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We calculate the drag coefficient of a rigid spherical particle in an incompressible binary fluid mixture. A weak
preferential attraction is assumed between the particle surface and one of the fluid components, and the difference in
the viscosity between the two components is neglected. Using the Gaussian free-energy functional and solving the
hydrodynamic equation explicitly, we can show that the preferential attraction makes the drag coefficient larger as the
bulk correlation length becomes longer. The dependence of the deviation from the Stokes law on the correlation length,
when it is short, turns out to be much steeper than the previous estimates.

KEYWORDS: colloid dynamics, wetting, two-component fluid, time-dependent Ginzburg–Landau equation, model H

1. Introduction

Studies on colloid particles in a fluid have contributed to
progress in fundamental sciences in not only the statics but
also the dynamics.1–3) A system of particles exhibits various
thermodynamic phases, while a particle exhibits Brownian
motion. If it moves translationally with a sufficiently low
speed in a quiescent fluid, a particle suffers a drag force, the
magnitude of which is proportional to the particle speed. The
constant of the proportion � is called the drag coefficient.
For a rigid spherical particle with the radius r0 in a three-
dimensional incompressible fluid with the viscosity �, the
drag coefficient is given by � ¼ 6��r0, which is called the
Stokes law.4) In the theory of Brownian motion, the diffusion
constant of the particle is found to be kBT=ð6��r0Þ, where kB
and T are the Boltzmann constant and the temperature of the
fluid, respectively.5,6)

It is probable, in a binary fluid mixture, that the surface
of a colloid particle preferentially attracts one of the fluid
components. This results in a concentration gradient (or
adsorption layer) near the colloid particle. Several experi-
mental groups have observed adsorption-induced an aggre-
gation of colloid particles slightly outside the coexistence
curve of water-organic solvent mixtures.7–12) The magnitude
and range of the heterogeneity in the concentration tend to
become larger when the critical demixing point is ap-
proached. Furthermore, near the critical point, the concen-
tration profile and inter-particle interaction energy exhibit
universal behavior, i.e., it does not depend on the
microscopic details of the surface and solvent molecules if
the physical quantities are scaled appropriately.13–16)

The adsorption layer should affect the fluid flow near the
colloid particle to modify the Stokes law. Light scattering
experiments have revealed that the diffusion constant of a
colloid particle becomes vanishingly small when the critical
point is approached.17–21) To be more precise, in Ref. 19, the
ratio �=� diverges as jT � Tcj��, where Tc and � are the
critical temperature and the critical exponent characterizing
the divergence of the bulk correlation length �c, respectively.
This result may be explained by the divergence of the
‘‘effective radius’’ of the particle, r0 þ �c; the adsorption
layer with the thickness �c amplifies the drag force.19) In

Refs. 20 and 21, the authors estimated dependence of the
drag coefficient on the bulk correlation length without
solving the hydrodynamic equation explicitly. Recently,
Nakamura et al. have developed a microscopic theory to
investigate the drag coefficient of a rigid spherical particle
in a binary hard-sphere solvent in which two solvent
species have different radii.22) They found that the drag
coefficient grows as the molar fraction of the cosolvent
(larger solvent spheres) increases, which stems from the
difference between the radial distribution functions of the
two solvent species near the particle surface. Camley and
Brown have examined the drag coefficient of a circular
inclusion in a two-dimensional fluid membrane with a
nonconserved scalar order parameter surrounded by a three-
dimensional fluid.23)

In this paper, we calculate the drag coefficient of a rigid
spherical particle in an incompressible near-critical binary
fluid mixture, which is not extremely close to the critical
point. A weak preferential attraction is assumed between the
surface and one of the fluid components, and the difference
in the viscosity between the two components is neglected.
Still, we can show that the adsorption layer near the surface
affects the drag coefficient. We formulate our problem in
Sect. 2 and explicitly solve the equations in a perturbative
way in Sect. 3, with some details relegated to Appendices. In
Sect. 4, up to the lowest order of strength of the preferential
attraction, we calculate the drag coefficient, the expression
of which includes the exponential integral. Section 5 is
devoted to discussion.

2. Formulation

Our system is composed of a rigid spherical particle
immersed in a two-component fluid with a constant and
homogeneous temperature T . Let �A be the mass density of
one component A and �B that of the other component B.
They depend on the spatial position, represented by r, and
vanish inside the particle. The region inside the particle is
denoted by C, its surface by @C, and the region outside the
particle by Ce. The whole region of our system is thus
represented by C [ Ce [ @C. We define the concentration
difference ’ as �A � �B and the total mass density �tot as
�A þ �B.
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2.1 Statics
Let us consider the equilibrium profile of ’ with the

particle fixed. We set the polar coordinate system ðr; �; 	Þ so
that the origin coincides with the particle center. We write
er, e�, and e	 for the unit vectors along the respective
coordinate curves. The unit vector along the polar axis
is denoted by ez; we have er � ez ¼ cos � and e� � ez ¼
� sin �.

We assume the fluid to be almost incompressible for the
present. Its free energy density in the bulk can be separated
into the term free from the gradient, denoted by f ð�tot; ’Þ,
and the term proportional to the square gradient of ’. The
free-energy functional of our system, F , can be considered
to be given by the sum of the volume integral of these terms
and the surface contribution, which is assumed to be given
by the surface integral of the potential fs determined by ’ at
the surface.24) Thus, we have

F ¼
Z
Ce

dr f ð�totðrÞ; ’ðrÞÞ þ
1

2
Mjr’ðrÞj2

� �

þ
Z
@C

dS fsð’ðrÞÞ; ð2:1Þ

where M is a positive constant. Far from the particle, we can
assume �A and �B to reach their respective plateau values,
which can be realized in experiments. Thus, a constant, ’1,
can be defined so that it satisfies

’ðrÞ ! ’1 as jrj ! 1: ð2:2Þ
The most probable ’ is considered to be macroscopically

observed in the static state, according to the mean-field
approximation. In the limit of incompressibility, we can drop
the constant �tot from the variables of f . The most probable ’
makes

F � 


Z
Ce

dr’ðrÞ ð2:3Þ

stationary with respect to ’, where 
 is the undetermined
multiplier. Below, the prime indicates the derivative with
respect to the variable, e.g., f 0ð’Þ ¼ df ð’Þ=ðd’Þ. The
stationary condition gives

f 0ð’ðrÞÞ �M�’ðrÞ ¼ 
 in Ce; ð2:4Þ
the left-hand side (lhs) of which is the functional derivative
of F with respect to ’ðrÞ, and

Mer � r’ðrÞ ¼ f 0s ð’Þ at @Cþ; ð2:5Þ
where @Cþ implies that the derivative is evaluated just
outside the particle. For simplicity, we further assume the
potential function to be a linear function in ’,

fsð’Þ ¼ h0 � h’; ð2:6Þ
where h0 and h are assumed to be constant. The right-hand
side (rhs) of Eq. (2.5) thus equals �h. Let us write 
A for
the chemical potential of the component A per unit mass and

B for that of the other. The functional derivative of F with
respect to �A gives 
A. We thus find Eq. (2.4), or 
, equal to
half of the chemical potential difference, ð
A � 
BÞ=2,
considering that we have


A��A þ 
B��B ¼ ð
A þ 
BÞ��tot
2

þ ð
A � 
BÞ�’
2

; ð2:7Þ

where � implies the infinitesimal change. Taking the limit
r ! 1 in Eq. (2.4), we have 
 ¼ f 0ð’1Þ.

