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We investigate the locomotion of a thermally driven elastic two-sphere microswimmer with internal feedback control
that is realized by the position-dependent friction coefficients. In our model, the two spheres are in equilibrium with
independent heat baths characterized by different temperatures, causing a heat flow between the two spheres. We
generally show that the average velocity of the microswimmer is non-zero when the friction coefficients are dependent
on the spring extension. Using the method of stochastic thermodynamics, we obtain the entropy production rate and
estimate the efficiency of the two-sphere microswimmer. The proposed self-propulsion model highlights the importance
of information in active matter and offers a fundamental transport mechanism in various biological systems.

1. Introduction

Microswimmers, such as sperm cells or motile bacteria,
are tiny objects moving in viscous environments, and are
expected to be relevant to microfluidics and microsystems.1)

By transforming chemical energy into mechanical work,
microswimmers change their shapes and move in viscous
fluids.2) According to Purcell’s scallop theorem, micro-
swimmers in a Newtonian fluid need to undergo non-
reciprocal body motion for steady locomotion.3,4) To realize
such a non-reciprocal deformation, various microswimmer
models that have more than two degrees of freedom have
been proposed.5) One example is the three-sphere micro-
swimmer in which three in-line spheres are linked by two
arms of varying lengths.6,7)

Among various generalizations of the three-sphere micro-
swimmer model,8) Hosaka et al. proposed an elastic three-
sphere microswimmer in which the three spheres are in
equilibrium with independent heat baths having different
temperatures.9) It was shown that such a stochastic micro-
swimmer (without any prescribed deformation) can also
acquire net locomotion due to thermal fluctuations, and its
average velocity is proportional to the heat flow between the
spheres.9) Later, the average entropy production rate10,11) and
the time-correlation functions12) of the same model were
calculated by some of the current authors. In particular, the
existence of an antisymmetric part of the cross-correlation
function reflects the broken time-reversal symmetry of this
microswimmer.12)

Prior to the above thermal three-sphere microswimmer
model, Kumar et al. proposed a model of an active elastic
dimer (AED) in which the friction coefficients of the two
spheres depend on their relative coordinate.13,14) Their model
is different from the traditional Brownian ratchet models15,16)

because the motion asymmetry is created internally and is not
induced by an external periodic potential. They found that the
average velocity of an AED is proportional to the difference
between the non-equilibrium noise strengths acting on the
two spheres.13,14) Such a self-propulsion mechanism can
explain, for example, the movement of helicases on DNA,17)

the walking of Myosin VI on actin filaments,18) and the
collective migration of cell clusters.19)

Given the modern framework of stochastic thermody-
namics20–22) and the accumulated knowledge of the thermal
three-sphere microswimmer model,9–12) the AED model
offers a renewed interest, especially when the two spheres
have different temperatures without any non-equilibrium
noises. Moreover, the internal feedback control through the
position-dependent friction coefficients in the AED model is
a crucial mechanism for “informational active matter” that
utilizes information (measurement and feedback) instead of
energy for various non-equilibrium processes.23,24) Recently,
we have proposed models of Ornstein-Uhlenbeck informa-
tion swimmers with external and internal feedback con-
trols.25)

In this work, we simplify the original AED model to
discuss a thermally driven two-sphere microswimmer with
internal feedback control that is realized by the position-
dependent friction coefficients. In the current model, the two
spheres are in thermal equilibrium with independent heat
baths having different temperatures. We show that a
combination of heat transfer between the spheres and internal
feedback control leads to directional locomotion in a steady
state under a noisy environment. We analytically obtain the
average velocity and the entropy production rate of this
stochastic micromachine by using stochastic energetics.20)

Using these results, we further estimate the efficiency of the
proposed model. We consider that our model explains one of
the fundamental mechanisms for transport and locomotion in
various active matter and biological systems, such as the
crawling motion of a cell.26,27)

In Sect. 2, we explain the model of a thermally driven
elastic two-sphere microswimmer with internal feedback
control. In Sect. 3, we obtain the steady-state probability
distribution that is further used to calculate the average
velocity and the entropy production rate in Sects. 4 and 5,
respectively. In Sect. 6, we estimate the efficiency of the two-
sphere microswimmer by using specific functional forms for
the spring potential and the friction coefficients. A brief
summary and discussion are given in Sect. 7.
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2. Model

