11 N/m and ν = 10−6 N/m,
yielding κeff = 1.9 × 10−20 J and σeff = 1.73 × 10−6 N/m.
We study the coupled evolution of ĥ and ρ for q and for
small-scale modes q ′ ∈ Qq . In Fig. 2, we present as an example

(c)
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FIG. 2. Relaxation of a (normalized) large-scale deformation
ĥ(x) = eiq·x . (a) Short-time behavior of the large-scale modes ĥ(q)
and ρ(q), and that of the small-scale modes ĥ(q ′) and ρ(q ′) with
q ′ = q + 2πe2. (b) Long-time behavior of the same variables.
(c) Schematic pictures of the process. Although the amplitude of
the excited small-scale mode is small, a large effective tension
σeff changes qualitatively the large-scale dynamics such that it is
dominated by the intermonolayer friction.
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only q ′ = q + 2πe2 
 2πe2, as we find the other small-scale
modes in Qq also exhibit a similar behavior. In the short
time interval 0 < t 
 1/γ±(q ′) ≈ 1/γ

(0)
± (q ′), the small-scale

modes ĥ(q ′) and ρ(q ′), that are initially zero, are excited, while
ĥ(q) almost remains unchanged [Figs. 2(a) and 2(c)]. All the
excited small-scale modes rapidly approach their respective
quasiequilibrium states ĥqe and ρqe, which minimize the free
energy for a fixed value of ĥ(q), given by

ĥqe(q ′; ĥ(q)) = ρqe(q ′; ĥ(q))
d2q ′2 
 −2νĥ(q)Kq√

3κa2q ′4 , (12)

where Kq = ∑
n(1 − eiq·n). Figure 2(b) illustrates the long

time evolution of the system. For 1/γ
(0)
± (q ′) 
 t � γ −1

+ , ĥ(q),
ĥ(q ′), and ρ(q ′) decay with the common rate γ+. Then, around
t ≈ γ −1

+ , ĥ(q) follows the dynamical quasiequilibrium value
ĥ

ρ
qe(q; ρ(q,t)) that minimizes the free energy at fixed ρ(q,t).

Finally, for t � γ −1
+ , all the modes decay with the common

rate γ−, with ĥ(q ′), ρ(q ′), and ĥ(q) following their respective
dynamical quasiequilibrium values ĥ(q ′) 
 ĥqe(q ′; ĥρ

qe(q)),
ρ(q ′) 
 ρqe(q ′; ĥρ

qe(q)), and ĥ(q) 
 ĥ
ρ
qe(q; ρ(q,t)) [Figs. 2(b)

and 2(c)]. Suppose in Fig. 2 the initial amplitude of h(q)
is comparable with the mode wavelength, 2π/q ≈ 6.3 μm.
Then the amplitude of the excited small-scale mode h(q ′)
is about 2.4 × 10−5 μm, which is much smaller than the
mode wavelength 2π/q ′ ≈ 8.6 × 10−2 μm and may not be
observable in experiments. This is because an energy cost to
make a deformation with amplitude q ′−1 at the small-scale q ′
is larger than to make a deformation with amplitude q−1 at the
large-scale q. Nevertheless, we notice that the cytoskeleton
alters qualitatively the large-scale dynamics; because of
the cytoskeleton that yields σeff ∼ σc ≈ 3 × 10−6 N/m, the
slowest relaxation process is dominated by the large-scale
compression mode ρ(q) limited by the intermonolayer friction.

B. Large-scale deformation induced by small-scale deformation
via the cytoskeleton

We have seen that large-scale deformations excite the
modes whose scales are comparable to or smaller than the
cytoskeleton mesh. Now a question arises. Can small-scale de-
formations excite large-scale ones? If yes, is the amplitude
of the excited modes large enough to be observable? The
answer is no, if there are no applied forces. This is because the
small-scale modes are much faster than the large-scale ones,
so that the small-scale modes rapidly relax before large-scale
modes are excited. However, if we keep applying forces only
to the small-scale modes for a time longer than the relaxation
time of the large-scale modes, the latter will be excited via
the cytoskeleton. Furthermore, if forces are applied to many
small-scale modes, the amplitude of the excited large-scale
mode can be noticeably large. In fresh RBCs, active molecules
could be the source of these forces, as their characteristic time
is of the order of 1 s [8,12] which is much larger than the
typical relaxation time of the modes for q ∼ 106 m−1. It was
further proposed that the active force is particularly enhanced
on the scales of the cytoskeleton mesh [9].