We introduce a dimensionless correlation length in the
bulk,

�c �
�c
r0

¼ 1

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

f 00ð’1Þ

s
: ð2:8Þ

Here, f 00ð’1Þ is positive for the thermodynamic sta-
bility. Linearizing Eq. (2.4) by regarding f 0ð’Þ as 
þ
f 00ð’1Þð’� ’1Þ approximately, we can obtain

’ðrÞ ¼ ’1 þ hr0e
ð1��Þ=�c

M�ð1þ ��1
c Þ ; ð2:9Þ

where � � r=r0 ¼ jrj=r0 is a dimensionless radial length.
The approximation would be valid when

jhf 000ð’1Þj�c=M � f 00ð’1Þ; ð2:10Þ
considering that j’� ’1j would not be much larger than the
product of the correlation length and jer � r’j at r ¼ r0, i.e.,
than jhj�c=M.

2.2 Dynamics
In the fluid dynamics out of the global equilibrium, we

assume the local equilibrium to regard Eq. (2.1) as the sum
of the local free energies. As in the usual thermodynamics,
we can discuss an infinitesimal reversible process of a
macroscopically infinitesimal comoving fluid region by
assuming the environments with the temperature T , the
pressure tensor �ðrÞ, and the chemical potentials. We need
not consider a change in the temperature in this process
because we will consider the isothermal dynamics. The
tensor� amounts to the reversible part of the pressure tensor
in the dynamics.

We write 1 for the isotropic tensor. After the same
calculations that lead to the stress tensor in the hydro-
dynamic model of near-critical fluids (the so-called
model H),25,26) we can find

� ¼ p1þ posm1þ�grad; ð2:11Þ
where p comes from the infinitesimal change in �tot and can
be regarded as dependent only on r in the steady state in the
limit of incompressibility, and we use

posm � ’f 0ð’Þ � f ð’Þ ð2:12Þ
and

�grad � �M
1

2
jr’j2 þ ’�’

� �
1þMr’r’: ð2:13Þ

See Appendix A for details. The chemical potential
difference is found to be


̂ðrÞ ¼ f 0ð’ðrÞÞ �M�’ðrÞ; ð2:14Þ
which satisfies the equation,

’r
̂ ¼ rposm þr ��grad; ð2:15Þ
like the Gibbs–Duhem relation. We also find Eq. (2.5) to be
valid in the infinitesimal change we now consider. We
assume the local equilibrium even just outside the particle,
which means that the reversible part of the force exerted on
the particle by the fluid is given by
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�
Z
@Cþ

dSðp1þ posm1þ�gradÞ � er: ð2:16Þ

The dissipative dynamics can be formulated in terms
of the irreversible thermodynamics.27) As discussed in
Appendix A, we assume that the dissipation occurs through
the viscosity and the diffusive flux between the two
components. Thus, Eq. (2.5) is valid in the dissipative
dynamics. Let v denote the velocity field, and the dissipative
stress tensor is given by 2�E, where the rate-of-strain tensor
E is defined as

E � 1

2
frvþ ðrvÞTg; ð2:17Þ

with the superscript ‘‘T’’ indicating the transposition. At the
given temperature T , the viscosity far from the particle has a
renormalized value, �, which depends weakly on �c.

26) We
assume for simplicity that the viscosity is given by � over
the region Ce, irrespective of ’. Thus, we use the steady
Stokes approximation to have

0 ¼ v � r’� L�
̂; ð2:18Þ
0 ¼ �rðpþ posmÞ � r ��grad þ ��v; ð2:19Þ

where the Onsager coefficient L is assumed to be a positive
constant, and the second term on the rhs of Eq. (2.18)
represents the divergence of the diffusive flux, as is found
from Eq. (A�13). We assume the fluid to be incompressible
to have

0 ¼ div v: ð2:20Þ
In the equilibrium state discussed in Sect. 2.1, 
̂ðrÞ equals
the constant 
, and thus pðrÞ is a constant, referred to as pð0Þ

below, because of Eqs. (2.15) and (2.19).

3. Calculation

We introduce a small dimensionless parameter 
 for the
perturbation scheme formulated below. In a quiescent fluid,
some external force is assumed to cause a slow translational
motion of the particle. We consider the moment when the
particle center coincides with the origin of the coordinate
system introduced in Sect. 2.1. Let U be a nonzero constant
scalar with the dimension of the speed, and we assume the
particle to move with the velocity 
Uez at the moment. It is
assumed that, far from the particle, the fluid tends to be static
and the concentration difference is still given by ’1. Thus,
we have

vðrÞ ! 0 and 
̂ðrÞ ! 
 as r ! 1: ð3:1Þ
Far from the particle, irrespective of 
, we find �grad to
vanish and posm to remain the same, and we can assume p to
remain pð0Þ. The no-slip boundary condition is imposed at
the particle surface. The radial component of the diffusive
flux should vanish at the moving surface, as mentioned in
Eq. (A�11). Thus, we have

vðrÞ ! 
Uez and er � r
̂ ! 0 at r ! r0þ; ð3:2Þ
where r ! r0þ means that r approaches r0 with r > r0
being kept.

We expand the fields as

’ðrÞ ¼ ’ð0ÞðrÞ þ 
’ð1ÞðrÞ þ oð
Þ;

pðrÞ ¼ pð0Þ þ 
pð1ÞðrÞ þ oð
Þ;
vðrÞ ¼ 
vð1ÞðrÞ þ oð
Þ;

̂ðrÞ ¼ 
þ 

̂ð1ÞðrÞ þ oð
Þ: ð3:3Þ

On each rhs of Eq. (3.3), the field with the superscript
‘‘(1)’’ is defined so that it becomes proportional to 
 after
being multiplied by 
, and oð
Þ implies higher order terms.
The rhs of Eq. (2.9) should be referred to as ’ð0ÞðrÞ. We
define

�ð�Þ � �þ �c
1þ �c

eð1��Þ=�c ; ð3:4Þ

so as to have ’ð0Þ0ðrÞ ¼ �h�ð�Þ=ðM�2Þ with � being r=r0.
Using Eqs. (2.4) and (2.12)–(2.14), we have


̂ð1Þ ¼ f 00ð’ð0ÞÞ’ð1Þ �M�’ð1Þ; ð3:5Þ
pð1Þosm ¼ f 00ð’ð0ÞÞ’ð0Þ’ð1Þ; ð3:6Þ
�ð1Þ

grad ¼ �Mðr’ð0Þ � r’ð1Þ þ ’ð1Þ�’ð0Þ þ ’ð0Þ�’ð1ÞÞ1
þMðr’ð0Þr’ð1Þ þ r’ð1Þr’ð0ÞÞ: ð3:7Þ

