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We investigate the hydrodynamic interaction between two elastic swimmers composed of three spheres and two
harmonic springs. In this model, the natural length of each spring is assumed to undergo a prescribed cyclic change,
representing the internal states of the swimmer [K. Yasuda et al., J. Phys. Soc. Jpn. 86, 093801 (2017)]. We obtain the
average velocities of two identical elastic swimmers as a function of the distance between them for both structurally
asymmetric and symmetric swimmers. We show that the mean velocity of the two swimmers is always smaller than that
of a single elastic swimmer. The swimming state of two elastic swimmers can be either bound or unbound depending on
the relative phase difference between them.

1. Introduction

Microswimmers are small machines that swim in a fluid
and they are expected to be used in microfluidics and
microsystems.1) Over the length scale of microswimmers, the
fluid forces acting on them are dominated by the frictional
viscous forces. By transforming chemical energy into
mechanical energy, however, microswimmers change their
shape and move efficiently in viscous environments.
According to Purcell’s scallop theorem, time-reversible body
motion cannot be used for locomotion in a Newtonian
fluid.2,3) As one of the simplest models exhibiting broken
time-reversal symmetry, Najafi and Golestanian proposed
a three-sphere swimmer (NG swimmer),4,5) in which three
in-line spheres are linked by two arms of varying length.
Recently, such a swimmer has been experimentally realized
by using colloidal beads manipulated by optical tweezers,6)

ferromagnetic particles at an air-water interface,7,8) or
neutrally buoyant spheres in a viscous fluid.9)

Using the NG swimmer model, Pooley et al. showed that
the interaction between two swimmers depends on their
relative displacement, orientation, and phase, leading to
motion that can be either attractive, repulsive, or oscilla-
tory.10) Scattering of two NG swimmers was also investigated
on the basis of the time-reversal invariance of the Stokes
equation.11) Later Farzin et al. reexamined the hydrodynamic
interaction between two NG swimmers and concluded that
the long-time swimming states are different between moving
in the same and opposite directions.12) To understand
hydrodynamic coupling for stochastic swimmers, on the
other hand, Najafi and Golestanian studied the correlated
motion of a three-sphere swimmer and a two-sphere
system.13) They calculated the swimming velocities as
functions of the statistical transition rates for the conforma-
tional changes.

Recently, the present authors have proposed a generalized
three-sphere microswimmer model in which the spheres are
connected by two harmonic springs, i.e., an elastic micro-
swimmer.14) Compared with the NG swimmer, the main
difference of the elastic swimmer is that the natural length of
each spring (rather than the arm length) oscillates in time and
is assumed to undergo a prescribed cyclic change. As a result,
the sphere motion in our model is determined by the natural
spring lengths, representing the internal states of a swimmer,
and also by the force exerted by the fluid. We have

analytically obtained the average swimming velocity as a
function of the frequency of the cyclic change in the natural
length.14) In the low-frequency region, the swimming
velocity increases with frequency and it reduces to that of
the NG swimmer.4,5) Conversely, in the high-frequency
region, the velocity decreases with increasing frequency. We
note that similar models were proposed by other people,15–17)

while our elastic swimmer model was further extended to
thermally driven elastic micromachines.18)

In this work, we investigate the hydrodynamic interaction
between two elastic three-sphere swimmers that are confined
in one-dimensional space and moving in the same direction.
We first derive a general expression for the average velocities
(over a period of one cycle) of two hydrodynamically
interacting three-sphere swimmers as a function of the
distance between them. Using this general expression, we
then calculate the explicit forms of the average velocities of
two identical elastic microswimmers. We show that the mean
of the two average velocities is always smaller than that of
a single elastic swimmer, whereas the velocity difference
depends on the relative phase difference in the natural lengths
between the two swimmers. As a result, the swimming state
of two elastic swimmers can be either bound or unbound
depending on the relative phase difference.

