
1 © 2015 IOP Publishing Ltd  Printed in the UK

Journal of Physics: Condensed Matter

S Komura et al

Dynamics of two-component membranes surrounded by viscoelastic media

Printed in the UK

432001

JCOMEL

© 2015 IOP Publishing Ltd

2015

27

J. Phys.: Condens. Matter

CM

0953-8984

10.1088/0953-8984/27/43/432001

43

Journal of Physics: Condensed Matter

I.  Introduction

Biomembranes are thin two-dimensional fluids which sepa-
rate inner and outer environments of organelles in cells. The 
fluidity of biomembranes is guaranteed mainly due to the lipid 
molecules which are in the liquid crystalline state at physi-
ological temperatures. Proteins and other molecules embed-
ded in biomembranes undergo lateral diffusion which plays 
important roles for biological functions [1]. It should be noted, 
however, that biomembranes are not isolated 2D systems, but 
are coupled to the surrounding polar solvent such as water.

Moreover, the solvent surrounding biomembranes is vis-
coelastic rather than purely viscous. This is a common situ-
ation in all eukaryotic cells whose cytoplasm is a soup of 
proteins and organelles, including a thick sub-membrane layer 
of actin-meshwork forming a part of the cell cytoskeleton 
[1]. The extra-cellular fluid can also be viscoelastic because 
it is filled with extracellular matrix or hyaluronic acid gel. 
Recently, Granek discussed the dynamics of an undulating 
bilayer membrane surrounded by viscoelastic media [2]. He 

calculated the frequency-dependent out-of-plane (transverse) 
mean squared displacement (MSD) of a membrane segment 
and the linear response to external forces.

In this work, we discuss the dynamics and responses of 
two-component membranes containing proteins such as ion 
channels, ion pumps, or photo-active proteins like bacteri-
orhodopsin. These proteins can diffuse laterally within the 
membranes. We use a model that incorporates curvature-
concentration coupling as well as hydrodynamics interac-
tions. We calculate the MSD of a tagged membrane segment 
by taking into account the viscoelasticity of the surrounding 
media as well as the diffusivity of the proteins. Our aim is 
to derive a generalized Einstein relation for the membrane-
protein system, which is useful for membrane microrheology 
experiments.

Furthermore, the state of the membrane proteins can be 
either passive or active [3]. In the latter case, the proteins 
consume the chemical energy and drive the membrane out of 
equilibrium. It was experimentally shown that active forces 
due to ion pumps enhance membrane fluctuations [4–7].
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There exist two important theoretical models for active mem-
branes; (i) Prost–Bruinsma (PB) model which takes into 
account the stochastic nature of the pumps [8, 9], and (ii) 
Ramaswamy–Toner–Prost (RTP) model which considers the 
coupling between the protein density and membrane curvature 
[10]. In this paper, we use the simplified RTP model proposed 
by Sankararaman et al [11], and investigate the effects of the 
surrounding viscoelastic media on the membrane dynamics. 
As discussed in [11], one of our important assumptions is 
that the membrane is impermeable to the solvent both for the 
active and passive states.

In the next section, we describe the free energy of the 
membrane-protein system. In section III, we present dynamic 
equations which take into account the viscoelasticity of the 
surrounding media. On the basis of the model, we calculate 
the membrane MSD and obtain a generalized Einstein rela-
tion in section IV. The case of active membranes will be dis-
cussed in section V. Finally, the obtained MSD is related to the 
response function in the last section.

II.  Free energy

A two-component fluid membrane is regarded as an infini-
tesimally thin two-dimensional (2D) surface embedded 
in three-dimensional (3D) space. In order to describe the 
membrane deformation, we use the Monge gauge which is 
valid for nearly flat surfaces. Here the membrane surface is 
specified by its height above the flat xy-plane, ( )ρh t, , where 

( )ρ = x y,  and t is time. In this representation, the mean cur-
vature of the surface is given by ( )= ∇H h /22  to the lowest 
order.