To study this, we choose again q = 106 m−1, oriented as
before, and we apply a constant force uh(q1) = ū only to

Force
(b)

10-2

1
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104

106

108

10-7 10-5 10-3 10-1 10

(a)

FIG. 3. Time evolution of the membrane shape under a constant
force ū applied to the small-scale mode ĥ(q1), with q1 = q + 2πe1.
All values of ĥ are normalized by ū. The set Qq is chosen as q/q =
(
√

3/2,1/2), with q = 106 m−1. (a) ĥ as a function of t for q, q1, and
q2 = q + 2πe2. (b) Schematic pictures of the process.

ĥ(q1), with q1 = q + 2πe1 ∈ Qq (Fig. 3). The corresponding
wavelengths of q and q1 are then 2π/q ≈ 6.3 μm and
2π/|q1| ≈ 0.87a, respectively. We investigate the response of
ĥ at the large scale q but also at another small scale, q2 =
q + 2πe2 ∈ Qq . With the initial condition ĥ = ρ = 0, all the
modes will be proportional to ū. For t � 1/γ

(0)
± (q1), the small-

scale deformation ĥ(q1) is excited and reaches the stationary
value ĥst(q1) 
 ū/(κd2q4

1 ) minimizing F − (2π )−2ūĥ(q1).
Then, for 1/γ

(0)
± (q1) � t � γ −1

± , the large-scale mode ĥ(q)
gets excited by ĥ(q1) via the cytoskeleton deformation, and
then for t � γ −1

± , ĥ(q) reaches the stationary value

ĥst(q) 
 −�σeff + �κeffq
2

σeff + κeffq2

ū

κd2q4
1

, (13)

where �σeff = σeff − σ and �κeff = κeff − κ . With our choice
of parameters, (�σeff + �κeffq

2)/(σeff + κeffq
2) 
 1, and thus

ĥst(q) 
 −ĥst(q1), consistent with Fig. 3(a). We find that the
other small-scale modes, such as ĥ(q2), are also excited, but
not significantly [Fig. 3(a)].

When a force distribution is applied to multiple small-scale
modes, the magnitude of the excited large-scale mode ĥ(q)
can become much larger than in the case examined above. To
show this, let us consider at each lattice site of the cytoskeleton
active forces inducing some local curvature. Such forces
can formally be derived by adding a “fictitious” potential
U = −∑

� w�

∫
d2xδ(x − R�)∇2h to the free energy. This

yields u(q ′) = q ′2wq , ∀ q ′ ∈ Qq , with wq = ∑
� w�e

−iq·R� .
Note that some force is applied also to the large-scale mode
q. By linearity, the effect of the small-scale modes q ′ on
the large-scale mode q, denoted by δĥ(q), will be enhanced
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by a factor r = ∑′
m1,m2

q2
1/|2πmαeα|2 with respect to the

case shown in Fig. 3, where only the mode q1 was excited.
The sum is taken up to the high wave vector cutoff while
excluding m1 = m2 = 0. With the parameters given above, we
find r ≈ 20. Assuming that the microscopic forces can produce
a deformation of amplitude comparable to the mesh size, i.e.,
h1 
 50 nm [8,9], we expect the large-scale response δh to be
about rh1, which is a sizable deformation of the order of 1 μm.
Note that this scale transfer of membrane deformation requires
applying the small-scale forces for at least about 10 ms (Fig. 3).

V. DISCUSSION AND SUMMARY

In this paper, since we assume only vertical motion of the
quasiplanar RBC patch, and equilibrium dynamics, we neglect
the dissipation due to tangential motion of the cytoskeleton as
well as the cytoskeleton activity that was studied in Ref. [12].
Nevertheless, in Appendix D, we have considered the friction
between the tangential monolayer flow and the anchored pro-
teins, yielding an extra contribution to the lateral force balance
equation. However, in our detailed calculation, it is shown to be
negligible. As for the viscous drag of the spectrin filaments due
to the surrounding fluid, it was also shown to be negligible [12].
For simplicity, we have assumed a quasiplanar membrane,
i.e., small deformations about a flat reference shape. However,
real RBCs are intrinsically curved objects that fluctuate about
a curved reference shape [12,22]. For such cases, not only
ρ = (ρ+ − ρ−)/2 but also ρ̄ = (ρ+ + ρ−)/2 is coupled to
the membrane deformation h [21]. Furthermore, for a curved
membrane, the tangential deformation of the cytoskeleton is
also coupled to h [12]. For the relaxation of ρ̄, we can show
that the intermonolayer friction is not a dissipation source,
while the friction between the anchored proteins and the
monolayers is one of the major dissipation sources for large
scales satisfying 2ηq + (μ + ζ )q2 
 λ/a2. However, in the
relaxation of ρ̄ for a bilayer without the cytoskeleton, the
inertia effect of the surrounding fluid cannot be neglected [6],
so that a more careful study is necessary in the future.