In Sect. 2, we first discuss the motion of two interacting
three-sphere microswimmers. In Sect. 3, we calculate the
average velocities of two interacting elastic swimmers, and
further discuss the mean and the difference between the two
average velocities. The average velocities of two symmetric
elastic swimmers is discussed in Sect. 4. In Sect. 5, we
discuss the interaction of two NG swimmers by considering
the low-frequency limit of our results. Finally, a summary of
our work and some discussion are given in Sect. 6.

2. Two Interacting Three-sphere Swimmers

As shown in Fig. 1, we consider two general three-sphere
swimmers in a viscous fluid characterized by shear viscosity
η. Each swimmer consists of three hard spheres of the same
radius a connected either by two arms (NG swimmer) or by
two harmonic springs (elastic swimmer explained in the next
section) A and B. The positions of the three spheres in the
left (L) swimmer are denoted by x1, x2, and x3 in a one-
dimensional coordinate system, while those in the right (R)
swimmer are denoted by x4, x5, and x6. We also assume
x1 < x2 < x3 � x4 < x5 < x6 without loss of generality. The
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distance between the two swimmers is defined by the
positions of the middle spheres, i.e., D ¼ x5 � x2.

Owing to the hydrodynamic interaction, each sphere exerts
a force on the viscous fluid and is subjected to an opposite
force from it. Denoting the velocity of each sphere by
_xi ¼ dxi=dt and the force acting on each sphere by fi
(i ¼ 1; . . . ; 6), we can write the equations of motion of each
sphere as

_xi ¼
X6
j¼1

Mij fj; ð1Þ

where the details of the hydrodynamic interactions are taken
into account through the mobility coefficients Mij. Within
Oseen’s approximation, which is justified when the spheres
are considerably far from each other (a � jxi � xjj), the
expressions for the mobility coefficients Mij can be written
as

Mij ¼

1

6��a
; i ¼ j,

1

4��jxi � xjj ; i ≠ j.

8>><
>>:

ð2Þ

We remark here that although the two swimmers are aligned
along the one-dimensional axis, the spheres are interacting
through the three-dimensional hydrodynamic interaction.
Furthermore, we require two force-free conditions of the
two swimmers, i.e.,

f1 þ f2 þ f3 ¼ 0; f4 þ f5 þ f6 ¼ 0: ð3Þ
Let us denote the average arm length (NG swimmer) or the

average natural length (elastic swimmer) by ‘, and also
introduce the four displacements of the springs with respect
to ‘ for the left and right swimmers as

uLA ¼ x2 � x1 � ‘; uLB ¼ x3 � x2 � ‘; ð4Þ
uRA ¼ x5 � x4 � ‘; uRB ¼ x6 � x5 � ‘: ð5Þ

Then the four kinematic constraints are given by taking the
time derivative of the above relations:

_uLA ¼ _x2 � _x1; _uLB ¼ _x3 � _x2; ð6Þ
_uRA ¼ _x5 � _x4; _uRB ¼ _x6 � _x5: ð7Þ

We note here that Eq. (1) implies six coupled equations.
Together with the two force-free conditions in Eq. (3) and the
four kinematic constraints in Eqs. (6) and (7), we have

sufficient equations to solve the twelve unknowns, namely, _xi
and fi (i ¼ 1; . . . ; 6). Finally the average velocities of the left
and right swimmers can be obtained by

VL ¼ 1

3
h _x1 þ _x2 þ _x3i; VR ¼ 1

3
h _x4 þ _x5 þ _x6i; ð8Þ

where averaging h� � �i is performed by time integration in a
full cycle.