Next we denote the number density of the embedded 
membrane proteins by ( )ρψ t, . As shown in figure  1, these 
intercalated protein molecules are assumed to induce a local 
curvature of the membrane surface [12, 13]. To leading order 
in gradients of h, the free energy functional of the membrane-
protein system is given by [5, 10, 11]

[ ] [ ( ) ¯ ( ) ]∫ψ ρ κ κ ψ χ ψ= ∇ − ∇ + −F h h H h,
1

2
d 2 ,2 2 2 2

0
1 2� (1)

where κ is the bending rigidity, H̄ψ the protein density depen-

dent spontaneous curvature, χ−0
1 the susceptibility which is 

assumed to be positive here. The above model is limited to a 
liner level, and we do not address nonlinear effects [9]. For the 
clarity of our presentation, we only discuss tensionless mem-
branes and do not include the surface tension energy propor-
tional to ( )∇h 2. Effects of surface tension have been discussed 
in detail in the literature [14].

In the following, we introduce the 2D spatial Fourier trans-
form of ( )ρh t,  defined as

( ) ( )∫ ρρ= ρ− ⋅qh t h t, d , e ,q2 i� (2)

and similarly for ( )ψ q t, . Using the free energy equation (1), 
one can easily show that the static (equal-time) correlation 
functions are given by

⟨ ( ) ( )⟩
κ

− =q qh t h t
k T

q
, , ,B

eff
4� (3)

〈 ( ) ( )〉
¯

ψ
κ

κ χ
− = − −q qh t t

k T H

q
, , ,B

eff 0
1 2� (4)

⟨ ( ) ( )⟩ψ ψ
κ

κ χ
− = −q qt t

k T
, , ,B

eff 0
1� (5)

where kB is the Boltzmann constant, T the tempera-
ture, and κeff the effective bending rigidity given by 

( ¯ )κ κ κ χ= − −H1 /eff
2

0
1 . Notice that κ κ<eff  irrespective of 

the sign of H̄ because χ >− 00
1 . The stability of the free energy 

requires that the coupling parameter H̄ needs to be small 

enough to satisfy the condition H / 12
0

1¯κ χ <− .

III.  Dynamics

Next we discuss the dynamics of two-component mem-
branes. We follow the argument in [11] and assume that 
the membrane is impermeable to the surrounding solvent. 
This is valid over the length scales of concern in the experi-
ments [5]. When the membrane is surrounded by viscoelastic 
media, as considered by Granek [2], a generalized Langevin 
equation  for the motion of the displacement field ( )ρh t,  is 
given by

h t

t
t t t

F

h t
t

,
d d ,

,
, ,

t

0

2( ) ( )
( )

( )

∫ ∫
ρ

ρ ρ
ρ

ρ

ρ
δ

δ
ξ

∂
∂

= − Λ − −

+

′ ′ ′ ′
′ ′� (6)

where ρΛ t,( ) is the retarded Oseen mobility. Its Laplace trans-
form is given by

( ) ( )
( )∫ρ ρ

πη ρ
Λ = Λ =

∞
−s t t

s
, d , e

1

8
,st

0
� (7)

where | |ρρ =  and ( )η s  is the frequency-dependent viscosity 
of the surrounding viscoelastic media (s being the frequency 
in the Laplace domain). The 2D Fourier transform of equa-
tion (7) is

( )
( )η

Λ =q s
s q

,
1

4
,� (8)

Figure 1.  Asymmetric proteins (triangles) embedded in a fluid 
bilayer membrane. Accumulation of the proteins induces a local 
curvature of the membrane. The membrane is surrounded by a 
viscoelastic medium with a frequency-dependent modulus G(s).

