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Abstract. We measure the non-linear relation between the shear stress and shear rate in the lyotropic
lamellar phase of C12E5/water system. The measured shear thinning exponent changes with the surfac-
tant concentration. A simple rheology theory of a lamellar or smectic phase is proposed with a prediction
γ̇ ∼ σ3/2, where γ̇ is the shear rate and σ is the shear stress. We consider that the shear flow passed through
the defect structure causes the main dissipation. As the defect line density varies with the shear rate, the
shear thinning arises. The defect density is estimated by the dynamic balance between the production and
annihilation processes. The defect production is caused by the shear-induced layer undulation instabil-
ity. The annihilation occurs through the shear-induced defect collision process. Further flow visualization
experiment shows that the defect texture correlates strongly with the shear thinning exponent.

PACS. 61.30.Jf Defects in liquid crystals – 83.60.Fg Shear rate dependent viscosity – 61.72.Lk Linear
defects: dislocations, disclinations

1 Introduction

The rheology of lamellar or smectic liquid crystals is a
long-standing puzzle [1]. A very thin free-standing layer
which is very well oriented shows a medium value in the
plane shear viscosity (the η3 in the Harvard notation [2])
of the order 0.03–0.07Pa s for rod-like molecules such as
8CB [3]. Real flows in general situations, however, are to-
tally different, where the samples become far more viscous
than the well-aligned ones. This is believed mainly due to
the texture. The presence of domains, together with grain
boundaries and line defects between them, is responsible
for the high viscosity. Taking the finite grains as the basic
unit, Kawasaki and Onuki suggested that the layer relax-
ation within the lamellar domains may have an important
contribution to the linear viscoelasticity [4]. The detailed
grain boundary or defect structures do not enter into their
arguments, which indicates a high universality. Other the-
oretical suggestions examine the layer fluctuations within
the extremely large domain [5,6]. This fluctuation effect is
estimated with a logarithmic dependence on the domain
size, and should be small for the typical sample which con-
sists of small grains. The direct visualization by Basappa
et al. shows that the defect line density correlates strongly
with the viscosity [7]. Therefore the defects must play a
central role in the lamellar rheology.

a e-mail: cydlu@ntu.edu.tw
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Recently Meyer et al. have proposed a theory for lamel-
lar viscosity which is explicitly based on the defect line
motion [8–10]. They considered the screw defect line mo-
tion which produces the plastic deformation of the lamel-
lar structure. The defect lines move between the sites of
local free-energy minima, which is responsible for the dis-
sipation. Their argument arrives at a power law behavior
with the constitutive relation γ̇ ∼ σm, with the universal
shear exponent m = 5/3 relating the shear rate γ̇ and the
shear stress σ. (Here we use the notation in Refs. [9,10]
which follows the metallurgical usage. The conventional
shear thinning exponent n defined by σ ∼ γ̇n is simply re-
lated by n = 1/m.) Three experimental systems, includ-
ing a copolymer solution, a thermotropic smectic liquid
crystal (8CB), and a lyotropic system, all support this
exponent [10]. Other earlier and recent experiments on
smectics or lamellar phases reported that the exponent
m varies between 1 and 2 [11–16] (see Tab. 2 later). At
the moment, it is not clear whether the exponent is truly
universal and all these variations are due to experimental
errors, or it depends on the systems studied.

In this work, we first study experimentally the ly-
otropic system of a non-ionic surfactant C12E5 and wa-
ter. In Section 2, we discuss its non-linear rheological be-
havior as the temperature and concentration are varied.
We find that the C12E5/water binary mixture has a shear
exponent different from the systems studied by Meyer
et al. [9,10]. In Section 3 we propose a scaling argument
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Fig. 1. (Color online) Time evolution of the measured shear
rate γ̇ under constant stresses σ = 0.09, 0.15, 0.3, 0.4, 0.6 Pa
during 600 s for a C12E5/water binary system. The surfactant
composition is φ = 35 wt% and the temperature is T = 66 ◦C
at which the system is in the lamellar phase.

for the shear exponent which operates when the defect is
produced by the flow instability. We estimate the defect
density by the dynamic balance between the production
and annihilation processes. Our theoretical prediction for
the exponent (m = 3/2) is in agreement with our exper-
imental results. We reported in Section 4 a preliminary
flow visualization experiment which shows the correlation
between the shear exponent and the defect texture. Some
discussions and the comparison with the theory by Meyer
et al. are provided in Section 5.

2 Rheology experiment

In this section, we first present the results of rheology
experiment on a lyotropic liquid crystal. The studied sys-
tem is composed of a binary mixture of water and non-
ionic surfactant C12E5 (CnEm represents the chemical for-
mula CnH2n+1(OCH2CH2)m -OH). We purchased C12E5

from Nikko Chemicals, Inc., and used without any fur-
ther purification. The composition-temperature phase di-
agram of this system has been reported [17]. The rheolog-
ical measurement was performed in the surfactant com-
position range φ = 30–45wt% and the temperature range
T = 66–71 ◦C. For this condition, the system is in the sin-
gle lamellar phase. We used a rotational rheometer AR550
from TA Instruments, Ltd. All the measurements were
carried out under constant stress σ in the cone-and-plate
geometry. Here the cone is made in stainless steel. The
diameter of the cone is 40mm and the cone angle is 1.5◦,
while the truncation is 47µm. No anchoring treatment was
performed.