As schematically shown in Fig. 1, we consider a micro-
swimmer consisting of two hard spheres connected by a
spring. The positions of the two spheres in a one-dimensional
coordinate are denoted by xiðtÞ (i ¼ 1; 2), and we further
define the spring extension by x ¼ x2 � x1 that can take both
positive and negative values. The spring potential energy is
generally given by UðxÞ, which can be a harmonic potential
(as we will discuss later) or that of a finitely extensible non-
linear elastic (FENE) spring.14) There are two important
assumptions of the model: (i) the two spheres are in
equilibrium with independent heat baths having different
temperatures Ti (T1 ≠ T2) and (ii) the friction coefficients
�iðxÞ � 0, acting separately on the two spheres, are dependent
on the spring extension x. The fact that the friction
coefficients �iðxÞ depend on the spring extension x reflects
an internal feedback mechanism: as the relative position of
the spheres changes, the resistance experienced by each
sphere varies accordingly. This coupling allows the system to
modulate its dissipative response based on internal config-
uration and is essential for achieving directional locomotion
in the absence of external forcing. To preserve the generality
of the model, we first do not specify the functional forms of
UðxÞ and �iðxÞ.

The coupled overdamped Langevin equations for xi
(i ¼ 1; 2) under thermal noise are given by

�iðxÞ _xiðtÞ ¼ �@iUðxÞ þ giðxÞ�iðtÞ; ð1Þ
where _xi ¼ dxi=dt, @i ¼ @=@xi (the summation over i is not
taken here). The thermal noise �iðtÞ has Gaussian statistics
with zero mean and unit variance:

h�iðtÞi ¼ 0; h�iðtÞ�jðt 0Þi ¼ �ij�ðt � t 0Þ: ð2Þ
According to the fluctuation-dissipation relation of the
second kind, the prefactor of thermal noise is given by
giðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�iðxÞkBTi

p
, where kB is the Boltzmann constant.28)

The above Langevin equations are multiplicative because the
noise is coupled non-linearly with the stochastic variables.29)

Then, it is necessary to specify the interpretation of the
multiplicative noise [otherwise, Eq. (1) is meaningless].

Here, we employ the Itô interpretation,30) and the Langevin
equation in Eq. (1) should be rewritten with the Itô
convention x� ¼ xðtÞ as14)

_xiðtÞ ¼ � @iUðxÞ
�iðxÞ � ½giðxÞ�2@i�iðxÞ

2½�iðxÞ�3
þ giðx�Þ

�iðx�Þ �iðtÞ: ð3Þ

As pointed out by Lau and Lubensky,31) the second term on
the right-hand side is proportional to the temperature Ti, and
it is necessary to ensure the proper thermal equilibrium. In
principle, one can also choose other interpretations of the
multiplicative noise, such as the Stratonovich interpreta-
tion,30) as long as the same thermal equilibrium is ensured.
Using, for example, the Stratonovich convention x�� ¼ ½xðt þ
�tÞ þ xðtÞ�=2, where �t is the small increment of time, the
corresponding Langevin equation should read (see the
Appendix of Ref. 14)

_xiðtÞ ¼ � @iUðxÞ
�iðxÞ � giðxÞ@igiðxÞ

2½�iðxÞ�2
þ giðx��Þ

�iðx��Þ �iðtÞ: ð4Þ

Notice that Eqs. (3) and (4) statistically describe the same
physical phenomena experiencing a multiplicative noise, and
the second terms on the right-hand side of these equations
vanish when the noise is additive, namely, when �iðxÞ is
constant. A more general argument, including the anti-Itô
convention, can be seen in the literatures.31,32)

For the sake of mathematical convenience, we shall use
the Itô interpretation and deal with the coupled Langevin
equations in Eq. (3) that can be explicitly written as