G(s)

G(s)
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with = | |qq . The average of the thermal noise in equation (6) 
is ⟨ ( )⟩ρξ =t, 0, whereas its correlation obeys the following 
fluctuation-dissipation theorem (FDT) [15, 16]

⟨ ( ) ( )⟩ ( )ρ ρ ρ ρξ ξ = Λ − −′ ′ ′ ′t t k T t t, , 2 , .B� (9)

Since the proteins diffuse freely on the membrane surface, 
the conserved quantity ( )ρψ t,  should obey the continuity 
equation of the form

( )
( )

( )ρ
ρ

ζ ρ
ψ δ

δψ
∂
∂

= ∇ +∇ ⋅
t

t
L

F

t
t

,

,
, ,2� (10)

where L is the transport coefficient which is assumed to 
be constant. In this diffusion, however, the hydrodynamic 
interaction is neglected [17]. The last term is a conserving 
Gaussian noise with ⟨ ( )⟩ζ ρ =t, 0 and its correlations are 
given by

⟨ ( ) ( )⟩ ( ) ( )ρ ρ ρ ρζ ζ δ δ δ= − −′ ′ ′ ′t t k TL t t, , 2 .i j ijB� (11)

Equations (6) and (11) are the set of equations  to be 
investigated.

The above equations can be conveniently solved by using 
the Laplace transform of ( )qh t,  and ( )ψ q t,  (see equation (7)). 
Then equations (6) and (11) can be written in the matrix form as

( ) ( ) ( )
( )
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κ κ
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⎟
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L H q Dq s
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s
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s
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,

,
i ,

,
4 2

4 2

0

0

� (12)

where χ= −D L 0
1, ( )= =qh h t, 00  and ( )ψ ψ= =q t, 00 . After 

some calculations, we obtain the solution as

( ) [( ) ( ) ¯
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ζ
κ ψ

ξ κ
κ
κ

= + − Λ

+ + − Λ ⋅
× Λ + +
−Λ −

q q

q q q q

q

q

h s Dq s h s Hq

Dq s s s Hq s

s q s Dq s

s L H q

, ,

, i , ,

,

,

2
0

2
0

2 2

4 2

2 2 6 1

�
(13)
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κ
κ

= − + Λ +

− + Λ + ⋅
× Λ + +
−Λ −

q q

q q q q

q

q

s L Hq h s q s

L Hq s s q s s

s q s Dq s

s L H q

, ,

, i , ,

,

,

4
0

4
0

4 4

4 2

2 2 6 1

�
(14)

We use equation (13) to calculate the membrane MSD in the 
next section.

IV.  Membrane mean squared displacement

The important quantity from the experimental point of view is 
the MSD of a tagged membrane segment defined as

( ) 〈[ ( ) ( )] 〉

( )
[〈 ( ) ( )〉 〈 ( ) ( )〉]∫

ρ ρφ

π

= −

= − − −q q q q

t h t h

q
h t h t h t h

, , 0

2
d

2
, , , , 0 .

2

2

2

� (15)

The first term in the above integrand is the equal-time correla-
tion function given by equation (3). The Laplace transform of 

the time correlation function ⟨ ( ) ( )⟩−q qh t h, , 0  can be obtained 
from equation (13) as 

q q

q

q q

h s h t
k T

q

Dq s s H q

s q s Dq s s L H q

, , 0

, /

, ,
.

B

eff
4

2 2 2 4
0

1

4 2 2 2 6

⟨ ( ) ( )⟩

( ) ( ) ¯

( ( ) )( ) ( ) ¯
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×
+ + Λ

Λ + + − Λ

−� (16)

Here we have used equations  (3) and (4) for the equal-time 
correlation functions. Another important assumption to derive 
the above correlation function is that the stochastic thermal 
noise ξ and ζ are uncorrelated with the initial condition of the 
height ( )= =qh t h, 0 0, which is somewhat non-trivial [15]. 
Using equations  (3) and (16) in equation  (15), the Laplace 
transformed MSD of a membrane segment can be conve-
niently written as [2]