Typical time evolutions of the measured shear rate are
presented in Figure 1 for different applied shear stresses
when φ = 35wt% and T = 66 ◦C. Each stress was applied
for 600 s within which the sample reached the steady state.
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Fig. 2. Log-log plot of the steady-state shear rate γ̇ (averaged
over 450–600 s in Fig. 1) as a function of the shear stress σ
when φ = 35 wt% and T = 66 ◦C. The slope of the straight
line is m = 1.44 ± 0.08 which gives the exponent of the stress
scaling behavior γ̇ ∼ σm.

We have checked that the system attains the stationary
state within 600 s by performing much longer measure-
ments. For very small stress values such as σ = 0.09Pa,
however, the small shear rate signal interferes with an ar-
tificial oscillatory noise generated by the rheometer, and
it becomes more difficult to determine the stationary state
accurately. Nevertheless, we have compared the shear rate
data up to 600 s for all the stress values by assuming that
the system has reached the steady state. The applied shear
stress was successively decreased from the higher to lower
values. The sample was kept at rest for 120 s between suc-
cessive measurements with different stresses. The solvent
evaporation is insignificant within one sequence of the ex-
perimental time. Such a measurement has been repeated
several times and the obtained data were accumulated in
order to better estimate the scaling relation between the
shear stress and shear rate. We have also tried to measure
the shear rate by successively increasing (rather than de-
creasing) the shear stress from the lower to higher values.
However, this was impossible without a preshearing treat-
ment at the beginning. After preshearing the sample for
several minutes, we have recovered almost the same re-
sult as presented above. Figure 2 is the log-log plot of the
steady-state shear rate (averaged between 450 and 600 s)
as a function of the applied stress for several sequences
of the measurement. As indicated by the solid fitted line,
the shear rate obeys a power law behavior γ̇ ∼ σm, with
m = 1.44 ± 0.08.

Next we investigated the effect of temperature when
φ = 35wt%. The measured shear rate is plotted for var-
ious temperatures in Figure 3. For each temperature, we
extract the exponent m which is summarized in Table 1.
For the studied temperature range, m is almost indepen-
dent of the temperature within the experimental error.
Then the temperature effect can be incorporated in the
prefactor A(T ) such that γ̇ ∼ A(T )σm, as suggested in



C.-Y.D. Lu et al.: Non-linear rheology of lamellar liquid crystals 93

0.1

1

γ
  

[1
/s

]

0.1 1

σ  [Pa]

344 K

343

341

339

Fig. 3. (Color online) Log-log plot of the steady-state shear
rate γ̇ as a function of the shear stress σ at different tempera-
tures but with fixed composition φ = 35wt%. Each slope of the
straight line is almost identical to that of T = 66 ◦C (339 K)
within the experimental errors.

Table 1. The values of the stress scaling exponent m defined
by γ̇ ∼ σm for different temperatures when φ = 35 wt%.

T (◦C) m

66 1.44 ± 0.08

68 1.44 ± 0.07

70 1.42 ± 0.07

71 1.48 ± 0.09

reference [9]. Here we assume that the macroscopic rhe-
ological behavior corresponds to thermally activated pro-
cesses. The different values of A(T ) obtained from Figure 3
are plotted as a function of 1/T in Figure 4. From the slope
of the solid line, we have determined the activation energy
W defined by

A(T ) = A0 exp(−W/kBT ), (1)

where kB is the Boltzmann constant. The obtained value is
W ≈ 65kBTR, with TR = 339K. This value of the activa-
tion energy is comparable to those reported in reference [9]
both for thermotropic and lyotropic lamellar phases. (It
should be noted that, in Ref. [9], a dilute lyotropic system
of CpCl/hexanol/brine exhibits a completely different ex-
ponent; m ≈ 5. In this case, the activation energy is much
smaller.) The physical interpretation of the obtained acti-
vation energy will be discussed in Section 5.

For fixed T = 66 ◦C, we varied the composition φ and
repeated the same measurements. The result is plotted in
Figure 5 for four different compositions. Although a power
law behavior is observed for each composition, the expo-
nent m actually varies between different compositions. In
Figure 6, we plotted the obtained exponents as a function
of the composition, together with the theoretical predic-
tions by Meyer et al. (m = 5/3) [9,10] and by us (m = 3/2,
as described in the next Section). In general, the observed
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Fig. 4. Normal plot of log A(T ) as a function of 1/T when
φ = 35wt%. The slope of the straight line gives the activation
energy W ≈ 65kBTR, with TR = 339K (see Eq. (1) and the
text).
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Fig. 5. (Color online) Log-log plot of the steady-state shear
rate γ̇ as a function of the shear stress σ at different composi-
tions but with fixed temperature T = 66 ◦C. The slope of the
straight lines differs slightly among different compositions.

exponent is close, but slightly smaller than our predic-
tion m = 3/2. The deviation from m = 3/2 is largest
when φ = 45wt% compared to the other three composi-
tions. This result would be consistent with the observed
difference in the defective textures as we shall present in
Section 4. The difference may be due to a gradual struc-
tural transition in the sample, leading to a weaker shear
thinning behavior. Although it is known that a dynam-
ical transition to the so-called onion structure occurs in
the presence of a relatively large shear flow [14,15], we
consider that it is not the case for φ = 45wt%. This is be-
cause the exponent m would be much larger in the onion
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Fig. 6. The exponent m as a function of the composition.
The solid line is our theoretical prediction m = 3/2 while the
dashed line corresponds to m = 5/3 which is predicted by
Meyer et al. in references [9,10].

phase, and the texture of the φ = 45wt% sample (see later
Fig. 12(d)) does not indicate any onion formation.