In summary, we have studied the dynamics of RBC mem-
branes modeled as bilayers coupled to a prestressed discrete
elastic network, and subject to viscous dissipation in the
solvent, in each monolayer and between the monolayers. Given
the mesh size of the cytoskeleton (≈100 nm), it is important
from the biological point of view to address the dynamics at
scales both larger and smaller than the cytoskeleton. Because
the latter breaks lateral translational symmetry, each mode
is coupled to all the modes that are congruent modulo a
wave vector of the cytoskeleton’s reciprocal lattice. We have
characterized how the small modes renormalize the relaxation
rates of the large modes. We have found that, because of the
large renormalized tension σeff , the shape relaxation dynamics
on the large scales is dominated by the intermonolayer friction
that has regularly been neglected in the previous theories
on RBC dynamics [12,14,22]. It has been also shown that
applying forces on the small-scale modes for a sufficiently
long time can excite large-scale deformations.

It is informative to measure the correlations between
different Fourier modes, 〈h(q,t)h(q ′,t ′)〉, in order to know the
precise dynamical processes where modes in different scales
are coupled due to the cytoskeleton and also to understand the
behavior of active forces in fresh RBCs.
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APPENDIX A: COUPLING BETWEEN DIFFERENT
FOURIER MODES

Notice that the Fourier modes between different wave
vectors are coupled with each other because the cytoskele-
ton network breaks the continuous translational symmetry.
More precisely, while Fq[δF/δρ] = 2k[ρ(q) − dq2h(q)] in
Eq. (B11) does not couple different Fourier modes,Fq[δF/δh]
in Eq. (B9) couples the Fourier modes in the set Qq =
{q + 2πmαeα|mα ∈ Z}. To see this, we rewrite Eq. (2) as

Fc = 1

2

∫
d2x

ν

2

∑
�

∑
n

δ(x − R�)[h(x) − h(x + n)]2. (A1)

Then we can calculate the Fourier-transformed functional
derivative as

Fq

[
δF

δh

]
= (σq2 + κ̃q4)h(q) − 2kdq2ρ(q)

+ ν
∑

�

∑
n

e−iq·R� [h(R�) − h(R� + n)]. (A2)

Now we use the identity

∑
�

e−iq·R� = (2π )2

√
g

∑
q ′∈Qq

δ(q ′), (A3)

where g = |eα · eβ | is the determinant of the metric tensor in
the primitive vector frame {eα} and is given by g = 3a4/4.
Using this identity, we can rewrite Eq. (A2) as

Fq

[
δF

δh

]
= (σq2 + κ̃q4)h(q) − 2kdq2ρ(q)

+ ν√
g

∑
q ′∈Qq

h(q ′)Kq ′ , (A4)

where Kq = ∑
n(1 − eiq·n). We can clearly see from Eq. (A4)

that in Eq. (9) the Fourier modes in the common set Qq are
coupled to each other. Note that without the cytoskeleton ν = 0
(and without the force terms uh and uρ), Eqs. (9) and (10)
reduce to the equations studied by Seifert and Langer [6].

APPENDIX B: ELIMINATION OF THE VELOCITY FIELDS

In accordance with the in-plane Fourier transform with a
wave vector q, we introduce q⊥ = ez × q, where ez is the
unit vector pointing towards the z direction. Then unit vectors
q̂ and q̂⊥ are defined as q̂ = q/q and q̂⊥ = q⊥/q = ez × q̂,
respectively. The longitudinal and transverse components of
the Fourier transform of V and v± are defined by V‖(q,z) =
q̂ · V (q,z), V⊥(q,z) = q̂⊥ · V (q,z), v±

‖ (q) = q̂ · v±(q), and
v±

⊥(q) = q̂⊥ · v±(q). The Fourier transform of Eq. (4) is
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written as

η
(
∂2
z − q2

)
Vz − ∂zp = 0, (B1)

η
(
∂2
z − q2

)
V‖ − iqp = 0, (B2)

η
(
∂2
z − q2)V⊥ = 0, (B3)

iqV‖ + ∂zVz = 0. (B4)

These equations are solved to obtain

p = p±e∓qz, (B5)

V⊥ = v±
⊥e∓qz, (B6)

Vz =
[
ḣ + p±

2η
z

]
e∓qz = [ḣ ± (ḣ ∓ v±

‖ )qz]e∓qz, (B7)

V‖ = − 1

iq

[
p±

2η
∓ q

(
ḣ + p±

2η
z

)]
e∓qz

= [v±
‖ − (iḣ ± v±

‖ )qz]e∓qz, (B8)

where the upper and the lower signs indicate the solutions for
z > 0 and for z < 0, respectively.

