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1. Introduction

Vesicles idealized as closed two-dimensional (2D) elastic 
sheets serve as a simple model for complex biological cells 
such as the red blood cells (RBCs). Studies of vesicle fluctua-
tions have offered significant insights into the physical prop-
erties of RBCs. In thermal equilibrium, local deformations 
of lipid membranes obey well-known statistics prescribed by 
several physical parameters [1]. Out-of-plane membrane fluc-
tuations were measured by flicker analysis [2, 3] to obtain both 
static and dynamic properties such as the membrane bending 
modulus [4] or the wavelength-dependent relaxation rates [5].

Since the deformation energy of a lipid membrane is com-
parable to thermal energy, earlier theoretical works assumed 
that vesicle fluctuations are driven by thermal forces [6]. 
However, recent experiments have revealed the existence of 
active non-thermal fluctuations in addition to thermal fluc-
tuations [7, 8]. Using both active and passive microrheology 
techniques, Turlier et al measured the power spectral density 
(PSD) as well as the response function of a single RBC [9]. 
Moreover, they demonstrated a violation of the fluctuation 

dissipation theorem (FDT) due to non-thermal active forces. 
This breakdown of FDT seems to be caused by metabolic pro-
cesses taking place inside the RBC such as the pumping action 
of ion channels or the growth of cytoskeletal networks [9].

Recent experiments have further clarified the functional sig-
nificance of ATP-driven non-thermal fluctuations in cells [10]. 
It was shown that the activity of motor protein F1F0-ATPase 
and actomyosin cytoskeleton affect the local organization 
as well as the elastic properties of the lipid membrane [11]. 
Moreover, membrane fluctuations act as a generic regulatory 
mechanism in cell adhesion by controlling the interaction 
between cadherin proteins [12].

So far, several theoretical models have been suggested to 
describe the statistics of membrane fluctuations in the pres-
ence of active forces. Prost and Bruinsma proposed a model 
for membrane ion pumps and showed that active fluctuations 
dominate at large wavelengths [13]. Later, Ramaswamy et al 
considered a model that accounts for the coupling between 
the ion pump density and the membrane curvature, which 
can destabilize the membrane shape [14]. For membranes 
containing ion pumps, their time-dependent fluctuation or 
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the mean square displacement (MSD) was later obtained by 
Lacoste and some of the present authors [15, 16]. Apart from 
ion pumps in membranes, cytoskeletal proteins also act as 
sources of active forces which affect the membrane fluctua-
tion spectrum in a significant manner [17–20].

One important aspect that has been often neglected in the 
dynamics of a bilayer membrane is the role of inter-monolayer 
friction and hence the membrane lateral compressibility. As 
a consequence of the bilayer structure, lipid monolayers are 
inevitably compressible in order to allow out-of-plane mem-
brane deformations. It is known that the compression mode 
due to inter-monolayer friction drastically affects the bilayer 
dynamics [21–24]. Recently, the present authors have inves-
tigated the relaxation dynamics of a compressible bilayer 
vesicle with an asymmetry in the viscosity of the inner and 
outer fluid medium [25]. Using the framework of Onsager’s 
variational principle [26], we showed that different relaxation 
modes are coupled to each other due to the bilayer structure 
of a spherical vesicle. We have also discussed the dynamics of 
a bilayer membrane coupled to a 2D cytoskeleton, for which 
the slowest relaxation is governed by the intermonolayer fric-
tion [27]. It was predicted that forces applied at the scale of 
cytoskeleton for a sufficiently long time can cooperatively 
excite large-scale modes.

In this paper, we discuss both thermal and active fluctuations 
of a compressible bilayer vesicle. Using the results of hydro-
dynamic theory that explicitly takes into account the inter-
monolayer friction [25], we consider the standard Langevin 
equation for the membrane deformation and the lipid density 
fields neglecting hydrodynamic memory whose effects will be 
separately discussed in the final section. We particularly cal-
culate the PSD matrix and discuss its frequency dependence. 
Thermal contribution to PSD is estimated by using the FDT, 
whereas active contribution is obtained by assuming that the 
time correlation of active random forces decays exponentially 
with a characteristic time scale. The total PSD for a bilayer 
vesicle is naturally given by the sum of thermal and active 
contributions. We also calculate an apparent response func-
tion that can be compared with a recent microrheology experi-
ment on RBCs [9]. We shall argue that the apparent response 
is enhanced in the low-frequency regime in accordance with 
the experimental result.