Table 2 summarizes the reported values of m in the
literature for various smectic or lamellar phases including
both thermotropic and lyotropic cases. The temperature
range is specified for a thermotropic liquid crystal 8CB re-
ported in different papers. When the system undergoes a
structural transition, we picked up the exponent that char-
acterizes the weak shear regime. Here m typically ranges
between 1 and 2 but its precise value is not yet determined.

3 Theory

3.1 Dislocation loop under shear flow

In this section we present our scaling argument on de-
fect dynamics, which predicts the exponent m = 3/2 as
mentioned above. The screw defects in lamellar or smec-
tic phases cost very small free energy compared with the
edge defects. Therefore the tangent direction of the screw
defects will remain perpendicular to the layers even in the
presence of a gentle shear. The two extremities of a screw
defect line will experience different ambient velocity under
the shear flow. If the two edges linked to the two ends of
the screw have their tangents perpendicular to the flow
velocity (pointing along the vorticity direction), the flow
will have different relative velocity to the two edges. This
relative flow introduces the dissipation similar to the situ-
ation of edge climbing. Following Oswald and Allain [18],
we regard this as the major dissipation. The viscous stress
therefore depends on the defect density.

To evaluate the defect density at a given shear rate,
we will estimate the defect production rate and the an-
nihilation rate separately. The effects of deformation on
the defect production in crystal solids have been discussed

Table 2. The values of the stress scaling exponent m defined
by γ̇ ∼ σm for different systems.

System m Reference

CTAB/hexanol/water 2 Bohlin et al. [13]

SDS/pentanol/dodecane 1 Roux et al. [14]

8CB (31 ◦C) 2 Panizza et al. [15]

CpCl/hexanol/brine 1.67 Meyer et al. [8–10]

8CB (22–29 ◦C) 1.67 Meyer et al. [9,10]

P123/butanol/brine 1.67 Meyer et al. [10]

C10E3/D2O 2 Oliviero et al. [16]

C12E5/water 1.44 present study

by Bruinsma et al. who predicted the shear-induced de-
fect proliferation [19]. In that picture, the deformation en-
hances the dissociating rate of the bound pairs of defect
lines, which then dissociate and move to reduce the ap-
plied strain.

In lamellar structures, many equilibrium defects are
bound loops consisting of both screw and edge disloca-
tions, so that the above mechanism should still operate.
However, lamellar phases have a well-known dilation (or
undulation) instability. This instability can generate far
more defects than to dissociate the existing bound loops.
The question is, why does instability happen during the
flow? If the initial layers are already tilted so that the layer
normal has a non-vanishing positive component along the
flow direction, then the shear flow will tilt the layer normal
toward the flow direction. The shear will also dilate the
layer repeat distance. Therefore with the existing tilt, the
layers are dilated and the tilting angle is increased by the
shear continuously, so that when the tilt reaches a certain
angle, the instability sets off and the layers are buckled.

This reasoning, however, fails when the sample starts
with the homeotropic alignment, where the shear cannot
tilt the layers as the layers are parallel to the local flow
velocity. In the next subsection, we suggest that, when the
applied shear stress drives the screw defects motion due
to the Peach-Koehler force, these defect motions will tilt
the layers, even when the layers are well aligned at the
beginning. Once the layers are not at the perfect align-
ment, the shear flow can tilt and dilate it as mentioned
above. The shear can now trigger the dilation instability to
produce new defect lines. Thus the dislocation production
in the lamellar liquid crystals is fundamentally different
from that of the crystals. In the last part of this section,
we estimate the (shear rate dependent) density and size
of defect loops in the steady-shear condition. The defect
line density is then related to the stress through the dis-
sipation argument. The obtained shear thinning exponent
m = 3/2 is found to be consistent with our experimental
result as described in the previous section.

Among the possible configurations of line defects and
walls, we will only consider the effect of the disloca-
tion defect lines for simplicity. In fact, small-angle grain
boundaries can also be viewed as an array of strongly
bound line defects.
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3.2 Defect motion and the layer tilting

Consider a lamellar sample aligned in the homeotropic ori-
entation which is not tilted initially. The lamellar contains
some defect lines. A shear is applied such that the layer
normal unit vector n is in the gradient direction ẑ to be-
gin with. The defect lines are assumed to form dislocation
loops, each consisting of two segments of screw disloca-
tions (of length ls) in the layer normal direction ẑ and
two edge dislocations (of length le) within the velocity-
vorticity plane.