Substituting Eqs. (B5) and (B7) into the Fourier transform
of Eq. (7), we obtain

4ηq
∂h(q)

∂t
= −Fq

[
δF

δh

]
, (B9)

which yields Eq. (9) (without the force term uh). Next, we
use Eq. (B8) to eliminate V‖ and Vz from the longitudinal
component of Eq. (6), and obtain

0 = [2ηq + (μ + ζ )q2]v±
‖ (q) + iqFq

[
δF

δρ±

]

± b[v+
‖ (q) − v−

‖ (q)]. (B10)

The Fourier transform of Eq. (8) relates ∂ρ/∂t = (∂/∂t)(ρ+ −
ρ−)/2 with the longitudinal velocity v‖ as ∂ρ/∂t = −iq(v+

‖ −
v−

‖ )/2. Then Eq. (B10) yields

0 = − 2

iq
c(q)

∂ρ(q)

∂t
+ iqFq

[
δF

δρ+ − δF

δρ−

]
, (B11)

where c(q) = 2b + 2ηq + (μ + ζ )q2. Using the identity
δ(· · · )/δρ = δ(· · · )/δρ+ − δ(· · · )/δρ−, we obtain Eq. (10)
(without the force term uρ).

APPENDIX C: OPERATOR REPRESENTATION AND
PERTURBATION EXPANSION

We seek the relaxation rates and their associated eigen-
modes of Eqs. (9) and (10) as a power series of ν, since
for ν = 0 they can be obtained analytically. It is convenient
to introduce for each Qq a Hilbert space Sq spanned by an
orthonormal set {|h; q ′〉, |ρ; q ′〉 | q ′ ∈ Qq}, and its dual space
S∗

q spanned by an orthonormal set {〈h; q ′|, 〈ρ; q ′| | q ′ ∈ Qq}.
We define a state vector in Sq ,

|�(t)〉q ≡
∑

q ′∈Qq

[ĥ(q ′,t)|h; q ′〉 + ρ(q ′,t)|ρ; q ′〉], (C1)

where ĥ = h/d. Then Eqs. (B9) and (B11) [or Eqs. (9) and
(10) without the force terms uh and uρ] are written as

∂

∂t
|�(t)〉q = −(�SL + ν�h)|�(t)〉q, (C2)

where the linear operators �SL and �h are defined by

�SL(q) =
∑

q ′∈Qq

[
kq ′2

c(q ′)
|ρ; q ′〉〈ρ; q ′| − kd2q ′4

c(q ′)
|ρ; q ′〉〈h; q ′|

+ σq ′ + κ̃q ′3

4η
|h; q ′〉〈h; q ′| − kq ′

2η
|h; q ′〉〈ρ; q ′|

]
,

(C3)

�h(q) = 1√
g

∑
q ′∈Qq

∑
q ′′∈Qq

Kq ′

4ηq ′′ |h; q ′′〉〈h; q ′|. (C4)

Notice that, in the absence of the cytoskeleton (ν = 0),
Eq. (C2) reduces to 0 = |�̇〉q + �SL|�〉q , which was dis-
cussed by Seifert and Langer for vanishing tension σ = 0 [6].

Let us consider the eigenvalue problem

(�SL + ν�h)|e〉 = γ |e〉, (C5)

where γ and |e〉 are the eigenvalue and the eigenvector of
�SL + ν�h, respectively. We expand γ and |e〉 in powers of
ν as γ = γ (0) + νγ (1) + · · · and |e〉 = |e(0)〉 + ν|e(1)〉 + · · · .
The zeroth- and the first-order equations read

�SL|e(0)〉 = γ (0)|e(0)〉, (C6)

(�h − γ (1))|e(0)〉 = (γ (0) − �SL)|e(1)〉. (C7)

For the following perturbation calculation, it is convenient to
introduce the zeroth- and first-order left eigenvectors 〈e(0)†|
and 〈e(1)†|, respectively. These satisfy

〈e(0)†|�SL = 〈e(0)†|γ (0), (C8)

〈e(0)†|(�h − γ (1)) = 〈e(1)†|(γ (0) − �SL). (C9)

Here γ (0) and γ (1) are common to Eqs. (C6) and (C7),
respectively. Note that 〈e(0)†| (〈e(1)†|) is not the Hermitian
conjugate of |e(0)〉 (|e(1)〉), because neither �SL nor �h is a
Hermitian operator.