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

q

q q

s
q k T
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s
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× −
+ + Λ

Λ + + − Λ

−

� (17)

Hereafter we use the general viscoelasticity relation for 
the frequency dependent modulus ( ) ( )η=G s s s . Using equa-
tion (8) for ( )Λ q s, , one can rearrange the integrand in equa-
tion (17) as

( )
( )

( )
¯

( )∫

φ
π

κ κ
χ
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+
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0
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2

1� (18)

Although it is impossible to perform the above integral analyt-
ically, equation (18) can be regarded as a generalized Einstein 
relation for a segment of two-component membranes.

We recall here that the coupling parameter H̄ should be 
small enough to satisfy the stability condition of the free 

energy equation  (1). When H / 12
0

1¯κ χ− � , equation  (18) can 
be expanded in powers of H̄, and the approximated form can 
be obtained as

( )
( ) ( )

¯
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Here both of the integrals can be performed analyti-
cally. Especially, by defining dimensionless quantities 
ˆ ( )κ=q q G s/43 3  and ˆ ( )( ( ))κ=s s D G s/ /4 2/3, the second inte-
gral can be written in the form

( ) ( )
( ˆ)

∫
κ κ

+
+
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where

( ˆ) ˆ ˆ
( ˆ ) ( ˆ ˆ)
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The behavior of ( ˆ)I s  is illustrated in figure 2. Performing the 
first integral in equation  (19) and using equation  (20), we 
obtain the Laplace transformed MSD as

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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s
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3 4
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2
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0
1

( )
( ) ˆ

¯ ( ˆ)
φ

κ
κ

π
κ
χ

≈ + −� (22)

which is the (approximated) generalized Einstein relation for 
membrane-protein systems in the weak coupling limit.

We denote the first and the second terms in equation (22) 
as ( )φ smem  and ( )φ sdiff , respectively, so that the total MSD is 
expressed as ( ) ( ) ( )φ φ φ= +s s smem diff . The first term ( )φ smem  
due to the membrane itself can be rewritten as

( )
( )

φ
κ

=s
k T

sG s

1

3 2
,mem 3/2 1/3

B
1/3 2/3� (23)

which coincides with the result by Granek [2], as it should. 
The second term ( )φ sdiff  is our new contribution due to the dif-
fusion of proteins in the membrane;

( )
¯

( )
( ˆ)
ˆ

φ
π χ

κ
= −

⎛
⎝
⎜

⎞
⎠
⎟s

k TH

D G s

I s

s

1

4
,diff

B
2

0
1

4/3

� (24)

where ˆ ( )( ( ))κ=s s D G s/ /4 2/3 as before. We note here that φdiff 
vanishes in the limit of H 0¯ → .

As a working example, we consider the situation where 
both sides of the membrane are occupied by the same viscoe-
lastic media with a frequency-dependent modulus that obeys 
a power-law behavior [2, 18, 19];

( ) = αG s G s ,0� (25)

where ⩽ ⩽α0 1. This behavior is commonly observed for 
various polymeric solutions at high frequencies. Examples are 
α = 1/2 and α = 2/3 for Rouse and Zimm dynamics, respec-
tively [20], α = 3/4 for semi-dilute solutions of semi-flexible 
polymers such as actin filaments [21]. The limits of α = 0 and 
1 correspond to the purely elastic and purely viscous cases, 
respectively.

For such power-law viscoelastic media, the membrane part 
of the time-dependent MSD can be readily obtained by per-
forming the inverse Laplace transform [2]

( )
( )

φ
α κ

=
Γ +

αt
k T

G
t

1

3 2 1 2 /3
,mem 3/2 1/3

B

1/3
0
2/3

2 /3
� (26)

where ( )Γ z  is the gamma function. In the purely elastic case 
of α = 0, we have

( )φ
κ

=t
k T

G

1

3 2
,mem 3/2 1/3

B

1/3
0
2/3� (27)

which is independent of time. On the other hand, in the purely 
viscous case of α = 1, equation (26) reduces to

( )
( )

φ
κ

κ η

=
Γ

=

t
k T

G
t

k T
t

1

3 2 5/3

0.169 ,

mem 3/2 1/3
B

1/3
0
2/3

2/3

B

1/3
0
2/3

2/3
� (28)

where we have replaced G0 with η0 in the last expression. This 
result was previously obtained by Zilman and Granek for sin-
gle component membranes [22, 23].