Under the applied stress σ, the defect lines are sub-
jected to the Peach-Koehler force per unit length [2,20,21]

FPK = τ × (σ · n b), (2)

where n b is Burgers’ vector, and τ the unit tangent vec-
tor of the defect line. To define Burgers’ vector, one en-
closes the defect line by a closed loop where the net layer
distortion after completing the loop defines Burgers’ vec-
tor [2]. The equation transforms properly if one changes
the signs of n b and τ simultaneously. The stress σ does
not include the self-stress from the defect itself [2]. The
tension force ft from two ends of a defect line segment
gives a net force per unit length Ft = ∂ft/∂s, where
s is the arc-length of the defect line. The viscous force
is Fv = µ

−1(τ ) · (v(R(s, t)) − Ṙ), where µ(τ ) is the
orientation-dependent mobility matrix, R(s, t) the posi-
tion of the defect line, and v(R(s, t)) the convection ve-
locity at R(s, t). The arc-length variable s increases along
the local tangent vector τ , so that τ = ∂R(s, t)/∂s. The
force balanced condition

FPK + Ft + Fv = 0 (3)

gives the defect line dynamic equation such that

Ṙ = v(R(s, t)) + µ(τ ) · (τ × (σ · n b) + ∂ft/∂s). (4)

Note that for a given loop geometry R(s, t), there are two
possible defect orientations (depending on the sign of b),
which move differently under the shear.

The mobility matrix µ(τ ) depends strongly on the ori-
entation and Burgers’ vector. For screws where τ = ±n,
the mobility is isotropic so that

µ(n) = µs(I − ττ ), (5)

where I is the identity matrix, and µs the screw mobility.
The screws could move easily so that µs is large [21]. The
term −ττ is to emphasize that the line will not move
along its tangent direction.

For the edge dislocation where τ ⊥ n, the mobility is

µ(τ ) = µgnn + µe(I − nn − ττ ), (6)

where µg and µe are the edge glide and climb mobilities,
respectively. The latter can be measured, by using a wedge
to induce the layer dilation. The climb motion is slower,
being limited by the very dissipative permeation process.
The edge glide mobility µg is even smaller than µe because

Shear

Edges

Edges

Screws

Motion under shear

Fig. 7. The screw defects move under the applied shear, to
increase or decrease the area of the defect loops.

gliding requires an activation process to initiate the layer
reconnection. Below we will neglect the edge gliding and
set µg ≃ 0.

According to equation (4), the shear stress and its
associated Peach-Koehler force induce the motion of the
screws toward the vorticity direction. (The tilting effects
on screws due to the shear convecting flow are most likely
to be canceled by the screw line tension resisting tilting.)
The two screws of a given closed loop will have opposite
tangent τ , and hence the most important consequence
is that they move in the opposite directions under the
Peach-Koehler force. The area enclosed by the loop will
either decrease or increase depending on the loop orienta-
tion, as shown in Figure 7.

We define the vector area per unit volume p(r, t) as
(similar to Eq. (9.50) of Ref. [2] but with the extra 1/2
factor)

p(r, t)=
1

2

∑

i

bi

∫

Ri(si, t) × dRi(si, t) δ3(r − Ri(si, t)),

(7)
where i denotes the label for the defect loops. For exam-
ple, the average p(r, t) for N square loops, each with a
normal pointing in the flow direction x̂ and a size of ls× le
inside a volume V , is (lsleN/V )x̂. The loop area is also
related to other ideas which consider the defect lines as
a generalized “currents” [2] or “line charges” [22]. If one
writes dRi(si, t) in the above integral as τi dsi, then p(r, t)
can also be interpreted as the moment of the line charge
density biτi δ3(r − Ri(si, t)). If the defect loop is on the
velocity gradient-vorticity plane, p will point in the flow
direction. In a well-aligned equilibrium sample, the defect
loops of the two opposite orientations could have the same
total area but opposite contributions to p, so that the av-
eraged p vanishes in equilibrium.

Following from equation (7), the moment p(r) evolves
as

ṗ(r, t) =
1

2

∑

i

b

∫

[

Ṙ × dR + R × dṘ
]

δ3(r − R)

−R × dR(Ṙ · ∇) δ3(r − R), (8)

where the subscript i is suppressed for clarity. The last
term ∇δ3(r−R) will be dropped as it is averaged to zero.
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The second term can be rewritten, after integration by
parts, as

∫

R × dṘ δ3(r − R)=−
∫

∂Ṙ

∂s
× R δ3(r − R) ds

=

∫

Ṙ × ∂

∂s
(R δ3(r − R)) ds

=

∫

Ṙ × dR δ3(r − R)

−
∫

Ṙ × R τ · ∇δ3(r − R) ds, (9)

where the first contribution is the same as the first term
in equation (8). The second contribution is averaged to
zero and will be neglected below. Together we get

ṗ(r, t) ≃
∑

i

b

∫

Ṙ × dR δ3(r − R). (10)

Since the pure screw defect lines have much smaller
energy than the tilted screw, the tensions force will keep
the screws parallel to the layer normal n. In such case, the
two edges of a given loop must have the same velocity Ṙ,
but they have opposite dR. Therefore, for the edges, the
term

∑

edges

b

∫

Ṙ × dR δ3(r − R) (11)

is averaged to zero.
For the screws, their dR is parallel to n. Since, for a

given loop, there are two screws with opposite dR, the
contribution v(R(s, t)) in equation (4) for Ṙ is the same
for the two segments with opposite directions, so that their
contributions average to zero. The tension term in equa-
tion (4) will shrink the loop areas for both types of loop
orientations. If the screw densities are the same for both
types of orientations, the net effect on ṗ also vanishes
on average. Therefore the remaining Peach-Koehler force
term will give the main contribution

ṗ(r, t) = K · (σ · n). (12)

Here the tensor K is isotropic K ≡ (I − nn)K, with

K =
∑

screws

∫

b2µs δ3(r − R(s, t)) ds = 〈b2µs〉ρs , (13)

where

ρs =
∑

screws

∫

δ3(r − R(s)) ds (14)

is the screw density, and the angular bracket denotes the
average over the defect lines. Physically, ρs is the surface
number density of the crossings made by screw disloca-
tions on a surface with its normal in the n direction. If
one regards the defect as a vector charge, K consists of the
multiplication of the charge density, mobility, and charge
squared. The formula is similar to the one of the conduc-
tivity of the electrolyte solution so that K can be viewed
as a generalized conductance tensor.