In section 2, we review the relaxation dynamics of a com-
pressible bilayer vesicle based on our previous work [25]. 
In section  3, we start with a coupled Langevin equation  of 
a bilayer vesicle and discuss the properties of thermal fluc-
tuations by using the FDT. The effects of active fluctuations 
are further discussed in section 4 by assuming exponentially 
decaying time correlations of active random forces. The sum-
mary and several discussions are finally given in section 5.

2.  Vesicle relaxation dynamics

A vesicle is composed of two opposing layers of lipid mol-
ecules whose tails meet at the bilayer midsurface. For a nearly 
spherical vesicle, the membrane surface can be described by 
an angle-dependent radius field r(θ,ϕ). As shown in figure 1, 

we define a dimensionless deviation in radius u by using the 
radius r0 of a reference sphere as [4, 5]

u(θ,ϕ) =
r(θ,ϕ)

r0
− 1.� (1)

For bilayer membranes with finite thickness, bending 
deformation always accompanies stretching of one monolayer 
and compression of the other. Hence the membrane mono
layers should be weakly compressible, and the local lipid den-
sity in each monolayer is allowed to vary. Let us denote the 
number of lipids in the outer and the inner monolayers as N+ 
and N−, respectively. Since a spherical vesicle is stable only 
if the outer monolayer has more lipids than the inner one, we 
impose a condition N+ > N−. We denote the reference lipid 
density by ρ0 = (N+ + N−)/(2A0) where A0 = 4πr2

0. Let 
ρ+(θ,ϕ) and ρ−(θ,ϕ) be the variables representing the local 
lipid densities in the two monolayers. We then define dimen-
sionless local density deviations in each monolayer as

φ±(θ,ϕ) =
ρ±(θ,ϕ)

ρ0
− 1.� (2)

Further calculations can be simplified by using the difference 
and the sum of the densities given by

Figure 1.  (a) Schematic picture of a vesicle showing the reference 
sphere (dashed line) of radius r0 with fluids of viscosity η− inside and 
η+ outside. Solid red line represents a deformed vesicle configuration 
whose shape is parametrized with u(θ,ϕ). (b) Cross-section of a 
curved region in the bilayer showing the lipid molecules in each 
monolayer. Local densities in the monolayers are indicated as φ+ and 
φ− which are defined on the bilayer midsurface represented by the 
dashed line. The inter-monolayer friction w also acts at the bilayer 
midsurface.
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φ∆(θ,ϕ) =
φ+ − φ−

2
, φΣ(θ,ϕ) =

φ+ + φ−

2
,� (3)

respectively.
In order to describe the configuration of a bilayer vesicle, 

we make use of the three independent variables u, φ∆, and 
φΣ. The free energy of a compressible bilayer vesicle is given 
by [22, 25]

F =

∫
dA

[
σ +

κ

2
(2H)2 + 2λHφ∆

+ k
[(
φ∆

)2
+
(
φΣ

)2
] ]

+

∫
dV ∆P,

�

(4)

where H is the local mean curvature that can be expressed in 
terms of u, σ is the membrane surface tension, κ is the bending 
rigidity, λ is the strength of coupling between local density 
and curvature, k is the monolayer compressibility, and ∆P is 
the pressure difference between the inside and the outside of 
the vesicle. The first and the second integrals are performed 
over the area and the volume of the vesicle, respectively.

In general, the above three variables are all time-dependent. 
Since they are all functions of θ and ϕ, we expand them in 
terms of surface spherical harmonics Ynm(θ,ϕ) as [22, 25]

u(θ,ϕ, t) =
∞∑

n=0

n∑
m=−n

unm(t)Ynm(θ,ϕ),� (5)

and

δφ∆(θ,ϕ, t) = φ∆ − φ∆
0

=

∞∑
n=2

n∑
m=−n

φ∆
nm(t)Ynm(θ,ϕ),

�
(6)

where φ∆
0 = (N+ − N−)/(N+ + N−). It can be shown that 

the mode associated with φΣ is decoupled from the other two 
modes and will not be considered hereafter.