_x1ðtÞ ¼ U0ðxÞ
�1ðxÞ þ

kBT1�
0
1ðxÞ

�21 ðxÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT1

�1ðx�Þ

s
�1ðtÞ; ð5Þ

_x2ðtÞ ¼ �U0ðxÞ
�2ðxÞ �

kBT2�
0
2ðxÞ

�22 ðxÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT2

�2ðx�Þ

s
�2ðtÞ: ð6Þ

Hereafter, the prime denotes a derivative with respect to the
relative coordinate x ¼ x2 � x1, such as U0ðxÞ ¼ �@1UðxÞ ¼
@2UðxÞ.
3. Steady-state Probability Distribution

From the Langevin equations in Eqs. (5) and (6), the
equations of motion for both the center-of-mass coordinate
X ¼ ðx1 þ x2Þ=2 and the relative coordinate x ¼ x2 � x1 can
be obtained. Since the former equation is a function of the
relative coordinate x and the noise only, we first discuss the
equation of motion for x within the Itô interpretation, which
is given by14)

_xðtÞ ¼ aðxÞ þ bðx�Þ�ðtÞ: ð7Þ
Here, �ðtÞ is the superposition of �1ðtÞ and �2ðtÞ with the same
Gaussian white statistics, and the two functions aðxÞ and bðxÞ
are defined as

aðxÞ ¼ � 1

�1ðxÞ þ
1

�2ðxÞ
� �

U0ðxÞ þ kBT1

1

�1ðxÞ þ
�

�2ðxÞ
� �0

;

ð8Þ

bðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT1

1

�1ðxÞ þ
�

�2ðxÞ
� �s

; ð9Þ

where we have introduced the dimensionless temperature
ratio � ¼ T2=T1. Note that � ¼ 1 corresponds to the thermal
equilibrium.

The Fokker–Planck equation for the probability distribu-
tion Pðx; tÞ corresponding to the Langevin equation in Eq. (7)
can be written in the Itô interpretation as33)

γ1(x) γ2(x)

x1 x2

x
T1 T2

U(x)

Fig. 1. (Color online) Thermally driven elastic microswimmer consisting
of two hard spheres connected by a spring. The positions of the two spheres
in a one-dimensional coordinate are denoted by xiðtÞ (i ¼ 1; 2), and the spring
extension is defined by x ¼ x2 � x1. The spring potential energy is given by
UðxÞ, and the two spheres are in thermal equilibrium with independent heat
baths having different temperatures Ti. The friction coefficients �iðxÞ, acting
separately on the two spheres, are dependent on the spring extension x. The
internal heat flow combined with the feedback control through the position-
dependent friction coefficient leads to persistent locomotion of the
microswimmer.
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@

@t
Pðx; tÞ ¼ � @

@x
½aðxÞPðx; tÞ� þ 1

2

@2

@x2
½b2ðxÞPðx; tÞ�: ð10Þ

Since we are interested in the steady-state properties of the
microswimmer, we discuss the steady-state probability
distribution by imposing @tPðx; tÞ ¼ 0. Moreover, the prob-
ability flux can be set to zero since the relative coordinate is
bounded by the spring potential UðxÞ. Then, the steady-state
probability distribution PsðxÞ satisfies the relation14)

aðxÞPsðxÞ � 1

2

@

@x
½b2ðxÞPsðxÞ� ¼ 0; ð11Þ

and PsðxÞ can be formally solved as

PsðxÞ ¼ N
b2ðxÞ exp

Z x

0

dy
2aðyÞ
b2ðyÞ

� �
; ð12Þ

where N is the normalization factor. By substituting Eqs. (8)
and (9) into the above expression, we obtain14)

PsðxÞ ¼ N1

2kBT1

exp

Z x

0

dy � U0ðyÞ½��11 ðyÞ þ ��12 ðyÞ�
kBT1½��11 ðyÞ þ ���12 ðyÞ�

� �� �
:

ð13Þ
If we further assume that the two friction coefficients are
identical for all x, i.e., �1ðxÞ ¼ �2ðxÞ, the steady-state
probability distribution simplifies to

PsðxÞ ¼ N1

2kBT1

exp � 2UðxÞ
ð1 þ �ÞkBT1

� �
; ð14Þ

which is essentially the Boltzmann distribution modified by
the temperature ratio � ¼ T2=T1.