To describe the layer orientation and the layer com-
pression, one defines

m = (d0/d)n (15)

as the scaled wave vector variable, where d is the local
distance between the two neighboring layers, and d0 the
equilibrium layer separation. Recall that m represents the
local layer compression, so that the integration along an
arbitrary loop defines Burgers’ vectors of the defect lines
enclosed by the loop. In a differential form, it reads

∇× m(r, t) =
∑

i

∫

biτi δ3(r − Ri(si, t)) dsi , (16)

as in equation (9.18) of reference [2].
Now it can be demonstrated how the change of defect

loops area would cause the change of the average layer
orientation by establishing the relationship between p and
m. Using the identity ǫabcrbǫcde∇dme = 2ma+∇a(rbmb)−
∇b(rbma), we write

∫

V

ma(r, t) dr =
1

2

∫

V

ǫabcrbǫcde∇dme dr

+
1

2

∫

∂V

(marb − mcrcδab) dAb

=

∫

V

pa(r, t) dr

+
1

2

∫

∂V

(marb − mcrcδab) dAb , (17)

where the term ǫabcrbǫcde∇dme (or r × ∇ × m) is trans-
formed into p(r, t) as

1

2
r ×∇× m =

1

2
r ×

∑

i

∫

bτ δ3(r − R(s, t)) ds

=
1

2

∑

i

∫

R(s, t) × bτ δ3(r − R(s, t)) ds

= p(r, t). (18)

Equation (17) shows that the perturbation of the vector
field δp will induce δm. The Peach-Koehler force under
the shear will induce δp along the velocity direction, which
is perpendicular to the initial m. Therefore the perturba-
tion of the defect loop area (due to the screw motion under
the shear), can cause the layer orientation (the m direc-
tion) to tilt toward the flow direction. We finally obtain
the evolution of m as

ṁPK = K · (σ · n). (19)

The important consequence is that, even starting from
a strictly homeotropic aligned sample, equation (19) gives
a ṁPK in the flow direction, leading to the layer tilting
driven by the defect motions. A graphic illustration is
shown in Figure 8. Furthermore the direction of tilting is
the unstable one with which the shear flow will further in-
crease the tilting toward the undulation instability. This
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Fig. 8. Time sequence drawings to illustrate the layer tilting
caused by the defect loop motion. The large arrows indicate the
shear flow. The small arrows indicate the screw defect velocity.
(a) The defects move under the applied shear. (b) As the screws
move, the loop areas increase or decrease according to the loop
orientations. (c) As a consequence of the screw defect motion,
the layers are tilted.

sequence is illustrated in Figure 9a–c. Researchers have
observed layer dilation under flow constantly. However, it
is not obvious that a well-aligned layered structure with
homeotropic orientation should encounter layer dilation.
(Of course the slopped boundary plates may also cause
dilation as the gap changes under shear.) Here we show
that, as long as the layered structure has defect loops, it
bounds to be tilted and dilated under the applied stress.

The dilation eventually leads to undulation instability
and defect formations, with which the homeotropic and
preferred layer spacing could be maintained. This undu-
lation instability at the non-linear regime was indeed ob-
served to produce edge dislocations parallel to the undu-
lations [23,24]. Usually the defect formation involves the
breaking of the layers, hence the outcomes are relatively
noisy. The lamellar or smectic phases, however, show sur-
prisingly regular pattern upon dilation instability. This
suggests that the defect formation scheme might not have
many variations. The mechanism could be close to the pic-
ture illustrated in Figure 9c–f. As shown in the sketch, the
dilation caused by the shear flow eventually leads to insta-
bilities and a pair of edge dislocations are produced such
that the layers could align horizontal and restore their
preferred layer spacings. In a real three-dimensional sam-
ple, the two edges are connected by two screws to form
a dislocation loop. The orientation of these newly formed
defect loops must be predominantly the one disfavored by
the shear, so that m, and hence the layer normal n, can

b c

d e f

a

motions
defect
tilting by

convection
dilation by
tilting &

Fig. 9. Sequences of layer titling by defect motions,
convection-induced dilations, and defect formations. a→b: lay-
ers tilted by the changes of defect loop area due to screw motion
(defect lines not shown for clarity). b→c: layers further tilted
and dilated by convection. c→e: onset and development of the
undulation instability. e→f: creation of new defect loop, with
the edge segments running perpendicular to the paper and the
screw segments (not shown) running vertically.

be restored to the homeotropic alignment, as illustrated
in Figure 9f. This realignment to homeotropic thus gives
an estimate of the minimal production rate of the screw
defects by the instability mechanism.