The dynamics of a vesicle is affected by the viscosities of 
the outside and the inside bulk fluids, η± [28–30], and the 
friction constant between the two monolayers, w [21–25]. We 
have shown that the relaxation equations  for u and φ∆ are 
given by the set of coupled equations [25]

∂

∂t

(
unm

φ∆
nm

)
= −c · a

τ

(
unm

φ∆
nm,

)
,� (7)

for each (n, m)-mode. Here

τ =
η+r3

0

κ
� (8)

is the bending relaxation time and the dimensionless matrices 
a and c are given by

a =

(
(n − 1)(n + 2)

[
n(n + 1) + σ′ − 2λ′φ∆

0 + k′
(
φ∆

0

)2
]

4k′φ∆
0 − 4λ′ − λ′(n − 1)(n + 2)

4k′φ∆
0 − 4λ′ − λ′(n − 1)(n + 2) 2k′

)
,

�

(9)

c =
n(n + 1)

d

(
4w′ + (2n + 1)(1 + E) −(n + 2) + (n − 1)E
−(n + 2) + (n − 1)E (n + 2)(2n2 − n + 2) + (n − 1)(2n2 + 5n + 5)E

)
,

�

(10)

where

d = 4w′ [(n − 1)(2n2 + 5n + 5)E + (n + 2)(2n2 − n + 2)
]

+ 2(n − 1)(n + 1)(2n2 + 4n + 3)E2

+
[
8n2(n + 1)2 − 5

]
E + 2n(n + 2)(2n2 + 1).

�
(11)

In the above matrices, the dimensionless parameters are 
defined as

σ′ =
σr2

0

κ
, λ′ =

λr0

κ
, k′ =

kr2
0

κ
,� (12)

w′ =
wr0

η+
, E =

η−

η+
.� (13)

The symmetric matrix a represents the inverse susceptibility 
and is composed of the static quantities. On the other hand, 
the matrix c is constructed by the dynamic quantities and cor-
responds to the kinetic coefficient matrix. Notice that both a 
and c are symmetric in accordance with Onsager’s reciprocal 
relation [26] and depend only on n.

In our previous work [25], we showed that the two relaxa-
tion modes are coupled to each other as a consequence of 
the bilayer nature and the spherical structure of the vesicle. 
We investigated the effect of viscosity contrast E = η−/η+ 
on the relaxation rates, and found that it linearly shifts the 
crossover n-mode between the bending and the slipping 
relaxations. As E is increased, the relaxation rate of the 
bending mode decreases, while that of the slipping mode 
remains almost unaffected. For parameter values close to the 
unstable region, some of the relaxation modes are dramati-
cally reduced [25].

3. Thermal fluctuations

In this section, we discuss thermal fluctuations of a compress-
ible bilayer vesicle. In the presence of random forces, the 
coupled memoryless Langevin equation for the two variables 
u and φ∆ can be written as [26]

ζ · ∂

∂t
x(t) = −γ · x(t) + ξ(t),� (14)

where we have used the vector notation

x = r0

(
unm

φ∆
nm

)
,� (15)

and the matrices

ζ = η+r0 c−1, γ =
κ

r2
0

a,� (16)
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where c−1 represents the inverse matrix. The vector x has the 
dimension of length in order to assign the proper dimension 
for each term in the above Langevin equation.

The vector ξ represents random forces acting directly on 
u and φ∆:

ξ(t) =
(
ξu

nm(t)
ξφnm(t)

)
.� (17)

In thermal equilibrium, these forces have zero mean and obey 
the following FDT [26]:

〈ξ(t)〉 = 0,� (18)

〈ξ(t1)ξT(t2)〉 = 2kBTζδ(t1 − t2),� (19)

where ‘T’ indicates the transpose operator, kB is the Boltzmann 
constant, and T is the temperature. Notice that the friction 
matrix ζ  (or c−1) contains off-diagonal elements, implying 
that thermal fluctuations of the two fields u and φ∆ are cor-
related with each other. This is a unique feature of spherically 
closed vesicles because such a coupling effect does not exist 
for planar bilayer membranes [25].