1. Zeroth order

Since �SL does not couple the Fourier modes of different
wave vectors, we readily obtain the zeroth-order eigenvalues,

γ
(0)
± = q

8ηc(q)
[(σ + κ̃q2)c(q)

+ 4ηkq ±
√

g(q)2 + 32ηk2d2q3c(q)] (C10)

with g(c) = (σ + κ̃q2)c(q) − 4ηkq. Their associated right
eigenvectors are given by

|e(0)
± ; q〉 = |h; q〉 + e±(q)|ρ; q〉, (C11)

where e±(q) = [g(q) ∓
√

g(q)2 + 32ηk2d2q3c(q)]/[4kc(q)].
The corresponding left eigenvectors are

〈e(0)†
± ; q| = 1

1 + e
†
±(q)e±(q)

[〈h; q| + e
†
±(q)〈ρ; q|], (C12)
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TABLE II. Approximate expressions of zeroth-order eigenvalues and eigenvectors for sufficiently small bare tension, σ 
 σc.

γ
(0)
+ (q) γ

(0)
− (q) e+(q) e−(q)

(i) bσ/(2kη) 
 q 
 qc kq2/(2b) (σq + κq3)/(4η) −ηq/b (qd)2

(ii) q � qc κ̃q3/(4η) kκq2/(2bκ̃) −2kηd2q/(bκ̃) κ̃q2/(2k)

with e
†
±(q) = c(q)e±(q)/(2ηd2q3). In the above, the left

eigenvector is normalized such that 〈e(0)†
± ; q|e(0)

± ; q〉 = 1. Since
a contraction of left and right eigenvectors associated with
different eigenvalues vanishes, we obtain〈

e(0)†
ε ; q ′|e(0)

ε′ ; q ′′〉 = δεε′δq ′q ′′ . (C13)

This yields e
†
+(q)e−(q) = e

†
−(q)e+(q) = −1, which can also

be confirmed directly from the definition of e± and e
†
±.

In Table II, we present approximate expressions of γ
(0)
± and

e± for different length scales classified by the characteristic
wave numbers bσ/(2kη) and qc = 2ηk/(bκ̃), where a small
bare tension σ 
 σc is assumed [19]. Typical parameter
values quoted in the main text yield σc ≡ (2ηk)2/(κ̃b2) ≈
3 × 10−6 J/m2. The behavior in the two regimes (i) and (ii)
in Table II is essentially the same as those in Ref. [6] for
σ = 0. In the presence of tension, there appears another regime
q 
 bσ/(2kη), where the dynamics is again dominated by the
intermonolayer friction [19]. For σ = 10−11 N/m chosen in
the main text, the characteristic wave number corresponds
to the length 4πkη/(bσ ) ≈ 0.44 m, which is too large to be
measured in experiments. However, with σ = 4 × 10−7 N/m,
for instance, we have 4πkη/(bσ ) ≈ 10 μm, which is relevant
for giant unilamellar vesicles. For large tension σ � σc, on the
other hand, the dynamics is dominated by the intermonolayer
friction in all length scales [19].

2. First order

We assume for simplicity that the zeroth-order eigenvalue
γ

(0)
± (q) is not degenerated in the Hilbert space Sq . This

assumption is always valid for scales much larger than the
lattice spacing of the cytoskeleton, q 
 a−1. Equation (C7)
yields the first-order correction νγ

(1)
± (q) to the zeroth-order

eigenvalue γ
(0)
± (q) as

γ
(1)
± (q) = 〈e(0)†

± ; q|�h|e(0)
± ; q〉 = Kq

4
√

gηq[1 + e
†
±(q)e±(q)]

.

(C14)

To obtain the shifted eigenvectors, we expand the first-order
eigenvectors in terms of the zeroth-order eigenvectors,

|e(1)
± ; q〉 =

∑
q ′∈Qq

∑
ε=+,−

sε
±(q ′; q)|e(0)

ε ; q ′〉. (C15)

Here we set s±
± (q; q) = 0 (as for the perturbation theory in

quantum mechanics). Operation of 〈e(0)†
ε ; q ′| to the both sides

of Eq. (C7) yields

sε
±(q ′; q) = 〈e(0)†

ε ; q ′|�h|e(0)
± ; q〉

γ
(0)
± (q) − γ

(0)
ε (q ′)

= Kq

4
√

gηq ′[γ (0)
± (q) − γ

(0)
ε (q ′)][1 + e

†
ε(q ′)eε(q ′)]

.