Since the layers are first tilted by the defect motions
and subsequently dilated by the shear flow, we thus pos-
tulate that, as |m| is decreasing with layer tilting, un-
dulation instability happens at a particular tilting angle
θc [25]. The production of the defect loops takes place at a
frequency proportional to γ̇. Experimentally, the fluctuat-
ing characteristics of such a sample might be similar to the
oscillation in jamming of a colloid [26]. In the colloid sys-
tem, it is indeed observed that the stress fluctuates with a
characteristic time proportional to the inverse shear rate.

3.3 Screw density and the shear stress

Next we calculate the viscosity contributed by the defect
loops. When the layers are sheared with a rate γ̇, the de-
fect loops could cause energy dissipation, mainly from the
viscous force acting on edges by the shear flow. Let us
assume a typical dislocation loop with screw lengths ls
and edge lengths le as defined before. We follow the ar-
gument by Oswald and Allain to estimate the dissipation
from the viscous force [18]. The argument is also consistent
with the equation (4) above. Each defect loop floats in the

shear flow as a whole, so that Ṙ becomes the same every-
where on the loop. However, the two edges are advected by
the flow with the different velocities v(R(s, t)). Therefore
the edges have to climb (driven by µ · ∂ft/∂s). The climb
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Fig. 10. Elongation of defect loops when the viscous force
exceeds the edge line energy.

velocity has magnitude |Ṙ − v(R(s, t))| = ∆v = lsγ̇/2
for both edges. The viscous force on the edge is therefore
fv = le|Fv| = le∆v/µe. The dissipation per unit volume
T ṡ gives the scaling of the effective viscosity ηeff as

T ṡ ≃ ηeff γ̇2 ≃ n0∆vfv ≃
(

n0l
2
s le

µe

)

γ̇2 , (20)

where n0 is the number density of the loops.
To balance the desired viscous force, where Ṙ is the

same for the loop, the required tension fs is

fs ≃
lsleγ̇

µe

. (21)

The actual tension has magnitude le|Ft| ≃ τe which is the
energy per unit length of the edge dislocation. If fs > τe,
the actual tension is not strong enough to maintain the
constant Ṙ for both edges, and two new edge segments
along the flow direction will be produced, as illustrated
in Figure 10. This leads to a continuous elongation in
the flow direction. Such deformed loops may collide with
other defect lines, causing defect annihilation and reduc-
ing loop sizes.

Right after the undulation instability, we thus expect
the formation of defect loops with long edges. However
they will encounter huge viscous forces on the screws if
they were able to maintain the stationary shape. The ac-
tual tension is unable to match the magnitude. There-
fore the large loops only appear in transient, i.e., they
must be reconnected or pair-annihilated. The pair annihi-
lation requires matched Burgers’ vectors and hence hap-
pens slowly. We assume that during the short transient
period, the large loops collide and reconnect to form many
small loops, so that after the reconnection, the defect loops
are small enough to reach the balance fs ≃ τe. We assume
that the cascade of defect reactions eventually constraints
the defect loop areas so that

lsleγ̇

µe

≃ τe , (22)

i.e., the line energy is able to maintain the loop geometry
in the shear flow. A similar steady-state consideration of
whether the loop will be tilted by the flow leads to a sim-
ilar scaling, with τe replaced with the screw line tension.

Combining equations (20) and (22), the stress σ = ηeff γ̇
becomes

σ ≃ ρs

(

lsleγ̇

µe

)

≃ ρsτe , (23)

where we have used the identity ρs = lsn0.

3.4 Shear thinning behavior

We then consider how the shear rate affects the defect
density. Suppose that the instability happens at a partic-
ular tilting angle θc and that the instability creates certain
new defect loops, of density ∆n0. The loop area produced
∆n0lsle must be at least θc/b, so that the layers are tilted
back (to the homeotropic alignment). In other words, this
is a lower bound estimation and any lower defect produc-
tion rate will not be able to maintain the area balance
between the two types of loop orientations. The charac-
teristic time between two instabilities is ∆t = θc/γ̇. Recall
that ∆ρs = ls∆n0, which leads to the production rate of
ρs as

∆ρs

∆t
=

γ̇

ble
. (24)

These rectangular loops are convected by the shear flow.
For a particular loop, there is a distance ξ in the flow
direction to the next loop whose central position is shifted
vertically not larger than ls (so that they have a chance
of colliding). Since two colliding loops on average have
a vertical position separation of ls, their relative velocity
under shear flow is γ̇ls. The colliding rate is thus γ̇ls/ξ
and the complete rate equation for ρs is

∂ρs

∂t
=

γ̇

ble
− γ̇ls

ξ
ρs . (25)

With ρs ≃ ξ−2, we obtain in the steady state as

ρs ≃
(

1

blsle

)2/3

≃
(

γ̇

bµeτe

)2/3

, (26)

where we have used equation (22). The scaling exponent
of 2/3 on the shear rate γ̇ originates from the fact that
the loop number density increases with γ̇ but, on the other
hand, the loop size decreases with γ̇ because of the limited
line tension support. From equation (23), we obtain the
scaling relation

γ̇ ≃ bµe

τ
1/2
e

σ3/2 . (27)

Hence we get the exponent m = 3/2 as mentioned in Sec-
tion 2 and the rheology response is a shear thinning be-
havior.