From Eqs. (2.18) and (2.19), we have

vð1Þ � r’ð0Þ ¼ L�
̂ð1Þ; ð3:8Þ
rpð1Þ ¼ �’ð0Þr
̂ð1Þ þ ��vð1Þ: ð3:9Þ

As mentioned before, we still have Eqs. (2.2) and (2.5) in
the dynamics. Thus, also noting Eqs. (3.1) and (3.2), we
have

’ð1Þ; pð1Þ; 
̂ð1Þ ! 0 and vð1Þ ! 0 as r ! 1; ð3:10Þ
while

er � r’ð1Þ; er � r
̂ð1Þ ! 0 and vð1Þ ! Uez as r ! r0þ:

ð3:11Þ
We expand the fields of the order of 
 with respect to

the vector spherical harmonics. For the integers j and m
satisfying j � 0 and �j � m � j, they are28)

P jmð�; 	Þ ¼ erYjmð�; 	Þ;
B jmð�; 	Þ ¼ N�1

j ðe�@� þ e	 cosec �@	ÞYjmð�; 	Þ;
C jmð�; 	Þ ¼ N�1

j ðe� cosec �@	 � e	@�ÞYjmð�; 	Þ; ð3:12Þ
where Nj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð jþ 1Þp

is used, and Yjm denotes the spherical
harmonics. In particular, we have Y10ð�; 	Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð4�Þp

cos �.
Although P jm is defined for j � 0, Bjm and C jm are defined
only for j � 1. Let ðr; �; 	Þ be the components of r. We then
define


̂ð1ÞðrÞ ¼
X
jm

QjmðrÞYjmð�; 	Þ; ð3:13Þ

pð1ÞðrÞ ¼
X
jm

pjmðrÞYjmð�; 	Þ; ð3:14Þ

vð1ÞðrÞ ¼
X
jm

fRjmðrÞP jmð�; 	Þ þ TjmðrÞB jmð�; 	Þ

þ SjmðrÞC jmð�; 	Þg; ð3:15Þ
where Qjm; pjm; . . . ; Sjm are the r-dependent expansion
coefficients. We assume T00 and S00 to be equal to zero,
and the sum is over all the values of j and m considered
just above Eq. (3.12). Because Yc

jm ¼ ð�1ÞmYj;�m, with the
superscript ‘‘c’’ indicating the complex conjugate, the co-
efficients should share the corresponding property, such
as
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Rc
jm ¼ ð�1ÞmRj;�m; ð3:16Þ

so that the fields are real.
After performing some algebra shown in Appendix B, we

find Sjm to vanish for any ð j; mÞ, and
pjm ¼ Rjm ¼ Tjm ¼ Qjm ¼ 0 except for ð j; mÞ ¼ ð1; 0Þ:

ð3:17Þ
Thus, we can concentrate on the mode of ð1; 0Þ, and
Eqs. (3.13)–(3.15) are respectively reduced to


̂ð1Þ ¼ Q10Y10; pð1Þ ¼ p10Y10; ð3:18Þ
and

vð1Þ ¼ R10P10 þ T10B10: ð3:19Þ
Equation (2.20) relates T10 with R10, as shown by Eq. (B�1).
We write @r for the differentiation with respect to r, and @

2
r for

@r@r. Substituting Eqs. (3.18) and (3.19) into Eq. (3.8) gives

Lð@2r þ 2r�1@r � 2r�2ÞQ10 ¼ R10@r’
ð0Þ: ð3:20Þ

The rhs of Eq. (3.9) is irrotational, which is combined with
(3.18) and (3.19) to give

�ðr2@4r þ 8r@3r þ 8@2r � 8r�1@rÞR10 ¼ 2Q10@r’
ð0Þ; ð3:21Þ

with the aid of Eq. (B�1). Equations (3.20) and (3.21) are
respectively the mode of ð1; 0Þ of Eq. (B�3) and that of
Eq. (B�8). Equations (3.10) and (3.11) give

p10; R10; Q10 ! 0 as r ! 1; ð3:22Þ
R10 !

ffiffiffiffiffiffiffiffiffiffi
4�=3

p
U and @rQ10; @rR10 ! 0 as r ! r0þ;

ð3:23Þ
as mentioned in the third paragraph of Appendix B.

From Eqs. (3.20), (3.22), and (3.23), we find that Q10

vanishes if h vanishes. We introduce dimensionless func-
tions, Qð�Þ � 3MLQ10ðrÞ=ðUhr20Þ and Rð�Þ � R10ðrÞ=U,
where we use � � r=r0 as before. We also introduce a
dimensionless factor

� � hr20
3M

ffiffiffiffiffiffiffiffiffi
5L�

p : ð3:24Þ

If h vanishes, we find Rð�Þ to be given by

Rh¼0ð�Þ �
ffiffiffiffiffiffi
4�

3

r
� 1

2�3
þ 3

2�

� �
ð3:25Þ

from Eqs. (3.21)–(3.23). In general, as shown in
Appendix B, applying the method of variation of parameters
to Eqs. (3.20)–(3.23), we can obtain

Qð�Þ ¼
Z 1

1

d� �ð�Þ�Qð�; �ÞRð�Þ; ð3:26Þ

Rð�Þ ¼ Rh¼0ð�Þ þ �2

Z 1

1

d� �ð�Þ�Rð�; �ÞQð�Þ: ð3:27Þ

Here,

�Qð�; �Þ � fð��Þ�2=2g þ ���2 if 1 � � < �

fð��Þ�2=2g þ ���2 if � � �

�
ð3:28Þ

and

�Rð�; �Þ � �Rcomð�; �Þ þ �2��3 � 5��1 if 1 � � < �

�Rcomð�; �Þ þ �2��3 � 5��1 if � � �

�
;

ð3:29Þ

where the common term is

�Rcomð�; �Þ � 3� 5�2

2�3�3
þ 5ð3�2 � 1Þ

2��3
: ð3:30Þ

The lowest-order correction due to a nonzero h value is
given by replacing R by Rh¼0 on the rhs of Eq. (3.26) and
substituting the resultant approximate solution of Q into the
rhs of (3.27). Thus, up to this order, we have

Qð�Þ ¼
Z 1

1

d� �ð�Þ�Qð�; �ÞRh¼0ð�Þ; ð3:31Þ

Rð�Þ ¼ Rh¼0ð�Þ þ �2

Z 1

1

d� �ð�Þ�Rð�; �Þ

	
Z 1

1

d�0 �ð�0Þ�Qð�; �0ÞRh¼0ð�0Þ: ð3:32Þ
For later convenience, we write pð1Þ and vð1Þ in terms of Q
and R. Let r have the components ð�r0; �; 	Þ in the polar
coordinate system. We can use Eqs. (B�1) and (B�6) to
rewrite the second equation of Eq. (3.18) as

pð1ÞðrÞ ¼ U

�
�

�r0

1

2
�3@3� þ 3�2@2� þ 2�@�

� �
Rð�Þ

� hr20
3ML

’ð0ÞðrÞQð�Þ
�
Y10ð�; 	Þ; ð3:33Þ

and use Eq. (B�1) to rewrite Eq. (3.19) as

vð1ÞðrÞ ¼ U erY10ð�; 	Þ þ e�
@Y10ð�; 	Þ

@�

�
�

2
@� þ 1

�� �
Rð�Þ:

ð3:34Þ

4. Results

For simplicity, we assume the Gaussian model

f ð’Þ ¼ a

2
ð’� ’1Þ2 þ 
ð’� ’1Þ; ð4:1Þ

where a is a positive constant. This constant, being the
reciprocal susceptibility, can be assumed to be proportional
to the temperature measured from the critical point. From
Eqs. (3.5) and (3.18), we have

ða�M�Þ’ð1ÞðrÞ ¼ Q10Y10; ð4:2Þ
and G10ðrÞ can be defined so as to satisfy

’ð1ÞðrÞ ¼ G10ðrÞY10ð�; 	Þ: ð4:3Þ
From these two equations, we can obtain

fa�Mð@2r þ 2r�1@r � 2r�2ÞgG10ðrÞ ¼ Q10ðrÞ: ð4:4Þ
Here we have �c ¼

ffiffiffiffiffiffiffiffiffiffi
M=a

p
=r0 from Eq. (2.8). Introducing a

dimensionless variable ~� � �=�c ¼ r=ðr0�cÞ, we find linear
independent solutions of the homogeneous equation asso-
ciated with Eq. (4.4) to be given by

I3=2ð ~�Þ=
ffiffiffi
~�

p
¼ 1

~�

ffiffiffiffi
2

�

r
cosh ~�� 1

~�
sinh ~�

� �
; ð4:5Þ

K3=2ð ~�Þ=
ffiffiffi
~�

p
¼ 1

~�

ffiffiffiffi
�

2

r
1þ 1

~�

� �
e� ~�; ð4:6Þ

where I3=2 and K3=2 represent modified Bessel functions.
Equations (3.10) and (3.11) lead to

G10ðrÞ ! 0 as r ! 1; ð4:7Þ
@rG10ðrÞ ! 0 as r ! r0þ: ð4:8Þ
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Applying the method of variation of parameters, we can
obtain G10 so that it satisfies these boundary conditions. By
means of ~� � �=�c and ~� � �=�c, we first define

�Gcomð�; �Þ � �wð�cÞK3=2ð ~�ÞK3=2ð ~�Þ ~�; ð4:9Þ
where

wð�cÞ �
I03=2ð��1

c Þ � �cI3=2ð��1
c Þ=2

K0
3=2ð��1

c Þ � �cK3=2ð��1
c Þ=2 ; ð4:10Þ

and then define

�Gð�; �Þ �
�Gcomð�; �Þ þK3=2ð ~�ÞI3=2ð ~�Þ ~� if 1 � � < �

�Gcomð�; �Þ þ I3=2ð ~�ÞK3=2ð ~�Þ ~� if � � �

�
:

ð4:11Þ
After performing some algebra, we can obtain

G10ðrÞ ¼ Uhr40�c
3M2L

ffiffiffi
�

p
Z 1

1

d�
ffiffiffi
�

p
�Gð�; �ÞQð�Þ: ð4:12Þ

We can write Dragez for the drag force exerted on the
particle. Noting Eq. (2.16), we obtain

Drag ¼ �
Z
@Cþ

dS er � fðpþ posmÞ1þ�grad � 2�Eg � ez:

ð4:13Þ
The unperturbed terms in Eq. (3.3) do not contribute to
the drag force because they are only dependent on r.
Equations (3.6) and (3.7) yield

pð1Þosm ¼ a’ð0ÞG10Y10; ð4:14Þ
�ð1Þ

grad ¼ �Mfð’ð0Þ0@rG10 þG10�’ð0ÞÞY10 þ ’ð0Þ�’ð1Þg1
þM’ð0Þ0½errðG10Y10Þ þ frðG10Y10Þger
; ð4:15Þ

where �’ð1Þ can be rewritten as ða’ð1Þ � 
̂ð1ÞÞ=M because of
Eq. (3.5), and we can use

rðG10Y10Þ ¼ dG10ðrÞ
dr

Y10er þ G10

r

@Y10
@�

e�: ð4:16Þ

As mentioned in Eq. (2.6) of Ref. 28, we use Eq. (B�1) to
obtain
2er � E

¼ 
ðer 	 rot vð1Þ þ 2@rv
ð1ÞÞ ð4:17Þ

¼ 
 2@rR10P10ð�; 	Þ þ
ffiffiffi
2

p 1

2
r@r þ 1

� �
@rR10B10ð�; 	Þ

� �
:

ð4:18Þ
Because of Eq. (2.5), ’ð0Þ0 equals �h=M in the surface inte-
gral of Eq. (4.13). Thus, using Eqs. (3.23), (3.33), (4.8), and
(4.14)–(4.18), we can replace the integrand of Eq. (4.13) by




�
��r�1 1

2
r3@3r þ 3r2@2r

� �
R10Y10 cos �

þMG10r
�2ðr2@2r þ 2r@rÞ’ð0ÞY10 cos �

� r�1 hG10 þ �

2
r2@2rR10

� � @Y10
@�

sin �

�
: ð4:19Þ

Thus, we can rewrite the rhs of Eq. (4.13) as

� 2
r0�U

ffiffiffiffi
�

3

r
1

2
@3� þ 2@2�

� �
Rð�Þ

				
�¼1

� hWð�cÞ
�U

G10ðr0Þ
( )

;

ð4:20Þ
where j�¼1 implies that the derivative should be evaluated at
� ¼ 1, and

Wð�cÞ � 2þ 1

�2c þ �c
: ð4:21Þ

We define Xð�Þ so that Rh¼0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffi
4�=3

p
Xð�Þ. Substituting

Eqs. (3.31), (3.32), and (4.12) into Eq. (4.20), we can obtain
the drag coefficient � � �Drag=ð
UÞ as

� ¼ 6��r0 1þ h2r40
27M2L�

�ð�cÞ
� �

ð4:22Þ

up to the order of �2 / h2, where

�ð�cÞ ¼
Z 1

1

d�
3

�
� 1

�3

� �
�ð�Þ

	
Z 1

1

d� �ð�Þ�Qð�; �ÞXð�Þ � 2�cWð�cÞ

	
Z 1

1

d�
ffiffiffi
�

p
�Gð1; �Þ

Z 1

1

d� �ð�Þ�Qð�; �ÞXð�Þ
ð4:23Þ

represents how the deviation from the Stokes law depends
on �c. Equation (4.22) shows that the drag coefficient is
independent of ’1. The independence of Eq. (4.22) from the
sign of h can be expected because neither component has
a special bulk property in our formulation. Equation (4.22)
would have a term proportional to h and would depend on its
sign if the viscosity were assumed to depend on ’.