4. Average Velocity

Having obtained the steady-state distribution function
PsðxÞ for the relative coordinate x in the previous section,
we calculate the average velocity of the elastic two-sphere
microswimmer. Since the center of mass velocity is simply
given by V ¼ _X ¼ ð _x1 þ _x2Þ=2, we use Eqs. (5) and (6) to
obtain the statistical average of V13,14)

hVi ¼ 1

2

1

�1ðxÞ �
1

�2ðxÞ
� �

U0ðxÞ
� �

� kBT1

2

1

�1ðxÞ �
�

�2ðxÞ
� �0� �

; ð15Þ
where the averaging h� � �i is performed over the steady-state
distribution PsðxÞ. To derive the above expression, the
contribution of the multiplicative noise terms has been
omitted owing to the Itô interpretation. It should be
emphasized here that hVi vanishes when � ¼ 1 for any
choice of �1ðxÞ and �2ðxÞ, provided that the average is
evaluated with respect to PsðxÞ.

When �1ðxÞ ¼ �2ðxÞ, the above average velocity further
reduces to

hVi ¼ ð� � 1ÞkBT1

2

1

�1ðxÞ
� �0� �

: ð16Þ

This result clearly demonstrates that the microswimmer
acquires a finite average velocity when � ≠ 1 (T1 ≠ T2) and
�1 is not constant. In other words, the current microswimmer
is driven by thermal energy, and the internal feedback control
through �1ðxÞ plays a crucial role for its locomotion. We
remark, however, that when ð1=�1ðxÞÞ0 and UðxÞ are

respectively odd and even functions of x, hVi vanishes even
if the friction coefficient is position-dependent. A similar
result to Eqs. (15) and (16) was reported for an AED whose
asymmetry in the non-equilibrium noise strengths leads to
locomotion.13,14) In our study, we do not introduce any active
fluctuations, which allows us to use the standard framework
of stochastic thermodynamics,20–22) as we discuss below.

5. Entropy Production Rate

In this section, we calculate the average entropy produc-
tion rate of the elastic microswimmer in the steady state,
which is given by

h _�i ¼ � h _Q1i
T1

� h _Q2i
T2

; ð17Þ

where the stochastic heat flow _Qi is the heat gained by the i-
th sphere per unit time. According to the stochastic energetics
developed by Sekimoto,20) it is given by

_Qi dt ¼
@UðxÞ
@xi

� dxi; ð18Þ

where � denotes the Stratonovich product, and the small
increment dxi can be obtained from the Langevin equations
in Eqs. (5) and (6). Using the Wong–Zakai theorem to deal
with the Stratonovich product and taking the statistical
average,20) we obtain after some calculation

h _Qii ¼ � ½U0ðxÞ�2
�iðxÞ

� �
þ kBTi

U0ðxÞ
�iðxÞ

� �0� �
: ð19Þ

A similar expression was obtained in Eq. (32) of Ref. 34.
When the two friction coefficients are constant and identical,
the above expression reduces to Eq. (4.27) of Ref. 20.

It is straightforward to verify that h _Qii ¼ 0 when � ¼ 1 by
using the equilibrium distribution function in Eq. (13). When
� ≠ 1, we now consider the total heat flow defined by h _Qi ¼
h _Q1i þ h _Q2i. Using Eqs. (8) and (9), one can generally show
that h _Qi vanishes in the steady state because

h _Qi ¼ hU0ðxÞaðxÞi þ 1

2
hU00ðxÞb2ðxÞi ¼ 0: ð20Þ

In the second equality, we have used Eq. (11), which stems
from the steady-state condition. Notice that the relation
h _Qi ¼ 0 generally holds even if the two friction coefficients
�1ðxÞ and �2ðxÞ are different. Since we have h _Q2i ¼ �h _Q1i
from Eq. (20), the average entropy production rate in
Eq. (17) can be rewritten as

h _�i ¼ 1 � �

�

h _Q1i
T1

; ð21Þ

which vanishes when � ¼ 1. When T1 < T2 (� > 1), h _Q1i
is negative and we have h _�i > 0, as required from the
generalized second law for non-equilibrium systems. A
similar statement also holds when T1 > T2 (� < 1).