The line energy of the edge defect contains the elastic
energy contribution, which is sensitive to the defect core
structure. The integrated energy depends on the short-
distance cut-off as detailed in reference [2]. When Burg-

ers’ vector is smaller than the penetration length
√

Ks/B,
where Ks is the saddle-splay elastic constant and B the
layer compression modulus, we use the penetration length
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as the cut-off to estimate τe ∼ Bb2. Then the above rela-
tion is further simplified as

γ̇ ≃ µe

B1/2
σ3/2 , (28)

which depends only on µe and B, and is independent of b.
When the averaged Burgers’ vector is larger than the pen-
etration length

√

Ks/B, the cut-off is set to Burgers’ vec-

tor, and the edge energy becomes τe ∼ b
√

KsB. We then
obtain instead

γ̇ ≃ b1/2

(Ks/B)1/4

µe

B1/2
σ3/2 . (29)

The obtained shear thinning exponent m = 3/2 is
compared with our experimental result in Figure 6 to-
gether with the prediction by Meyer et al. m = 5/3 [9,10].
Other experimental values of m are listed in Table 2. They
scatter between 1 and 2. Interestingly, the material 8CB
measured at a slightly different temperature shows clearly
different exponents [10,15]. The exponent m = 2 is re-
ported for the higher temperature where the system is
just a few degree lower than the smectic-nematic transi-
tion point [15]. The smaller exponent m = 1.67 is reported
for a lower temperature sample [10]. It will be certainly
helpful to have more systematic study on the lamellar and
smectic rheology behavior.

If we put some typical numbers into equation (28) such
as µe ≃ 102 ms kg−1, B ≃ 106 Pa [27], σ ≃ 0.5Pa, we
obtain γ̇ ≃ 0.035 s−1. This value is slightly smaller than
the measured shear rate γ̇ ≈ 0.5 s−1 but gives roughly
a reasonable order. Another estimate of B ≃ kBT/d3

0 ≃
104 Pa would yield γ̇ ≃ 0.35 s−1. One possibility for the
low value is that the sample has larger Burgers’ vectors,
so that one should use equation (29) instead. Using the
value b ≃ 2 nm [18], and the above shear rate, we get the
average distance between screw dislocation ξ to be roughly
2–3µm. The order of magnitude for ξ matches the distance
seen in the previous experiment [10].

4 Texture visualization

We also performed some texture visualization of our sam-
ples. For the optical crossed-polars microscopy observation
under shear flow, we used CSS-450 from Linkam Scientific
Instruments, Ltd. The gap between the two plates was
200µm. The pictures were taken at constant shear rates.

In Figures 11 and 12, we show the observed micro-
graphs under shear flow. The shear rate is γ̇ = 0.5 s−1

for φ = 35wt%, and γ̇ = 1 s−1 for φ = 45wt%. For
φ = 45wt% sample, the elongated objects oriented along
the flow in the steady state are typical oily streaks. The
structure observed here is similar to that of Meyer et al.

for 8CB [10].
For φ = 35wt% sample, the elongated objects oriented

with a small angle with respect to the flow in the steady
state. The structure is somewhat different from the typi-
cal oily streaks. The elongated objects seem to be densely

(a) (b)

(c) (d)

Fig. 11. Optical crossed polars micrographs under shear flow.
The concentration of C12E5 is φ = 35wt% and the shear rate
is γ̇ = 0.5 s−1. (a) 0 min, (b) 3 min, (c) 5min, (d) 10 min. The
scale bar in (a) is 100 µm and the flow direction is indicated by
an arrow in (d). The flow gradient direction is perpendicular
to the paper.

(a) (b)

(c) (d)

Fig. 12. Optical crossed polars micrographs under shear flow.
The concentration of C12E5 is φ = 45wt% and the shear rate
is γ̇ = 1 s−1. (a) 0 min, (b) 5 min, (c) 10min, (d) 15min. The
scale bar in (a) is 100 µm and the flow direction is indicated
by an arrow in (d).

packed thin bright lines of few hundred microns in length.
There are dark regions at which the bright lines terminate.
The dark regions tend to align along the direction perpen-
dicular to the thin lines. We are unable to fully explain
the observed texture. More study in the future will help
the detailed modeling. It is possible that these bright lines
are densely packed, weakly contrasted oily streaks, and the
dark regions contain screw defects. This is because the oily
streaks come from the partial merging between two edge
defects with Burgers’ vectors of opposite signs. (The fully
merged two edges will become a simple edge.) The φ = 35
and 45wt% might have oily streaks with different extent
of merging, which affects optical appearance.
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For φ = 30 and 40wt% samples, the structures are
similar to that of φ = 35wt% sample. In the φ = 40wt%
sample, we also see that some typical oily streaks appear
together with the thin lines (presumably edge defects) in
a parallel way. As the system reaches steady state, the
number of typical oily streaks decreases.

The defect textures correlate strongly with the rheo-
logical shear thinning exponent. At smaller φ the observed
exponents are close to the theoretical prediction, albeit the
observed textures are more complex than the simple edge
defects modeled in the theory. The theory proposed above
does not work well for φ = 45wt%, and there the textures
are different from the ones of other concentrations.