By means ofMathematica version 8 (Wolfram Research),29)

we can calculate the integrals of Eq. (4.23) to obtain

�ð�cÞ ¼
1

1280ð1þ �cÞ2
½A1ð�cÞ þ 256A2ð�cÞe2=�cEið�2=�cÞ

� 10A3ð�cÞe1=�cEið�1=�cÞ
þ 5fA4ð�cÞe1=�cEið�1=�cÞg2
; ð4:24Þ

where we use the exponential integral

EiðxÞ �
Z x

�1
dt

et

t
; ð4:25Þ

and introduce

A1ðzÞ � 3840z3 � 6156z2 þ 168zþ 568

þ 32z�1 þ 161z�2 � 10z�3 þ 5z�4; ð4:26Þ
A2ðzÞ � 90z2 � 45zþ 2z�3; ð4:27Þ
A3ðzÞ � 1152z2 � 24� 120z�1 � 18z�2

þ 22z�3 þ z�4 � z�5; ð4:28Þ
A4ðzÞ � �12z�1 þ z�3 ð4:29Þ

to write Eq. (4.24) concisely. As �c increases, the first term
A1 is the most relevant in the braces of Eq. (4.24), making
�ð�cÞ almost proportional to �c. Using the asymptotic
expansion

exEið�xÞ �
X1
n¼1

ð�1Þn ðn� 1Þ!
xn

as x ! 1 ð4:30Þ

in Eq. (4.24), we obtain

�ð�cÞ �
27�6c

8ð1þ �cÞ2
ð8� 111�c þ 1231�2cÞ

as �c ! 0þ; ð4:31Þ
which tells that � tends to 0 as �c ! 0þ, i.e., as �c
approaches 0 along the real axis from the positive side. It is
to be noted that the correlation length is not assumed to be
microscopic in Eq. (4.1). In Fig. 1, we show that Eq. (4.24)
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is positive and increases with �c. According to Eq. (4.22),
this means that the drag coefficient increases from the value
given by the Stokes law as the strength of the preferential
attraction jhj increases and/or as the bulk correlation length
increases.

5. Discussion

Following the framework of the irreversible thermody-
namics, we formulate the fluid dynamics to examine the drag
coefficient of a rigid particle in a near-critical binary fluid
mixture. We take into account the preferential attraction
of one of the fluid components to the particle surface,
represented by Eq. (2.6), and the dynamical coupling
between the concentration heterogeneity and the hydro-
dynamic flow, represented by Eqs. (2.13), (2.18), and (2.19).
The mean-field approximation we use holds when the
correlation length, �c ¼ r0�c, is so small that higher-order
terms, such as the ’4 term, are negligible in Eq. (2.1).

We use the Gaussian model by assuming Eq. (4.1), which
is substituted into Eq. (2.4) to yield Eq. (2.9) without
approximation. We assume a weak preferential attraction
between the surface and one of the fluid components
(�2 � 1), and assume the viscosity � to be independent of
the composition, ’. Still, the drag coefficient deviates from
the value of the Stokes law, as shown by Eq. (4.22) with
Eq. (4.24). We should note the weak dependence of � on
�c, as mentioned above Eq. (2.18). When the correlation
length is small, we find from Eq. (4.31) that the deviation of
the drag coefficient from the value of the Stokes law is
proportional to �6c . This dependence is much steeper than the
previous estimate of the �2c dependence due to the surface
energy effect, which dependence is obtained without solving
the hydrodynamic equation explicitly in Ref. 21. The slope
of the plots in Fig. 1 gradually decreases from six towards
the unity as �c increases.

The velocity field for h ¼ 0 can be calculated by means of
Eqs. (3.25) and (3.34). This velocity field is well known and
leads to the Stokes law. Subtracting the particle velocity
from the field, we draw the resultant field on the xz plane in
Fig. 2 by means of Mathematica. The figure thus shows the
velocity field for h ¼ 0 viewed from the frame comoving

with the particle. There, an arrow represents the velocity
direction with its length proportional to the magnitude.
Although similar figures are given below in Figs. 4 and 6,
each figure has its constant of proportion, and thus a
comparison of the lengths of two arrows in different figures
is meaningless. In harmony with Fig. 2, we plot vð1Þz =U � 1

for h ¼ 0 along the x-axis on the positive side in Fig. 3. It
approaches �1 far from the particle and vanishes at the
particle surface, because of the last equations of Eqs. (3.10)
and (3.11).

As we obtained Eq. (4.24) from Eq. (4.23), we can
calculate the double integral on the rhs of Eq. (3.32). The
result, not shown here, contains the exponential integral. By
using this result and Eq. (3.34), we can obtain the deviation
of vð1Þ caused by a nonzero h value. For �c ¼ 0:1, the
deviation divided by U�2 on the xz plane is used for Fig. 4,
and its z-component on the x-axis is plotted in Fig. 5.
Comparing Fig. 2 with Fig. 4, we find in the comoving
frame the preferential attraction brings about a decrease in
the magnitude of the fluid velocity around the particle. This
tendency is also shown by Figs. 3 and 5, where vð1Þz =U � 1

for h ¼ 0 and the z-component of the deviation field do not
share the same sign. Noting that the quotient of the deviation
divided by U�2 / h2 is plotted in Fig. 5, we find the
decrease to be larger as h2 is larger. This means that the
particle drags the fluid more significantly then.

10-10
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100

δ

2 3 4 5 6
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2 3 4 5 6
1
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10ζc

Fig. 1. Plot of � against �c. The solid and dashed curves respectively

represent Eqs. (4.24) and (4.31).

-2 0 2-1 1

0

0.5

1

1.5

2

Fig. 2. The velocity field for h ¼ 0 is drawn in a region with x � 0 on the

xz plane when viewed from the frame comoving with the particle. The

dashed curve represents the cross section of the particle surface.
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Fig. 3. Plot of vð1Þz =U � 1 along the x-axis for h ¼ 0.
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The second term on the rhs of Eq. (2.9) is proportional to
h, and the function 
’ð1ÞðrÞ, induced by the imposed flow,
also has a term proportional to h. This term can be calculated
from Eqs. (3.31), (4.3), and (4.12). The calculation can be
performed by Mathematica, like that of the integral in
Eq. (3.32), although the result is not shown here. The gray
level in Fig. 4 simply represents ð’ð0Þ � ’1ÞM=hr0; its
value, divided by 104 for convenience, is plotted along the
x-axis by means of the dashed curve in Fig. 5.

Similar figures for �c ¼ 1 are shown in Figs. 6 and 7. The
solid curve of the latter figure takes larger values than that of
Fig. 5. This implies that the particle should drag the fluid
more significantly not only as the preferential attraction
becomes stronger but also as the correlation length increases.
Then, in other words, the particle becomes apparently sticky
and effectively larger. This is also deduced from Eq. (4.22)
and Fig. 1. The �6c dependence in Eq. (4.31) tempts us to
associate the factor h with �3c , representing the volume of

the spherical region with the effective radius. This steep
dependence cannot be explained simply by replacing r0 with
r0 þ �c in the Stokes law.