(C16)

Similarly, we can calculate the first-order left eigenvector
〈e(1)†

± ; q| from Eq. (C9). One can also show that Eq. (C13)
is generalized to the first order in ν as

(〈e(0)†
ε ; q ′| + ν〈e(1)†

ε ; q ′|)(|e(0)
ε′ ; q ′′〉 + ν|e(1)

ε′ ; q ′′〉)
= δεε′δq ′q ′′ + O(ν2). (C17)

Case (i): q � 2ηk/(bκ̃)

Let us suppose a wave vector qL satisfies qL = |qL| 

2ηk/(bκ̃), i.e., case (i) in Table II. We then study how the
cytoskeleton alters the rates γ

(0)
± (qL). We notice that the zeroth-

order eigenvalue γ
(0)
± (qL) is not degenerated in SqL

, because,
for such a small wave vector, there is no other wave vector q ′ ∈
QqL

satisfying |q ′| = qL. Using Eq. (C14) and approximate
expressions in Table II, we find

γ
(1)
+ (qL) 
 νbd2KqL

4
√

gη2
, γ

(1)
− (qL) 
 νKqL

4
√

gηqL
, (C18)

when qL 
 2ηk/(bκ̃). In general, K(qL) depends on the
direction of the wave vector q̂L. However, it is approximated
as

KqL

 3(qLa)2

2
− 3(qLa)4

32
, (C19)

for qL 
 a−1, which is isotropic. We can always use this
approximation in Eq. (C18), which is valid for qL 
 2ηk/(bκ̃).
This is because 2ηk/(bκ̃) = 4.37 × 106 m−1 for typical
parameter values chosen in the main text, and it is smaller
than the reciprocal of the lattice spacing a ∼ 10−7 m of
the cytoskeleton. Substitution of Eq. (C19) into Eq. (C18)
yields Eq. (11). Note for ν = 10−6 N/m chosen in the main
text, γ

(0)
− + νγ

(1)
− is larger than γ

(0)
+ + νγ

(1)
+ , and therefore, by

definition, γ+ 
 γ
(0)
− + νγ

(1)
− and γ− = γ

(0)
+ + νγ

(1)
+ .

Next we discuss the shifted eigenvector |e(1)
± ; qL〉, qL 


2ηk/(bκ̃). In the present case of qL 
 2ηk/(bκ̃), we can
assume q ′ � 2π/a � 2ηk/(bκ̃) for ∀ q ′ ∈ QqL

\ {qL} (here
“\” indicates set difference). Thus, for q ′ �= qL, we can
set γ

(0)
± (qL) − γ (0)

ε (q ′) 
 −γ (0)
ε (q ′) in the denominator of

Eq. (C16). Using the expressions in (ii) of Table II, we obtain
for q ′ �= qL,

κ

2kd2
s−
ε (q ′; qL) 
 s+

ε (q ′; qL) 
 − KqL√
gκ̃q ′4 . (C20)

For q ′ = qL, we can assume γ
(0)
+ (qL) � γ

(0)
− (qL) in the

denominator of Eq. (C16) and obtain

∓ [1 + e
†
±(qL)e±(qL)]s±

∓ (qL; qL) 
 E(qL), (C21)

where E(qL) = KqL
/[4

√
gηqLγ

(0)
+ (qL)] 
 bKqL

/[2
√

gηkq3
L].

To make the physical meaning of the shifted eigenvectors clear,
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we examine the time evolution of the vector

|�(t)〉 =
∑

q ′∈QqL

[ĥ(q ′,t)|h; q ′〉 + ρ(q ′,t)|ρ; q ′〉]. (C22)

We may suppose that the modes for ∀ q ′ ∈ QqL
\ {qL} decay

much faster than the modes for qL, because in the zeroth-order
γ

(0)
± (q ′) is much larger than γ

(0)
± (qL). Then, after sufficiently

large time t satisfying t � γ
(0)
± (q ′)−1 for ∀ q ′ ∈ QqL

\ {qL},
the modes for ∀ q ′ ∈ QqL

\ {qL} are in the quasiequilib-
rium state ĥqe(q ′; ĥ(qL)) and ρqe(q ′; ĥ(qL)) determined by
Fq ′[δF/δh] = Fq ′[δF/δρ±] = 0 for a given value of ĥ(qL).
Then we may approximate Eq. (C22) as

|�(t)〉 
 ĥ(qL,t)|h; qL〉 + ρ(qL,t)|ρ; qL〉

+
∑

q ′∈QqL \{qL}

[
ĥqe(q ′; ĥ(qL,t))|h; q ′〉

+ ρqe(q ′; ĥ(qL,t))|ρ; q ′〉
]
. (C23)