The Fourier components of the 2 × 2 correlation function 
matrix can be obtained by

(
xxT)

ω
=

∫ ∞

−∞
dt 〈x(t)xT(0)〉eiωt,� (20)

where ω is the frequency. With the use of equations (18) and 
(19), the thermal contribution to the correlation function 
matrix is given by [31]

(xxT)th
ω = 2kBT (γ − iωζ)−1 · ζ · (γ + iωζ)−1 ,� (21)

whose components depend on n. Then the PSD matrix is 
obtained by summing over all the n-modes as

Pth
ω =

(
(u2)th

ω (uφ)th
ω

(φu)th
ω (φ2)th

ω

)

=

nmax∑
n=2

(2n + 1)(xxT)th
ω .

�

(22)

Notice that the components of the correlation function matrix 
do not depend on m but are (2n + 1)-fold degenerated. In 
the following numerical estimate, we set nmax = 1000 which 
covers sufficient length scales for the present analysis.

In figure  2, we plot the frequency dependence of each 
component of the numerically calculated PSD matrix in 
equation  (22) for a vesicle of size r0  =  10 μm. The other 
parameter values and the relevant quantities are summa-
rized in table  1. The three curves correspond to the three 
components of the symmetric PSD matrix (u2)th

ω  (black), 
(uφ)th

ω  (blue), and (φ2)th
ω  (red). Within the present scaled 

unit, (u2)th
ω  is much larger than (φ2)th

ω  and (uφ)th
ω . Hence 

the density field fluctuations are relatively small. The PSD 
component (uφ)th

ω  lies in between (u2)th
ω  and (φ2)th

ω , and 
takes negative values in the small frequency region (shown 
by open blue circles).

In general, all the PSD components are almost con-
stant in the low-frequency regime and decay in the 

high-frequency regime. The important crossover frequency 
ω∗ is set by the membrane relaxation time τ = η+r3

0/κ and 
is given by ω∗ ≈ 1/τ . For the parameter values in table  1, 
the characteristic relaxation time is chosen as τ = 10 s and  
ω∗ = 0.1 s−1. In the low frequency regime of ωτ � 1 (or 
ω � ω∗), all the PSD components become independent of the 
frequency, which is a characteristic feature of a vesicle with a 
finite size. In the high frequency limit of ωτ � 1 (or ω � ω∗), 
the PSD (u2)th

ω  shows a power-law decay with an exponent  −1.60 
which is close to the exponent  −5/3 obtained by Zilman and 
Granek for a flat membrane without any bilayer structure  
[32, 33]. We also note that the frequency dependence of (φ2)th

ω  
is very weak in the entire region. Hence, we shall mainly 
focus on the behavior of displacement fluctuations (u2)ω in 
the following discussion.

Figure 2.  Dimensionless components of thermal PSD matrix as  
a function of dimensionless frequency ωτ . The characteristic 
bending relaxation time is τ = η+r3

0/κ which is chosen here as 
τ = 10 s (see table 1). The dimensionless parameter values are 
σ′ = 10−2, λ′ = 104, k′ = 108, w′ = 107, φ∆

0 = 3 × 10−4, E  =  1 
(these values can be obtained from table 1). Three independent 
components are plotted; (u2)th

ω  (black), (uφ)th
ω  (blue), and 

(φ2)th
ω  (red). The component (uφ)th

ω  becomes negative for small 
frequencies as represented by open blue circles. The slope of   
−5/3 is drawn for comparison.

Table 1.  Typical values for the physical quantities.