Finally, we make some remarks. (i) Near the critical point,
a mixture solvent is very sensitive to selective impurities
such as ions which interact with each solvent species
asymmetrically.30–32) Theoretical works have shown that
even a small amount of salt can play a significant role in the
static behavior of the adsorption layer.33–35) The ion effect on
the drag coefficient would be significant in experiments.
(ii) Several groups have devised numerical schemes for
simulating the dynamics of colloid particles in a binary fluid
mixture in a two-phase state (T < Tc).

36–39) Araki and
Tanaka have examined the dynamic effect on the adsorption-
induced force between colloid particles.38,39) In Refs. 40 and
41, Cates and coworkers have utilized the scheme of
Refs. 36 and 37 to investigate bicontinuous interfacially
jammed emulsion gels (‘‘bijels’’), in which colloid particles
are trapped at the liquid–liquid interface of the phase-
separated mixture solvent. In the present paper, we have
assumed that the fluid is in a one-phase state. However, our
formulation can also be applied to these problems if the free-
energy density f ð’Þ is chosen so that it describes the phase-
separated fluids (e.g., ’4 model). (iii) When the mixture
is very close to the critical point, the effect of critical

4

3

2

1

0
-4 -2 0 2 4

Fig. 4. For �c ¼ 0:1, the deviation of vð1Þ from vð1Þ for h ¼ 0 is

represented by the arrows in a region with x � 0 on the xz plane. We

calculate the deviation by using the second term on the rhs of Eq. (3.32),

and use the result divided by U�2 for the arrows. In a darker-gray region,

the dimensionless difference ð’ð0Þ � ’1ÞM=ðhr0Þ is larger. The white

semicircular region surrounded by the dark adsorption layer represents the

cross section of the particle.
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Fig. 6. Same as in Fig. 4, except for �c ¼ 1.

1.4x10-5

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Δ v
z(1

) /(
U

λ2 )

1086420 x/r0

Fig. 5. For �c ¼ 0:1, the deviation of vð1Þz from its value for h ¼ 0 is

divided by U�2, and the quotient is plotted along the x-axis by means of the

solid curve. The symbol� in the axis label means the deviation. The dashed

curve is drawn for reference to represent ð’ð0Þ � ’1ÞM=ð104hr0Þ for

�c ¼ 0:1.
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Fig. 7. For �c ¼ 1, the quotient of the deviation of vð1Þz divided by U�2 is

plotted by means of the solid curve, as in Fig. 5. The dashed curve

represents ð’ð0Þ � ’1ÞM=ð10hr0Þ for �c ¼ 1. Here, the divisor 10 is

introduced for convenience of the graphical presentation.
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fluctuations would be important. Because of the critical
fluctuations, the concentration profile near the surface
becomes universal, as mentioned in Sect. 1. The fluctuation
effect (or the renormalization effect) on the drag coefficient
can be taken into account by replacing the free-energy
functional Eq. (2.1) by the ‘‘renormalized local functional’’
in Ref. 16.
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Appendix A: Colloid Dynamics in the Model H

The irreversible thermodynamics, based on the local
equilibrium and the conservation laws, provides us with a
framework of phenomenological dynamics.27) The model
H dynamics for a bulk fluid mixture with a constant and
homogeneous temperature is also formulated in terms of this
framework.26) Below we show that the formulation still
works well even if colloid particles are immersed in the
mixture. We assume a single particle in the following
discussion for simplicity, but the extension to a system
containing many particles is straightforward.

To consider an infinitesimal reversible change of a local
region, we define �r as a small change in the positional
vector. The displacement is represented by r 7! r0 � rþ �r,
where �r should be homogeneous in C. We can assume the
no-slip condition at @C because it is assumed in the
dynamics we consider. The volume element dr is changed
into dr0 by the accompanying deformation, and their
relationship is given by

dr ¼ ð1�r � �rÞ dr0: ðA�1Þ
We can regard the local region as an open system so that the
concentration difference ’ is changed not only by the
deformation above but also by the flux into or from the
particle bath although the flux is assumed not to change �tot.
The total change in ’ is thus represented by

’ðrÞ 7! ’0ðr0Þ � ’ðrÞ þ �’dðr0Þ þ �’pðr0Þ; ðA�2Þ
where �’d represents the change due to the deformation and
�’p due to the flux. With the aid of Eq. (A�1), we have

�’dðr0Þ ¼ �’ðrÞr � �r: ðA�3Þ
After some calculations similar to those in Appendix 6A

of Ref. 26, we can derive

�F ¼
Z
Ce

dr½f f 0ð’ðrÞÞ �M�’ðrÞg�’pðrÞ ��osmðrÞ : r�r


þ
Z
@C

dSf f 0s ð’ðrÞÞ �Mer � r’ðrÞgf�’dðrÞ þ �’pðrÞg;

ðA�4Þ
where �osm is defined as the sum of posm1 and �grad given
by Eqs. (2.12) and (2.13), respectively. According to the
thermodynamics, Eq. (A�4) should be equal to the sum ofZ

Ce

drf
̂ðrÞ�’pðrÞ ��ðrÞ : r�rg ðA�5Þ

and similar contributions from the colloid surface and
interior. These contributions are neglected in this paper;
neither A nor B is assumed to chemically bond to the

surface. We thus find Eqs. (2.5) and (2.14) to hold under the
local equilibrium. Also, considering the contribution due to
the infinitesimal change of �tot, we can obtain Eq. (2.11).

We have derived Eq. (A�4) to discuss the dynamics, but
we can also use it to discuss the statics. Requiring Eq. (A�4)
to vanish for arbitrary �’p, we can derive Eqs. (2.4) and
(2.5). When ’ satisfies them, requiring Eq. (A�4) to vanish
for an arbitrary displacement with the particle fixed, we find
r ��osm to vanish in the equilibrium fluid containing the
particle fixed externally, which is consistent with Eqs. (2.4)
and (2.15). This result is obtained by applying the
integration by parts to the second term in the volume
integral of Eq. (A�4). We can obtain Eq. (2.16) by
considering the infinitesimal translational displacement of
the particle in the equilibrium fluid after taking into account
the contribution involving �tot.