This will be justified later [see discussion around Eq. (C30)].
Using Fq ′[δF/δρ] = 2k[ρ(q ′) − dq ′2h(q ′)] and Eq. (A4), we
obtain Eq. (12) at linear order in ν. We can then show that the
following relation holds up to the first order in ν:

|�(t)〉

∑

ε=+,−
Aε(ĥ(qL,t),ρ(qL,t))

{|e(0)
ε ; qL〉+ν|e(1)

ε ; qL〉},
(C24)

where

A+(ĥ(qL),ρ(qL)) = 1

e− − e+

[{
e− + νĒ(qL)

e− − e+

}
ĥ(qL)

−
{

1 − νe
†
−Ē(qL)

e− − e+

}
ρ(q)

]
, (C25)

and

A−(ĥ(qL),ρ(qL)) = 1

e− − e+

[{
1 − νe

†
+Ē(qL)

e− − e+

}
ρ(qL)

−
{
e+ + νĒ(qL)

e− − e+

}
ĥ(qL)

]
, (C26)

with Ē(qL) = 2ηd2q3
LE(qL)/c(qL) and e± = e±(qL). There-

fore, after sufficiently large time t , A+ and A− decay with the
rates in Eq. (11). The above discussion indicates that the rates
in Eq. (11) and their associated eigenvectors correspond to the
relaxation of the (long-wavelength) modes of qL accompanied
by instantaneous relaxation of the other (short-wavelength)
modes of ∀ q ′ ∈ QqL

\ {qL} to the quasiequilibrium state. Note
that even though at initial time we set ĥ(q ′) = ρ(q ′) = 0 for
q ′ ∈ QqL

\ {qL}, after sufficiently large time (t � γ
(0)
± (q ′)−1)

they are excited by nonzero ĥ(qL) to their quasiequilibrium
values in Eq. (12).

Case (ii): q � 2ηk/(bκ̃)

Next we discuss how the rate γ
(0)
± (qS) with qS = |qS| �

2ηk/(bκ̃) is altered by the cytoskeleton. In this regime, using

the expressions in (ii) of Table II, we find

γ
(1)
+ (qS) 
 KqS

4
√

gηqS
, γ

(1)
− (qS) 
 k2d2KqS√

gbκ̃2q2
S

. (C27)

We also examine the magnitude of γ
(1)
± compared with that of

γ
(0)
± . Using the approximate expressions in (ii) of Table II, we

obtain

νγ
(1)
+ (qS)

γ
(0)
+ (qS)


 νKqS√
gκ̃q4

S

, (C28)

νγ
(1)
− (qS)

γ
(0)
− (qS)


 νkd2KqS√
gκ̃κq4

S

∼ νKqS√
gκ̃q4

S

. (C29)

Therefore, the effect of cytoskeleton is negligible if (aqS)4 �
2a2νKqS

/(
√

3κ̃) ≈ 0.0722KqS
. Since Kq � 10, the correction

to the rates due to the cytoskeleton is not very large. However,
the associated modes do not necessarily decay to zero for
t � 1/γ

(0)
± (qS). In fact, if a large-scale Fourier mode exists

in QqS
, i.e., qL ∈ QqS

(or equivalently qS ∈ QqL
), the Fourier

modes for qS are rather excited to the quasiequilibrium state by
the large-scale Fourier mode ĥ(qL), as discussed above. We can
confirm this explicitly by operating 〈e(0)†

± ; qS| + ν〈e(1)†
± ; qS| to

Eq. (C22). Owing to Eq. (C17), the resultant quantity decays
with the rate γ

(0)
± (qS) + νγ

(1)
± (qS) ∼ γ

(0)
± (qS). Hence, for t �

γ
(0)
± (qS)−1, we have

[〈e(0)†
± ; qS| + ν〈e(1)†

± ; qS|]|�(t)〉 
 0. (C30)

Using the approximations in Table II, we can show that
Eq. (C30) is equivalent to the quasiequilibrium condition
Eq. (12) with q ′ = qS and q = qL.