Bending modulus: κ 10−19 J

Compressibility: k 10−1 J m−2

Surface tension: σ 10−11 J m−2

Outside solvent viscosity: η+ 10−3 J·s m−3

Viscosity contrast: E = η−/η+ 1, 100
Inter-monolayer friction: w 109 J·s m−4

Vesicle radius: r0 10−5 m

Membrane relaxation time: τ = η+r3
0/κ 10 s

Activity strength: Su/(η
+r0) 80 kBT

Activity relaxation time: τu 10−1 s

J. Phys.: Condens. Matter 30 (2018) 175101
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To see the effect of viscosity contrast between the inside 
and the outside of a vesicle, we plot in figure 3 the PSD comp
onent (u2)th

ω  for E = η−/η+ = 1 (the same as in figure 2) and 
E  =  100 (large inside viscosity [34]). When the inside vis-
cosity becomes larger, the crossover frequency ω∗ becomes 
smaller and the fluctuation amplitude is enhanced in the 
low-frequency region. This is because the effective viscosity 
for E �= 1 is essentially given by the combination of the two 
viscosities such that ηeff ≈ η+ + η−. In the high frequency 
regime, on the other hand, the PSD for E  =  100 is smaller 
than that of E  =  1 because the displacement fluctuations are 
suppressed when the inner viscosity is larger. However, the 
power-law behavior in the large frequency limit (ω � ω∗) of 
the PSD with an exponent −1.6 ≈ −5/3 is the same for the 
two cases of E  =  1 and 100.

4.  Active fluctuations

In this section, we discuss the influence of nonequilibrium random 
forces on the power spectrum of fluctuations. In real cells, these 
active forces are generated as a consequence of metabolic pro-
cesses such as the pumping action of ion channels or the growth 
of cytoskeletal networks [9]. The modified coupled Langevin 
equation in the presence of active random forces is given by

ζ · ∂

∂t
x(t) = −γ · x(t) + ξ(t) + µ(t),� (23)

where we have added the following vector of active random 
forces to equation (14); 

µ(t) =
(
µu

nm(t)
µφ

nm(t)

)
.� (24)

We assume that these random forces have zero mean and their 
cross correlations vanish, i.e.

〈µ(t)〉 = 0,� (25)

〈µu
nm(t1)µ

φ
n′m′(t2)〉 = 0.� (26)

In the above, active fluctuations operate directly on the 
displacement and the density fields. They can be used to 
model any of the several metabolic processes that modify the 
membrane dynamics. For instance, nonequilibrium fluctua-
tions acting on the displacement field mimic processes that 
affect the membrane dynamics in the radial direction such as 
pumping of ion channels or cytoskeletal growth. On the other 
hand, fluctuations acting on the density field can represent the 
action of flippase proteins which consume ATP and facilitate 
exchange of lipid molecules between the two monolayers.

In general, the membrane dynamics can be affected by sev-
eral active processes with different characteristic timescales. 
For simplicity, however, we consider the case when there is 
only one dominant active process characterized by a single 
timescale for all the modes. Then the correlations of active 
random forces are assumed to have the forms

〈µu
nm(t1)µ

u
n′m′(t2)〉 =

Su

2τu
e−|t1−t2|/τuδnn′δmm′ ,� (27)

〈µφ
nm(t1)µ

φ
n′m′(t2)〉 =

Sφ
2τφ

e−|t1−t2|/τφδnn′δmm′ ,� (28)

where τu and τφ are the characteristic time scales, while Su and 
Sφ denote the strengths of the activity. Here we also assume 
that these quantities depend neither on n nor on m.

The Fourier transform of the above active force correla-
tions can be expressed in the matrix form as

(µµT)ω =




Su

1 + (ωτu)2 0

0
Sφ

1 + (ωτφ)2


 ,

� (29)

where the diagonal elements are Lorentzian functions. Using 
this expression, we can write the active contribution to the 
correlation function matrix as

(xxT)ac
ω = (γ − iωζ)−1 · (µµT)ω · (γ + iωζ)−1 ,� (30)

whose components depend only on n. Then the active PSD 
matrix can be calculated by

Pac
ω =

(
(u2)ac

ω 0
0 (φ2)ac

ω

)

=

nmax∑
n=2

(2n + 1)(xxT)ac
ω ,

�

(31)

similar to the thermal contribution in equation (22). Finally, 
the total PSD is given by the sum of thermal and active 
contributions; 

Pω = Pth
ω + Pac

ω .� (32)

Here we have implicitly assumed that thermal and active 
random forces are not correlated with each other.