The local equilibrium is assumed in the irreversible
thermodynamics.27,42) Thus, we have

�tot
D

Dt

~f

�tot

 !
¼ �� : rvþ 
̂�tot

D

Dt

 
’

�tot

!
; ðA�6Þ

where ~f is the free-energy density and D=Dt indicates the
Lagrangian time derivative. Here we consider the dynamics
in more general than considered in the text, allowing the
unsteady dynamics. If we regard �r=�t as the velocity, with
�t denoting the infinitesimal change in time t, we can also
find the rhs of Eq. (A�4) to be equal to Eq. (A�5) by
integrating Eq. (A�6) over the whole region of our system. A
similar procedure is mentioned in Sect. 3 of Ref. 43 and
below Eq. (2.9) of Ref. 44. Introducing the dissipative stress
tensor � and the diffusive flux jirr, we can assume the
conservation laws,

�tot
D

Dt

’

�tot

� �
¼ �r � jirr; ðA�7Þ

�tot
Dv

Dt
¼ r � ð��þ �Þ; ðA�8Þ

and

m
dV

dt
¼
Z
@Ct

dS n � ð��þ �Þ; ðA�9Þ

where m and V respectively denote the mass and the velocity
of the particle, the subscript t of Ct means the time
dependence of the comoving region, and n is the unit normal
vector of @Ct directed outside the particle. Here, for
simplicity, we assume no rotation of the particle, no external
conservative force exerted on the particle, and no dissipation
at the surface. The total free energy is given by

F tot ¼ F þ
Z
Ce
t

�tot
2

jvj2drþ m

2
jVj2: ðA�10Þ

The normal component of the diffusive flux should vanish at
the surface, i.e.,

n � jirr ¼ 0 at @Cþ
t : ðA�11Þ

Substituting Eqs. (A�7)–(A�9) into Eq. (A�6), we integrate
the result over the whole region of our system to obtain

d

dt
F tot ¼

Z
Ce
t

drð jirr � r
̂� � : rvÞ ðA�12Þ

with the aid of Eq. (2.5).
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Noting Eq. (2.20), we can derive the linear phenomen-
ological laws,

jirr ¼ �Lr
̂ and � ¼ 2�E; ðA�13Þ
from Eq. (A�12) in terms of the irreversible thermody-
namics. Positive L and � ensure that the time derivative of
F tot is not positive. Substituting Eq. (A�13) into Eqs. (A�7)
and (A�8) yields Eqs. (2.18) and (2.19), respectively. The
second equation of Eq. (3.2) follows Eq. (A�11).
Appendix B: Details in the Perturbative Calculation

Substituting Eq. (3.15) into Eq. (2.20) gives

Tjm ¼ N�1
j r�1@rr

2Rjm for j � 1; ðB�1Þ
and R00 / r�2, which leads to

R00 ¼ 0 ðB�2Þ
because of the boundary condition for vð1Þ in Eq. (3.11).
Substituting Eqs. (3.13) and (3.15) into Eq. (3.8) gives

Lr�2ðr2@2r þ 2r@r � N2
j ÞQjm ¼ Rjm@r’

ð0Þ ðB�3Þ
for j � 0. From Eqs. (B�2) and (B�3), we find Q00 ¼ 0 with
the aid of the boundary condition for 
̂ in Eqs. (3.10) and
(3.11).

Substituting Eqs. (3.13)–(3.15) into Eq. (3.9) gives

0 ¼
X
jm

fO1jmðrÞP jm þO2jmðrÞB jm þO3jmðrÞC jmg; ðB�4Þ

where Oijm’s are defined below. They vanish because of
the orthogonality of the vector spherical harmonics, and we
have

0 ¼ O1jmðrÞ � �@rpjm

þ �r�2fð@rr2@r � ðN2
j þ 2ÞÞRjm þ 2NjTjmg � ’ð0Þ@rQjm

ðB�5Þ
for j � 0,

0 ¼ O2jmðrÞ � �Njr
�1pjm

þ �r�2f2NjRjm þ ð@rr2@r �N2
j ÞTjmg � Njr

�1’ð0ÞQjm

ðB�6Þ
for j � 1, and

0 ¼ O3jmðrÞ � �r�2ð@rr2@r � N2
j ÞSjm for j � 1: ðB�7Þ

From Eqs. (B�2) and (B�5), we find p00 ¼ 0 because of the
boundary condition for p in Eq. (3.10). Deleting pjm from
Eqs. (B�5) and (B�6) for j � 1, we can substitute Eq. (B�1)
into the resultant equation to obtain

�r�2fr4@4r þ 8r3@3r þ 2ð6� N2
j Þr2@2r

� 4N2
j r@r þ N2

j
~N2
j gRjm ¼ N2

j Qjm@r’
ð0Þ ðB�8Þ

for j � 1, where ~Nj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið j� 1Þð jþ 2Þp

.
The boundary condition at the surface is given by

Eq. (3.11). As r ! r0þ, we thus have Sjm ! 0 for any
ð j; mÞ, while Rjm ! 0 and Tjm ! 0 except for ð j; mÞ ¼
ð1; 0Þ. We also have Eq. (3.23), and

T10 ! 2
ffiffiffiffiffiffiffiffiffiffi
2�=3

p
U as r ! r0þ: ðB�9Þ

Substituting these two equations into Eq. (B�1) gives
@rRjm ! 0 as r ! r0þ: ðB�10Þ

The condition for 
̂ð1Þ in Eq. (3.11) gives

@rQjm ! 0 as r ! r0þ: ðB�11Þ
Equation (3.10) gives

pjm; Qjm; Rjm; Sjm ! 0 as r ! 1: ðB�12Þ
We find Sjm to vanish for any ð j; mÞ because of Eq. (B�7)
together with the boundary conditions shown above. We
also find Eq. (3.17) to satisfy Eqs. (B�1)–(B�4) and all the
boundary conditions shown above.

We can regard Eqs. (3.20) and (3.21) as inhomogeneous
differential equations with respect to Q and R, respectively.
The homogeneous equations associated with them are both
equidimensional in r.45) A set of linear independent solutions
for the former equation is fr�2; rg, while a set for the latter
is fr�3; r�1; 1; r2g. Applying the method of variation of
parameters to the inhomogeneous equations, we obtain

Qð�Þ ¼ ��2 c1 þ
Z �

1

d� ��ð�ÞRð�Þ
� �

þ � c2 �
Z �

1

d� ��2�ð�ÞRð�Þ
� �

; ðB�13Þ

where c1 and c2 are constants, and

Rð�Þ ¼ ��3 d1 þ �2

Z �

1

d� �2�ð�ÞQð�Þ
� �

þ ��1 d2 � 5�2

Z �

1

d� �ð�ÞQð�Þ
� �

þ d3 þ 5�2

Z �

1

d� ��1�ð�ÞQð�Þ

þ �2 d4 � �2

Z �

1

d� ��3�ð�ÞQð�Þ
� �

; ðB�14Þ

where d1; . . . ; d4 are constants. After determining the
constants by means of the boundary conditions given by
Eqs. (3.22) and (3.23), we obtain Eqs. (3.26) and (3.27).
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7) D. Beysens and D. Estève: Phys. Rev. Lett. 54 (1985) 2123.

8) B. M. Law, J.-M. Petit, and D. Beysens: Phys. Rev. E 57 (1998) 5782.

9) J.-M. Petit, B. M. Law, and D. Beysens: J. Colloid Interface Sci. 202

(1998) 441.

10) D. Beysens and T. Narayanan: J. Stat. Phys. 95 (1999) 997.

11) H. Guo, T. Narayanan, M. Sztuchi, P. Schall, and G. H. Wegdam:

Phys. Rev. Lett. 100 (2008) 188303.

12) D. Bonn, J. Otwinowski, S. Sacanna, H. Guo, G. Wegdam, and P.

Schall: Phys. Rev. Lett. 103 (2009) 156101.

13) M. E. Fisher and P. G. de Gennes: C. R. Seances Acad. Sci., Ser. B 287

(1978) 207.