APPENDIX D: EFFECTS OF FRICTION BETWEEN THE
BILAYER AND THE PROTEINS AT THE

CYTOSKELETON VERTICES

We can take into account the friction between the bilayer
and the proteins at the vertices of the cytoskeleton by
modifying the lateral force balance Eq. (6) to

0 = − ∂i

(
δF

δρ±

)
+ ∂j τ

±
ij ± T ±

iz ∓ b(v+
i − v−

i )

− λ
∑

�

v±
i δ(x − R�). (D1)

In the above, the friction coefficient λ is assumed to be common
for both the upper and the lower monolayers. The new term
λ

∑
� v±

i δ(x − R�) also breaks the translational symmetry and
hence leads to the coupling between different Fourier modes.
With this new term, Eq. (B11) is modified to

0 = − 2

iq
c(q)

∂ρ(q)

∂t
+ iqFq

[
δF

δρ+ − δF

δρ−

]

+ λq̂ · Fq

[ ∑
�

(v+ − v−)δ(x − R�)

]
. (D2)
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With the use of the identity Eq. (A3), the new term is rewritten
as

Fq

[ ∑
�

(v+ − v−)δ(x − R�)

]

= − 2

i
√

g

∑
q ′∈Qq

1

q ′2 [q ′ρ̇(q ′) + q ′
⊥w⊥(q ′)], (D3)

where w⊥ = −iq(v+
⊥ − v−

⊥)/2. To eliminate w⊥ from
Eq. (D2), we need the transverse part of Eq. (D1). As in a
similar way to derive Eq. (D2), we obtain

0 = − 2

iq
cw(q)w⊥(q)

+ λq̂⊥ · Fq

[ ∑
�

(v+ − v−)δ(x − R�)

]
, (D4)

with cw(q) = 2b + ηq + μq2. Equations (B9), (D2), and (D4)
are the complete set of the relaxation equations for ρ and ĥ.
We can see from Eq. (D3) that the Fourier modes for q are
coupled to the Fourier modes for ∀ q ′ ∈ Qq , as in the case
without the friction at the vertices of the cytoskeleton.

The full equations are also represented in terms of operators
and vectors in the Hilbert space Sq , as in the previous section.
To perform perturbation calculations, we regard both ν and λ

as small parameters. Then, to the first order in ν and λ, the
governing equation is

∂

∂t
|�(t)〉q = −(�SL + ν�h − λ�ρ�SL)|�(t)〉q, (D5)

where the operator �ρ is defined as

�ρ(q) = 1√
g

∑
q ′∈Qq

∑
q ′′∈Qq

q ′′ · q ′

cw(q ′′)q ′2 |ρ; q ′′〉〈ρ; q ′|. (D6)

The correction to the rate γ
(0)
± (q) due to the friction is then

given by

D±(q) ≡ − λ〈e(0)†
± ; q|�ρ�SL|e(0)

± ; q〉

= − λγ
(0)
± (q)e†±(q)e±(q)

√
gcw(q)[1 + e

†
±(q)e±(q)]

. (D7)

To measure the relevance of D±(q), we shall consider the ratio
|D±/γ

(0)
± |. Using the approximations in (i) bσ/(2kη) 
 q 


2ηk/(bκ̃) of Table II, we obtain∣∣∣∣ D+(q)

γ
(0)
+ (q)

∣∣∣∣ 
 λ

2
√

gb
∼ λ

ba2
, (D8)

∣∣∣∣ D−(q)

γ
(0)
− (q)

∣∣∣∣ 
 λd2q

2
√

gη

 λkd2

√
gκ̃b

∼ λ√
gb

∼ λ

ba2
. (D9)

Similarly, with the approximations in (ii) q � 2ηk/(bκ̃) in
Table II, the ratio |D±/γ

(0)
± | is comparable to or smaller

than λ/(ba2). Therefore, the friction due to the network is
negligible as long as the friction coefficient per area λ/a2 is
much smaller than the coefficient b for the intermonolayer
friction. We use Saffman-Delbrück theory to estimate the
value of λ [23]. In this theory two physical situations are
examined: (i) membrane of finite size with surrounding fluid
being neglected and (ii) membrane of infinite size with
surrounding fluid being taken into account. Since λ is a “bare”
friction constant between a protein and a monolayer with
surrounding fluid being neglected, we may use the result
for (i). Then we can set λ 
 4πμ/ ln(L/r0), with L the
membrane size and r0 the protein size. Using L/r0 
 102,
b 
 2 × 108 J s/m4, μ 
 2 × 10−9 J s/m2, and a 
 10−7 m,
we estimate λ/(a2b) 
 5 × 10−3. We can thus neglect the
effects of λ. Note that the estimation with (ii) also leads to
the same conclusion. For (ii), we set λ 
 4πμ/ ln[μ/(ηr0)]
and obtain λ/(a2b) 
 1.8 × 10−3 when r0 
 2 × 10−9 m.
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