6. Example

So far, we have not yet specified the functional forms of
the spring potential UðxÞ and the friction coefficients �iðxÞ.
As an example, we choose the harmonic potential energy
UðxÞ ¼ Kx2=2, where K > 0 is the spring constant, and
assume that the friction coefficients have the form13,14)
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�1ðxÞ ¼ �2ðxÞ ¼ �½1 þ � tanhðx=wÞ�; ð22Þ
where γ is a constant friction coefficient, δ is a dimensionless
feedback strength parameter satisfying j�j < 1 [recall
�iðxÞ > 0], and w is a length characterizing the change
of the friction coefficients. In this case, the steady-state
distribution function in Eq. (14) and the average velocity in
Eq. (16) become

PsðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K

�ð1 þ �ÞkBT1

r
exp � Kx2

ð1 þ �ÞkBT1

� �
; ð23Þ

and

hVi ¼ �ð1 � �Þ
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KkBT1

�ð1 þ �Þ

s

�
Z 1

�1
dz

sech2 z
ð1 þ � tanh zÞ2 exp � "z2

1 þ �

� �
; ð24Þ

respectively, where " ¼ Kw2=ðkBT1Þ is the dimensionless
energy parameter. Note that Eq. (23) is simply a Gaussian
distribution function. Since the dimensionless integral in
Eq. (24) is positive (which will be evaluated numerically
below), hVi is non-zero only when � ≠ 0 and � ≠ 1.
Moreover, the temperature ratio θ determines the direction
of locomotion, i.e., hVi < 0 when � > 0 and � > 1, or
vice versa. Similarly, by calculating the average heat flow
h _Q1i in Eq. (19), we obtain the average entropy production
rate in Eq. (21) as

h _�i ¼ � � 1

�

ðKwÞ2
�T1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"

�ð1 þ �Þ
r Z 1

�1
dz

�
z2

1 þ � tanh z

þ �z sech2 z
"ð1 þ � tanh zÞ2 �

1

"ð1 þ � tanh zÞ
�
exp � "z2

1 þ �

� �
;

ð25Þ
which includes another dimensionless integral.

In Fig. 2(a), we numerically plot the dimensionless
average velocity hV̂i ¼ hVi�= ffiffiffiffiffiffiffiffiffiffiffiffiffi

KkBT1

p
from Eq. (24) as a

function of the feedback strength parameter δ for different
values of the temperature ratio � ¼ T2=T1 > 1 when " ¼ 1.
To confirm our analytical prediction, we have also performed
numerical simulations of the coupled stochastic equations in
Eqs. (5) and (6). These Langevin equations were discretized
according to the Itô convention. We find a good agreement
between the theoretical and numerical results. Notice that hV̂i
vanishes when either � ¼ 1 or � ¼ 0, as shown in Eq. (24).
Moreover, hV̂i is an odd function of δ because the sign of δ
determines the direction of locomotion. In Fig. 2(b), on the
other hand, we numerically plot the dimensionless average
entropy production rate h _̂�i ¼ h _�i�T1=ðKwÞ2 from Eq. (25)
as a function of the feedback strength δ. For � > 1, h _�i is
positive and is an even function of δ. As a result, the entropy
production rate is minimized at � ¼ 0 and the corresponding
expression is given by h _�imin ¼ kBKð� � 1Þ2=ð2��Þ � 0.

At this stage, it is worth evaluating the efficiency of the
current microswimmer defined by7,11)

� ¼ 2�hVi2
h _�iT� ; ð26Þ

where T� ¼ ðT1 þ T2Þ=2 is the average temperature although
either T1 or T2 can also be used. The factor 2� in the
numerator reflects the fact that the microswimmer consists of

two spheres with the same average friction coefficient γ. In
Fig. 3, we color-plot the efficiency η as a function of the
feedback strength parameter δ and the temperature ratio
� ¼ T2=T1. The efficiency η vanishes when � ¼ 0 and is an
even function of δ when θ is fixed. It is worth noting that, in
the equilibrium limit of � ! 1, the efficiency η is finite
because both hVi and h _�i vanish in this limit [see Eqs. (24)
and (25)].