14) C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, and C. Bechinger:

Nature 451 (2008) 172.

15) A. Gambassi, A. Maciołek, C. Hertlein, U. Nellen, L. Helden, C.

Bechinger, and S. Dietrich: Phys. Rev. E 80 (2009) 061143.

R. OKAMOTO et al.J. Phys. Soc. Jpn. 82 (2013) 084003 FULL PAPERS

084003-9 #2013 The Physical Society of Japan

mailto:okamoto
mailto:okamoto
mailto:youhei@appi.keio.ac.jp
mailto:komura@tmu.ac.jp
http://dx.doi.org/10.1080/14786440509463331
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1103/PhysRevLett.54.2123
http://dx.doi.org/10.1103/PhysRevE.57.5782
http://dx.doi.org/10.1006/jcis.1998.5500
http://dx.doi.org/10.1006/jcis.1998.5500
http://dx.doi.org/10.1023/A:1004506601807
http://dx.doi.org/10.1103/PhysRevLett.100.188303
http://dx.doi.org/10.1103/PhysRevLett.103.156101
http://dx.doi.org/10.1038/nature06443
http://dx.doi.org/10.1103/PhysRevE.80.061143


16) R. Okamoto and A. Onuki: J. Chem. Phys. 136 (2012) 114704.

17) Ya. A. Bal’tsevich, V. G. Martynets, and E. V. Matizen: Zh. Eksp.

Teor. Fiz. 51 (1966) 983 [Sov. Phys. JETP 24 (1967) 654].

18) V. G. Martynets and E. V. Matizen: Zh. Eksp. Teor. Fiz. 58 (1970) 430

[Sov. Phys. JETP 31 (1970) 228].

19) S. P. Lee: Phys. Rev. Lett. 36 (1976) 1319.

20) K. B. Lyons, R. C. Mockler, and W. J. O’Sullivan: Phys. Rev. Lett. 30

(1973) 42.

21) K. B. Lyons, R. C. Mockler, and W. J. O’Sullivan: Phys. Rev. A 10

(1974) 393.

22) Y. Nakamura, A. Yoshimori, and R. Akiyama: J. Phys. Soc. Jpn. 81

(2012) SA026.

23) B. A. Camley and F. L. H. Brown: Phys. Rev. E 85 (2012) 061921.

24) J. W. Cahn: J. Chem. Phys. 66 (1977) 3667.

25) P. C. Hohenberg and B. I. Halperin: Rev. Mod. Phys. 49 (1977) 435.

26) A. Onuki: Phase Transition Dynamics (Cambridge University Press,

Cambridge, U.K., 2002) Chap. 6.

27) S. R. de Groot and P. Mazur: Non-Equilibrium Thermodynamics

(Dover, New York, 1984) Chap. 4.

28) Y. Fujitani: J. Phys. Soc. Jpn. 76 (2007) 064401.

29) To calculate the integral with respect to �, we replaced 1=�c with a

variable � in the integrand, took e�=ð1þ ��1Þ, which lies in Eq. (3.4),

out of the integral sign, and added the option ‘‘Assumptions ! � � 1

&& � > 0’’.

30) A. Onuki, R. Okamoto, and T. Araki: Bull. Chem. Soc. Jpn. 84 (2011)

569.

31) A. Onuki and R. Okamoto: Curr. Opin. Colloid Interface Sci. 16

(2011) 525.

32) R. Okamoto and A. Onuki: Phys. Rev. E 82 (2010) 051501.

33) R. Okamoto and A. Onuki: Phys. Rev. E 84 (2011) 051401.

34) S. Samin and Y. Tsori: Europhys. Lett. 95 (2011) 36002.

35) U. Nellen, J. Dietrich, L. Helden, S. Chodankar, K. Nyg�ard, J. F.

van der Veen, and C. Bechinger: Soft Matter 7 (2011) 5360.

36) J.-C. Desplat, I. Pagonabarraga, and P. Bladon: Comput. Phys.

Commun. 134 (2001) 273.

37) K. Stratford, R. Adhikari, I. Pagonabarraga, and J.-C. Desplat: J. Stat.

Phys. 121 (2005) 163.

38) T. Araki and H. Tanaka: Phys. Rev. E 73 (2006) 061506.

39) T. Araki and H. Tanaka: J. Phys.: Condens. Matter 20 (2008) 072101.

40) M. E. Cates and P. S. Clegg: Soft Matter 4 (2008) 2132.

41) E. Kim, K. Stratford, R. Adhikari, and M. E. Cates: Langmuir 24

(2008) 6549.

42) H. Fukagawa and Y. Fujitani: Prog. Theor. Phys. 127 (2012) 921.

43) Y. Fujitani: J. Phys. Soc. Jpn. 70 (2001) 1556.

44) Y. Fujitani: J. Phys. Soc. Jpn. 79 (2010) 074002.

45) C. Bender and S. A. Orszag: Advanced Mathematical Methods for

Scientists and Engineers (Springer, New York, 1999) Chap. 1.

R. OKAMOTO et al.J. Phys. Soc. Jpn. 82 (2013) 084003 FULL PAPERS

084003-10 #2013 The Physical Society of Japan

http://dx.doi.org/10.1063/1.3693331
http://dx.doi.org/10.1103/PhysRevLett.36.1319
http://dx.doi.org/10.1103/PhysRevLett.30.42
http://dx.doi.org/10.1103/PhysRevLett.30.42
http://dx.doi.org/10.1103/PhysRevA.10.393
http://dx.doi.org/10.1103/PhysRevA.10.393
http://dx.doi.org/10.1143/JPSJS.81SA.SA026
http://dx.doi.org/10.1143/JPSJS.81SA.SA026
http://dx.doi.org/10.1103/PhysRevE.85.061921
http://dx.doi.org/10.1063/1.434402
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1143/JPSJ.76.064401
http://dx.doi.org/10.1246/bcsj.20110012
http://dx.doi.org/10.1246/bcsj.20110012
http://dx.doi.org/10.1016/j.cocis.2011.04.002
http://dx.doi.org/10.1016/j.cocis.2011.04.002
http://dx.doi.org/10.1103/PhysRevE.82.051501
http://dx.doi.org/10.1103/PhysRevE.84.051401
http://dx.doi.org/10.1209/0295-5075/95/36002
http://dx.doi.org/10.1039/c1sm05103b
http://dx.doi.org/10.1016/S0010-4655(00)00205-8
http://dx.doi.org/10.1016/S0010-4655(00)00205-8
http://dx.doi.org/10.1007/s10955-005-8411-1
http://dx.doi.org/10.1007/s10955-005-8411-1
http://dx.doi.org/10.1103/PhysRevE.73.061506
http://dx.doi.org/10.1088/0953-8984/20/7/072101
http://dx.doi.org/10.1039/b807312k
http://dx.doi.org/10.1021/la800263n
http://dx.doi.org/10.1021/la800263n
http://dx.doi.org/10.1143/PTP.127.921
http://dx.doi.org/10.1143/JPSJ.70.1556
http://dx.doi.org/10.1143/JPSJ.79.074002