Next we discuss the time-dependence of the diffusive MSD 
( )φ tdiff  in the presence of power-law fluid media as given by 

equation (25). For this purpose, we first consider the asymp-
totic behaviors of ( ˆ)I s  in equation (21). In the limit of ˆ→s 0, 
we have

( ˆ) ˆπ π
≈ −I s s

2

3

2

3
,

5/2 5/2� (29)

whereas in the opposite limit of ˆ→∞s , we get

( ˆ) ˆ
ˆ

≈− −⎜ ⎟
⎛
⎝

⎞
⎠I s

s

s

1

3

ln

2

1
.� (30)

In order to calculate ( )φ tdiff , it is convenient to introduce a 
characteristic time scale defined by

( )
τ

κ
=

α−
⎜ ⎟
⎛
⎝

⎞
⎠G D4

,
0

3/2

2/ 3 2

� (31)

which is dependent on α. (Notice that the dimension of G0 also 
depends on α.) In what follows, we shall use a dimensionless 
time defined by ˜ τ=t t / . Using the above asymptotic expres-
sions in equation  (24) and performing the inverse Laplace 
transform, we obtain in the long time limit of ˜→∞t  as

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

t
k TH

D G

t t

1

4

2

3 1 2 /3 4 /3
.

diff
B

2

0
1

0

4/3
4 /3 1

5/2

2 /3 4 /3 1

(˜)
¯

˜
( )

˜
[ ]

φ
π χ

κ
τ

π
α α

≈

×
Γ +

−
Γ

α

α α

−
−

−
� (32)

Figure 2.  The plot of the integral I s( ˆ) defined in equation (21). 
Here the variable is κ=s s D G s/ /4 2/3ˆ ( )( ( )) .

0 3 6 9 12
ŝ
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0.4

I(
ŝ)
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Here the first term is proportional to αt2 /3 as in equation (26), 

and can be also expressed as H t/32
0

1
mem( ¯ ) ( )κ χ φ− , where 

( )φ tmem  is given by equation (26). The same result would have 
been obtained simply by replacing κ in equation (26) by κeff. 
The second term, on the other hand, is proportional to α −t4 /3 1 
showing a different exponent.

In the short time limit of ˜→t 0, we obtain

(˜)
¯

˜
[( ) ˜ ( ) ]

φ
π χ

κ
τ

α α γ α

≈

× − + − − +

α
−

−
⎛
⎝
⎜

⎞
⎠
⎟t

k TH

D G

t
t

1

4

6
2 3 ln 2 3 2 1 ,

diff
B

2

0
1

0

4/3
4 /3 1

� (33)

where �γ = 0.5772  is Euler’s constant. Since ⩽α 1, this 
MSD essentially grows like ( )t tln 1/ . Such a logarithmic cor-
rection leads to a time-dependent diffusivity. Equations (32) 
and (33) are the important results of this paper.

In figure  3, we plot the dimensionless MSD φdiff due 
to the diffusion as a function of ˜ τ=t t /  by performing the 
numerical inverse Laplace transform of equation (24) with 
full ( ˆ)I s  when (a) α = 0 and (b) α = 1/2. We also compare 

it with the asymptotic expressions equations (32) and (33) 
which are in good agreement with the numerical result. In 
both cases, we see a clear crossover from the almost liner 
behavior to the power-law behavior of ˜ αt 2 /3. In the case of 
purely elastic media of α = 0, both the membrane and dif-
fusive contributions to MSD become independent of time 
for large t̃  [2].