5 Discussion

Several points merit further discussion. The theory pro-
posed assumes that the interaction between the screw de-
fects is much smaller than the Peach-Koehler force. This
includes the line-tension–induced attraction between the
two screws connected by the edges, and the direct inter-
action between the defect lines. In the optical microscope
visualization, we observe the fine texture with dark lines,
probably indicating the cluster of the defect lines. It is not
clear how the defect interaction affects the rheology behav-
ior. Nonetheless, the measured shear exponent is not too
far from the proposed simple picture which does not take
into account defect interaction. This may indicate that the
defect density scaling is close to the one estimated here.
However, our estimations for the defect production and
the annihilation rates are both too high. Within the al-
lowed time window, no defect texture coarsening happens
once they reach the steady-state density. We are unable to
identify any sign of a dynamic balance between the defect
production and the defect annihilation.

Next we discuss the similarities and the differences
between the present theory and the one by Meyer et

al. [9,10]. Similar assumptions for both theories are: i) The
two theories both assume that the screw defects move ac-
cording to the Peach-Koehler force. ii) Both theories con-
sider that the plastic deformation is due to defect motion.
The plastic layer tilting rate here (see Eq. (19)) is simi-
lar to the combination of the Peach-Koehler force and the
Orowan relation there.

However there are important differences which lead
to different mechanisms for rheology responses: i) In the
present theory we predict that the plastic deformation
will lead to instability, as the layer tilting driven by the
Peach-Koehler force is toward the unstable direction. In
the theory of references [9,10], they concluded that the
sign of the plastic deformation helps to stabilize the layer.
Therefore even under the shear flow deformation which
leads to instability for a tilted layer, their theory assumes
that the instability does not happen. ii) In our theory,
the plastic deformation is only important initially, which
sets up the initial layer tilting. After the initial tilting, we
assume that the shear deformation dominates. In the the-
ory of references [9,10], the plastic deformation rate is the
same as the flow deformation rate all the time. iii) The

defect line density is determined differently. In their the-
ory the applied stress is mainly balanced by the inter-
nal stress, which comes from the interaction between the
screw defect lines. This condition fixes the screw density
in references [9,10]. In the present theory we ignore the
interaction between the screws. The defect density here
is determined by the balance between the production and
annihilation processes as in equation (25). iv) The defect
organizations are assumed differently. We assume that the
defect interaction is screened so that the defect is free to
move under the applied force; whereas in their theory the
defect lines interaction is important, which provides the
internal stress under applied stress. Nevertheless, the de-
fect line can still move. In other words, we consider the
defects as in the “liquid state”, whereas they seem to view
defects as in the “glass state” which has the shear mod-
ulus due to defect interaction. v) Two theories have con-
sidered different dissipation mechanisms. The dissipation
here is due to the permeation which happens when the
mass flow passes through the edge defects. In their the-
ory the external force has to do work against the internal
stress to move the defects. If these two mechanisms are
both important, the sum of their dissipation should be
considered. vi) As pointed out in iii), the stress in refer-
ences [9,10] has an elastic nature, whereas in our theory
the stress is assumed to have viscous origin. Further stress
relaxation experiments after the shear rate jump may give
useful information to identify the nature of the stress.

In Section 2, we have measured a relatively large ac-
tivation energy, 65kBTR. The large activation energy in
this system indicates a collective process involved in the
flowing condition. The shear flow imposed on a standing
defect loop causes an edge climb motion relative to its
local environment. The climb of an edge requires the sur-
factant to diffuse to or away from the layers containing
the defect edges. This diffusion, or permeation, has a flux
normal to the layer. When the permeation flux involved an
activation process, the permeation coefficient contains the
activation energy. Three possibilities come to mind. i) The
first possible path requires the surfactant to dissolve into
the water, diffuse to the other layer, and readsorb into the
bilayer. If that is the dominant path, then the activation
energy corresponds to the energy barriers for a surfactant
molecule to dissolve or readsorb into the bilayers. One ex-
pects that the activation energy comes from the van der
Waals attraction or the hydrophobic/hydrophilic energy.
The experimental value, however, seems much too large
for this single molecule interpretation. ii) The second pos-
sible pathway is that the dissolving process involves more
than one surfactant molecule, to act collectively. The dis-
solved molecules may form a small micelle directly. This
collective process may be similar to the vesicle budding
process in lipid bilayers. iii) The third possible pathway
for the permeation flux is that the adjacent bilayer can
form a neck to fuse and then break up, which facilitates
the exchange of molecules between the layers. If the second
or the third collective processes have a higher rate than
the single molecule process, they may dominate the vis-
cosity and become very sensitive to the temperature. The
third process is similar to the relaxation of the surfactant
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sponge phase, where the neck forming and breaking re-
laxation can be monitored by neutron scattering [28], and
the activation energy can also be measured.

6 Conclusion

The shear thinning behavior is measured for the lamel-
lar phase of the C12E5/water system. The shear thinning
exponent depends on the concentration. A simple rheol-
ogy theory of lamellar phase is proposed with the relation
γ̇ ∼ σm, with m = 3/2. In the theory, we have shown
that the defect-mediated layer tilting and dilation under
shear flow could cause continuous production of disloca-
tions. This picture explains the source of the defects. For
concentration around 30wt%, the shear thinning expo-
nent is close to our theoretical estimation. Whereas at a
higher concentration, close to 45wt%, the exponent be-
comes smaller. The optical texture observation indicates
that the texture changes very much with the concentra-
tion. This confirms that the defect texture could be re-
sponsible for the rheological behavior.
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