In figure  4(a), we plot both the thermal PSD comp
onent (u2)th

ω  (black, the same as in figure  2) and the active 
PSD component (u2)ac

ω  (red) as a function of ωτ  when  

Figure 3.  Dimensionless thermal PSD (u2)th
ω  as a function of 

dimensionless frequency ωτ  for E  =  1 (black) and E  =  100 (green). 
The other parameters are the same with those in figure 2. The slope 
of  −5/3 is drawn for comparison.
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Su/(η
+r0) = 80 kBT , τu/τ = 10−2, and Sφ = 0 neglecting 

active fluctuations of the density field φ∆. Since the mem-
brane relaxation time is chosen as τ = 10 s for a vesicle of 
size r0  =  10 μm, the above parameter means that the activity 
time scale is roughly τu = 10−1 s [9]. The active contrib
ution decays as  ∼ω−2 in the intermediate frequency regime, 
τ−1 � ω � τ−1

u , and further decays as  ∼ω−4 in the high fre-
quency region, ωτu � 1. In figure 4(b), we plot the total PSD 
component (u2)ω (orange) given by equation (32) as well as 
the thermal PSD (black, the same as in (a)) in order to com-
pare between the equilibrium and nonequilibrium situations. 
We note that active contribution becomes important in the low 
frequency region ωτu � 1 and enhances the total fluctuations 
in the nonequilibrium active case.

To present our result in a different way, we plot in figure 5 
an apparent total response function defined by ωPω/(2kBT) 
(orange) as a function of ωτ . We use the same parameters 
as in figure 4. In thermal equilibrium, the response function 
ωPth

ω/(2kBT) (black) should satisfy the relation [31]

ωPth
ω

2kBT
= χ′′(ω),� (33)

where χ′′(ω) is the imaginary part of the complex response 
function matrix given by

χ(ω) =

nmax∑
n=2

(2n + 1) (γ − iωζ)−1 .� (34)

Here the response function matrix can be obtained from equa-
tion (23) when both thermal and active fluctuations are absent, 
i.e. ξ = µ = 0. In nonequilibrium case, the apparent response 
function ωPω/(2kBT) (orange) is enhanced. Moreover, it 
increases linearly with ω in the low frequency regime, while 
it exhibits a power-law decay with an exponent  −2/3 in the 
high frequency regime. As we shall discuss in the next section, 
these results are consistent with the experimental findings by 
Turlier et al [9] who used a more detailed model to take into 
account the activity.

Generally speaking, equation (33) is an alternative expres-
sion of the FDT [31]. It states that the thermal PSD matrix Pth

ω  
and the imaginary part of the response function χ′′(ω) are inti-
mately related in equilibrium. In the presence of active fluc-
tuations, the total PSD of fluctuations includes both thermal 
and active contributions Pth

ω + Pac
ω  as in equation (32), whereas 

an experimentally measured response function should not be 
altered even in nonequilibrium situations. Therefore, the FDT 
is inevitably violated in the presence of active fluctuations, 
and the extent of violation is generally characterized by Pac

ω .

Figure 4.  (a) Dimensionless thermal PSD (u2)th
ω  (black) and active 

PSD (u2)ac
ω  (red) as a function of dimensionless frequency ωτ . The 

parameters for the active contribution are Su/(η
+r0) = 80 kBT , 

τu/τ = 10−2, Sφ = 0 (see table 1). The other parameters are the 
same with those in figure 2. (b) Dimensionless thermal PSD (u2)th

ω  
(black) and total PSD (u2)ω = (u2)th

ω + (u2)ac
ω  (orange) as a function 

of dimensionless frequency ωτ . The slopes of  −5/3, −2, and  −4 are 
drawn for comparison.

Figure 5.  Dimensionless thermal response function 
ω(u2)th

ω/(2kBT) (black) and total apparent response function 
ω(u2)ω/(2kBT) = [(u2)th

ω + (u2)ac
ω ]/(2kBT) (orange) as a function 

of dimensionless frequency ωτ . The other parameters are the same 
with those in figure 4. The slopes of  −2/3 and 1 are drawn for 
comparison.