V.  Active membranes

We now discuss the dynamic properties of a two-compo-
nent membrane with active pumps which exert non-equi-
librium forces on the surrounding fluid. As considered by 
Manneville et al [5], each pump is represented as a force 
dipole, i.e. two force centers of opposite sign but equal mag-
nitude separated by a distance w. This is justified because 
there should be no external force on the combined system of 
pump/membrane/solvent whose overall momentum is con-
served. If the positive and negative force centers are located 
asymmetrically with respect to the midpoint of the mem-
brane, the pumps exert nonzero active forces on the mem-
brane and the surrounding media. When the force centers 
are located at z  =  w+ and z  =  −w−, as shown in figure 4, 
the active force is proportional to the protein density and 
can be written as1

( )[ ( ) ( )]ˆρψ δ δ= − − ++ −F zf t z w z w, ,pump� (34)

where f is the magnitude of the active force (taken to be con-
stant) and ẑ is the unit vector along the z-direction.

Here we assume that pumps are always in the active 
state over the time scales of interest, and the membrane 
feels the active forces only via the surrounding fluid [11]. 
The presence of the active force due to the pumps modi-
fies equation  (6) and can be conveniently expressed in the 
Fourier-Laplace domain. Corresponding to equation  (12), 
we then have

Figure 3.  Dimensionless MSD due to the diffusion as a 
function of time when (a) α = 0 and (b) α = 1/2. Here 
˜ [( ¯ )( ) ]φ φ π χ κ τ= α− −k TH D G/ / /4diff diff B

2
0

1
0

4/3 4 /3 1  and 
τ κ= = α−t t t G D/ / /4 0

3/2 2/ 3 2˜ ( ) ( ). The dotted and the dashed lines are 
asymptotic expressions given by equations (32) and (33).

10
-6

10
-3

10
0

10
3

10
6

t~
10

-6

10
-3

10
0

10
3

φ~ di
ff

(t~ )

10
-6

10
-3

10
0

10
3

10
6

t~
10

-6

10
-3

10
0

10
3

φ~ di
ff

(t~ )
(a)

(b)

Figure 4.  The asymmetric dipole model for a membrane protein. 
The force centers are located at distances w+ and w− from the 
bilayer midpoint. The magnitude of the active force is denoted by 
f . The membrane is surrounded by a viscoelastic medium with a 
frequency-dependent modulus G(s).

f

f

w+

w−

G(s)
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1  In [5, 11], the difference between the densities of pumps transferring ions 
in the up and down direction is denoted by ψ. 
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2  Our effective temperature differs from that in [11] because the correction 
term has an opposite sign.

where

�

( ) ( ) ( )

( ) ( )

Ω = − + + +

≈ − + − +

−
−

+
−

− + − +

− +q qw qw

q
w w

q
w w

1 e 1 e

2 3

qw qw

2
2 2

2
3 3� (36)

is the ‘structure factor’ for the force dipole calculated in  
[5, 11]. Here we take into account only the first quadratic term 
in q and approximate as ( )Ω ≈−qf Pwq2, where = ++ −w w w  
is the size of the pump and ( )= −+ −P f w w w/22 2  represents the 
force dipole energy.

The calculation of the membrane MSD closely follows 
that of the previous section. In the small coupling limit of 

H / 12
0

1¯κ χ− � , we obtain

( )
( ) ˆ

¯ ( ˆ)
¯

φ
κ

κ

π
κ
χ κ
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× + +−
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3 4
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1 ,
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B eff

4/3

3/2 2

0
1

� (37)

where Teff is the effective temperature defined by

¯κ
κ χ

= − −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟T T

HPw
1 .eff

eff 0
1� (38)

This effective temperature decreases when ¯ >HP 0, while 
it increases when HP 0¯ < 2. The other difference between 
equations  (22) and (37) is that the second term in equa-
tion  (37) has an additional correction due to the pumps. 
Notice that these non-equilibrium contributions vanish 
when =+ −w w , implying that an asymmetry in the positions 
of the force centers ( ≠+ −w w ) is necessary for finite active 
forces.