In general, there is a contribution to the total entropy
production rate coming from the center-of-mass diffusion,11)

(b)

(a)

Fig. 2. (Color online) The plots of the average velocity hVi [see Eq. (24)]
and the average entropy production rate h _�i [see Eq. (25)] of the two-sphere
microswimmer when the potential is UðxÞ ¼ Kx2=2 and the friction
coefficients are �1ðxÞ ¼ �2ðxÞ ¼ �½1 þ � tanhðx=wÞ� [see Eq. (22)]. The
dimensionless energy parameter is chosen here as " ¼ Kw2=ðkBT1Þ ¼ 1.
(a) The plot of the dimensionless average velocity hV̂i ¼ hVi�= ffiffiffiffiffiffiffiffiffiffiffiffiffi

KkBT1

p
as a

function of the dimensionless feedback strength parameter δ for different
values of the dimensionless temperature ratio � ¼ T2=T1. (b) The plot of the
dimensionless average entropy production rate h _̂�i ¼ h _�i�T1=ðKwÞ2 as a
function of δ for different values of θ. In both (a) and (b), the filled circles
correspond to the result of the numerical simulation.

η

Fig. 3. (Color online) The color plot of the efficiency η [see Eq. (26)] of
the two-sphere microswimmer as a function of the dimensionless feedback
strength parameter δ and the dimensionless temperature ratio � ¼ T2=T1. The
efficiency η vanishes when � ¼ 0.
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which is neglected in Eq. (26). Here, we have only
considered the entropy production rate due to the heat flow
[see Eq. (17)] that causes the unidirectional locomotion.

7. Summary and Discussion

To summarize, we have studied the locomotion of a
thermally driven elastic two-sphere microswimmer that has
position-dependent friction coefficients. Such a micro-
swimmer can acquire non-zero average velocity in the steady
state due to the heat flow between the spheres. We have
obtained the entropy production rate and further estimated the
efficiency of the microswimmer. The proposed self-propul-
sion mechanism emphasizes the importance of active matter
and biological systems driven by internal feedback control.
In the future, we will calculate the time-correlation functions
of the microswimmer to quantitatively discuss the degree of
broken time-reversal symmetry.12)

In our model, the state-dependent friction coefficients play
an essential role. The change in the friction coefficient can be
caused, for example, by the change in the particle size. In this
sense, the current model has a similarity to the model of
“pushmepullyou” by Avron et al.35) or the two-sphere model
by Pandey et al.36) The main difference in our model is that
the spheres have different temperatures and thermal fluctua-
tions cause the locomotion in a stochastic manner. The
internal heat flow combined with the feedback control
through the position-dependent friction coefficient is the
main driving force for persistent locomotion.

The other important assumption of the model is that the
statistical properties of the two spheres are characterized by
two different temperatures. Such a micromachine is concep-
tually motivated by Feynman’s Brownian ratchet37) or a
model system that interacts with two thermal environ-
ments.20) More recently, a similar non-equilibrium dimer
model confined between two walls was discussed to calculate
probability flux loops that demonstrate the broken detailed
balance when the temperatures are different.38–40) In the
previous thermally driven three-sphere microswimmer mod-
el,9) all the spheres were assumed to have different temper-
atures.

Although it is technically challenging to introduce different
temperatures in a moving microswimmer, one possible way
is to use a chemically heterogeneous particle, such as a Janus
particle, under laser irradiation, which induces inhomoge-
neous temperature distribution on the particle.40) By further
introducing the internal deformation degree of freedom,41) we
expect that the proposed thermally driven two-sphere micro-
swimmer can be experimentally realized. It should be
mentioned, however, that any difference in the fluctuation
(both thermal and non-thermal) between the two spheres is
sufficient to induce a non-zero velocity of the two-sphere
microswimmer.13,14) Hence, rather than the thermodynamic
temperature itself, an effective temperature that reflects the
microswimmer’s internal fluctuation is more important for its
persistent locomotion.
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