J. Phys.: Condens. Matter 30 (2018) 175101
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5.  Summary and discussions

In this paper, we have discussed the statistical properties of 
thermal and active fluctuations of a compressible bilayer 
vesicle. We have analyzed the coupled Langevin equation for 
the membrane deformation and the lipid density variables. In 
particular, we have calculated the PSD matrix of these fluctua-
tions and discussed the frequency dependence of each comp
onent. Thermal contribution to PSD is estimated by means of 
the FDT, whereas active contribution is obtained by assuming 
that the time correlation functions of active random forces 
decay exponentially with a characteristic time scale. We have 
assumed that the total PSD is given by the sum of thermal 
and active contributions. Our results show that the nonequi-
librium active contribution affects fluctuations below a char-
acteristic frequency set by the activity timescale. To compare 
with the recent microrheology experiment on RBCs [9], we 
have further obtained an apparent response function which is 
enhanced in the low-frequency regime.

Recently, Turlier et  al reported a FDT violation and 
argued that the cell membrane fluctuations in healthy RBCs 
are actively driven [9]. The experimentally measured fluc-
tuations and response function were in agreement with their 
theoretical calculations obtained from the spectrin network 
model of active membranes. They showed that the timescale 
of switching between active and inactive states of the phos-
phorylation sites on the spectrin network is roughly 0.15 s 
[9]. In order to make a comparison with their experiment, 
we have set the activity timescale τu = 0.1 s to calculate the 
apparent response function in figure 5. We have shown that the 
enhanced response function increases linearly at low frequen-
cies ωτ � 1 and decays as  ∼ω−2/3 at very high frequencies 
ωτu � 1. These results are in accordance with the exper
imental result by Turlier et al [9].

Most of the existing works on membrane fluctuations 
describe only the dynamics of the displacement field u. In this 
work, we have taken into account the compressibility of the 
membrane and have also discussed the dynamics of the lipid 
density field φ∆. In order to write down the coupled Langevin 
equation  in equation  (14), we have used the fact that the 
dynamics of these two variables is expressed by the product 
of the two symmetric matrices, i.e. the inverse susceptibility 
matrix a in equation (9) and the kinetic coefficient matrix c 
in equation (10). The obtained PSD matrix characterizes the 
frequency dependencies of fluctuation amplitudes for the 
membrane displacement and the lipid density. Although some 
works have reported the effects of bilayer nature on the static 
fluctuation spectrum of the membrane displacement [35, 36], 
we are not aware of any experimental work where the lipid 
density fluctuation is investigated explicitly.

The thermal PSD component (u2)th
ω  is related to the 

Fourier transform of the mean squared displacement (MSD) 
of a tagged membrane segment. This is because the MSD 
and the displacement correlation function are related by 
〈[u(t)− u(0)]2〉 = 2[〈u2(0)〉 − 〈u(t)u(0)〉] and the time 
dependencies of the MSD and the correlation function are 
the same except for the numerical prefactor (as long as the 
equal time correlation function 〈u2(0)〉 is finite) [26]. For a flat 

membrane, Zilman and Granek predicted that a membrane seg-
ment undergoes anomalous out-of-plane diffusion for which 
the MSD increases as  ∼t2/3 [32, 33]. In the frequency domain, 
this behavior is consistent with our result of (u2)th

ω ∼ ω−5/3 as 
shown in figure 2. Therefore, we confirm that the scaling rela-
tion for a flat membrane also holds for a compressible bilayer 
vesicle. Moreover, we find that this scaling behavior is not 
affected by the viscosity contrast E as shown in figure 3. The 
thermal PSD component (u2)th

ω  is independent of ω at low fre-
quencies (ωτ � 1 or ω � ω∗) because the slowest bending 
relaxation time τ is set by the finite size of a vesicle.

In our theory, both the inertia of the membrane segment and 
the inertia of the surrounding fluid are neglected when we cal-
culate the hydrodynamic response of a bilayer vesicle. Within 
this approximation, we have employed the standard memory-
less Langevin equation in the overdamped form. On the other 
hand, it is known that the Brownian motion of a spherical 
particle in an incompressible fluid should be described by the 
generalized Langevin equation [37] with the Boussinesq force 
[38]. For a spherical particle in a 3D fluid, the correction to the 
Stokes friction due to the fluid inertia (called the Basset force) 
leads to a long-time tail behavior of the velocity autocorrela-
tion function (typically  ∼t−3/2) [39, 40].