Nevertheless, since the s-dependence is the same between 
equations (22) and (37), the MSD of membranes containing 
passive pumps and those containing active pumps exhibit the 
same scaling behavior. A similar result was also obtained by 
Lacoste and Lau [24] who showed that these two cases lead to 
a sub-diffusive behavior when membrane permeation is neg-
ligible and the surrounding fluid is purely viscous. For highly 
permeable membranes, on the other hand, a super-diffusive 
behavior was predicted by Granek and Pierrat [25] for mem-
branes described by the PB model, and later by Lacoste and 
Lau [24] for those represented by the RTP model. Hence the 
permeability is crucial for the membrane dynamics, whereas 
the stochastic nature of the pumps could also lead to short 
time super-diffusion, as discussed before [8, 24–26]. The latter 
effect in the presence of viscoelastic media will be discussed 
in a separate publication. We also note that the effective tem-
perature in equation  (38) is different from that obtained by 
Manneville et al in [5]. This is because we have calculated 
equation (38) from the lowest-oder diffusive terms as in [11], 

while they neglected these diffusive terms in favor of higher-
order terms.

VI.  Summary and discussion

In this paper, we have discuss the dynamics of two-compo-
nent fluid membranes that are surrounded by viscoelastic 
media. We have assumed that membrane proteins diffuse 
laterally and induce a local curvature of the membrane. We 
obtained the MSD of a tagged membrane segment by tak-
ing into account the viscoelasticity of the surrounding media. 
When the elasticity of the surrounding media obeys a power-
law behavior, ( )ω∼ αG i , the MSD due to protein diffusion 
shows a crossover from ( )t tln 1/  to αt2 /3 behaviors. We have 
also discussed the situation when the proteins generate active 
non-equilibrium forces. The generalized Einstein relation is 
further modified by an effective temperature that depends on 
the force dipole energy. The generalized Einstein relations 
that we obtained for two-component membranes (see equa-
tions  (22) and (37)) are useful to measure the viscoelastic 
properties of cytoplasm and/or extracellular matrix.

The obtained membrane MSD (in the Laplace domain) can 
be used to express the response of a membrane to transverse 
forces when it is surrounded by viscoelastic fluids. Within the 
linear response theory, one can write

( )α ω=ω ωh F* ,� (39)

where ωh  is the Fourier transform of the mean membrane 
deformation profile under the action of an external point force 
F(t) at the origin ρ = 0, ωF  is the Fourier transform of F(t), and 

( ) ( ) ( )″α ω α ω α ω= +′* i  is the complex response function. In 
terms of the response function, the FDT can be written as  
[15, 16]

( ) ( )″
ω
α ω=ωh

k T2
,2 B

� (40)

where ( )ωh2  is the power spectral density. Hence the mem-
brane response function can be related to the membrane MSD 
by

( ) ( )α ω
ω
φ ω=

k T
* i

2
* ,

B
� (41)

where ( )φ ω*  is obtained from ( )φ s  by substituting ω=s i , i.e. 
an analytic continuation. Since ( ) ( ) ( )φ ω φ ω φ ω= +* * *

mem diff , 
the mechanical response of two-component membranes dif-
fers from that of single-component membranes.

In our future work, we shall consider an active membrane 
containing proteins with two internal conformational states 
[27, 28], and the effects of viscoelasticity of the surrounding 
media. This can be a natural model for ion channels because 
they undergo random transitions between ‘on’ and ‘off’ states. 
The case of two-component membranes in a quasispherical 
shape (vesicles) [29] is also worth considering in order to 
study the rheology of cells.
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