It is beyond the scope of the present paper to calculate the 
hydrodynamic memory effect of fluid inertia on the mem-
brane friction matrix ζ  (see equation (16)). However, we can 
roughly estimate the crossover frequency ω∗∗ above which 
the fluid inertia plays a role. The minimum of the crossover 
frequency is roughly given by ω∗∗ = η+/(ρr2

0), where η+ is 
the fluid viscosity, ρ is the fluid density, and r0 corresponds 
to the vesicle radius which is the largest size in the problem. 
With the value ρ ≈ 103 kg m−3 for water and the other values 
quoted in table 1, we obtain ω∗∗ ≈ 104 s−1 and ω∗∗τ ≈ 105, 
where τ ≈ 10 s is the bending relaxation time of the vesicle 
(see equation  (8)). Generally, inertial effects of the fluid 
become strong at frequencies higher than ω∗∗. In other words, 
effects of fluid inertia and stress propagation are negligible for 
frequencies ω � ω∗∗. Furthermore, an analogous crossover 
frequency for a membrane segment (rather than a whole ves-
icle) can be even larger because its size is much smaller than 
the vesicle size r0.

The frequency range considered in figures  2–5 is 
10−2 � ωτ � 104 for which we are safely allowed to neglect 
inertial effects of the surrounding bulk fluid. Although our 
calculation relies on the Langevin equation without any hydro-
dynamic memory effect, the ‘large frequency’ regime in the 
graphs (1 � ωτ � 104) corresponds to the ‘small frequency’ 
regime when compared with the above estimated crossover 
frequency ω∗∗τ ≈ 105 related to the fluid inertia. This argu-
ment justifies the usage of the standard Langevin equation and 
allows us to discuss the long time behavior of membrane fluc-
tuations. We also comment that the frequency range 10−3– 
103 s−1 plotted in the graphs are easily accessible by the cur
rent experimental techniques.

Here we shall briefly mention that both the inertia of the 
fluid membrane and the surrounding fluid were considered by 
Camley and Brown [41] and by Komura et al [42, 43] for an 
infinitely large and flat membrane without any out-of-plane 
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deformations. Especially, Camley and Brown showed in the 
former paper that fluid inertia creates a long-time tail in the 
membrane velocity correlation function. In a viscous mem-
brane, this tail crosses over from  ∼t−1 (as in a 2D fluid) at 
intermediate times to  ∼t−3/2 (as in a 3D fluid) at long times. 
An analogous study for membranes undergoing out-of-plane 
fluctuations can be interesting. However, it was also pointed out 
that a long-time tail behavior in a membrane becomes impor-
tant only when the correlation function reaches 10−6 of its ini-
tial value, which would be effectively unobservable for vesicles 
[41].

On the other hand, the memory effect due to the viscoelas-
ticity of the surrounding media is worth considering. When 
the outer fluid is viscoelastic, the constant viscosity η in the 
Stokes equation should be replaced by a frequency dependent 
viscosity η(ω) in equation (16) according to the correspond-
ence principle of linear viscoelasticity [44, 45]. Granek used 
a generalized Langevin equation  with a memory kernel to 
calculate the membrane MSD [46]. He also showed that, 
if the complex shear viscosity of the fluid is described by a 
power-law behavior η(ω) ∼ (iω)α−1, a tagged membrane 
segment would exhibit an anomalous subdiffusive behavior 
and its MSD should grow as  ∼t2α/3. For α = 1, we recover 
the scaling behavior for a purely viscous medium as described 
before. Thus, we expect the PSD to scale as  ∼ω−(2α+3)/3 
when the vesicle is surrounded by a viscoelastic medium 
which can mediate mechanical memory effects.

Finally, it is worth mentioning that we have chosen simple 
forms for active noise correlations that capture only limited fea-
tures of active processes such as their timescale and strength. As 
an extension of the present work, we shall consider a coupling 
effect between active fluctuations and membrane local curva-
ture. Such a coupling can be taken into account through a wave-
number dependent activity strength [17], and it will alter the 
frequency dependence of active fluctuations. In general, the fre-
quency dependency of PSD can be used to characterize and dis-
tinguish between different active noise sources in experiments.
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