Under the condition that the two swimmers are far from
each other and the deformations are small compared with the
average arm length ‘, i.e., a � uL,RA,B � ‘ � D, one can
perform a perturbative calculation to obtain the average
velocities as

VL ¼ 7a

24‘2
huLA _uLB � uLB _u

L
Ai

� a‘

D3
huRA _uRB � uRB _u

R
A � uLA _uRA � uLA _uRB þ uLB _u

R
A þ uLB _u

R
Bi;

ð9Þ
VR ¼ 7a

24‘2
huRA _uRB � uRB _u

R
Ai

� a‘

D3
huLA _uLB � uLB _u

L
A � uRA _uLA � uRA _uLB þ uRB _u

L
A þ uRB _u

L
Bi:

ð10Þ
Note that we have kept only up to second-order terms in uL,RA,B
as in Ref. 13, meaning that we are also assuming the
condition uL,RA,B=‘ � ‘=D. The first terms on the right-hand
side of the above equations represent the average swimming
velocity of a single three-sphere swimmer, as previously
obtained by Golestanian and Ajdari.5) These terms indicate
that the average velocity of an isolated three-sphere swimmer
is determined by the area enclosed by the orbit of the periodic
motion in the configuration space.

The second terms on the right-hand side of Eqs. (9) and
(10) are due to the hydrodynamic interaction between the two
swimmers. These correction terms decay as ð‘=DÞ3 with
increasing distance because they result from force quadru-
poles rather than force dipoles.5) In fact, such a cubic
dependence originates from the symmetry such that the
motion of three-sphere swimmers is invariant under a
combined time-reversal and parity transformation.10) The
correction terms huRA _uRB � uRB _u

R
Ai in VL and huLA _uLB � uLB _u

L
Ai

in VR are both passive terms because they correspond to the
swimming of only the second swimmer. The other correction
terms are due to the simultaneous motion of the two
swimmers and hence are called active terms.10,12) We show
later that only the active terms depend on the phase difference
between the two swimmers.

3. Two Interacting Elastic Swimmers

In this section, we consider two interacting elastic three-
sphere swimmers, as schematically shown in Fig. 1, and
calculate their average velocities. We first assume that these
two elastic swimmers have identical structures, whereas the
structure of each swimmer can be either asymmetric or
symmetric (as separately discussed in Sect. 4). For each
swimmer, the two spring constants of harmonic springs A
and B are denoted by KA and KB, respectively. Then
the total energy of these two elastic swimmers is given
by

x1 x2 x3 x4 x5 x6KA KB KA KB
η

a a

L
A

R
B

R
A

L
B

Fig. 1. (Color online) Two elastic three-sphere microswimmers in a
viscous fluid characterized by shear viscosity η. The positions of the three
spheres in the left (L) swimmer are denoted by x1, x2, and x3 in a one-
dimensional coordinate system, while those in the right (R) swimmer are
denoted by x4, x5, and x6. The distance between these two swimmers is
defined by D ¼ x5 � x2. In each elastic swimmer, three identical spheres of
radius a are connected by two harmonic springs A and B characterized by
elastic constants KA and KB, respectively. The four natural lengths of the
springs, ‘L

A, ‘
L
B, ‘

R
A, and ‘R

B, depend on time and are assumed to undergo
cyclic changes as given by Eqs. (13)–(16).
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E ¼ KA

2
ðx2 � x1 � ‘L

AÞ2 þ
KB

2
ðx3 � x2 � ‘L

BÞ2

þ KA

2
ðx5 � x4 � ‘R

AÞ2 þ
KB

2
ðx6 � x5 � ‘R

BÞ2: ð11Þ

In the above, ‘L
A, ‘

L
B, ‘

R
A, and ‘R

B are the natural lengths of
the respective harmonic springs and generally depend on
time. Hence, the six forces in Eq. (1) are given by

fi ¼ � @E

@xi
: ð12Þ

For these two elastic swimmers, we assume that the four
natural lengths of the springs undergo the following periodic
changes in time:12)

‘L
AðtÞ ¼ ‘ þ dA cosð�tÞ; ð13Þ

‘L
BðtÞ ¼ ‘ þ dB cosð�t � �Þ; ð14Þ

‘R
AðtÞ ¼ ‘ þ dA cosð�t ��Þ; ð15Þ

‘R
BðtÞ ¼ ‘ þ dB cosð�t � � ��Þ: ð16Þ

Here, ‘ is the common average length as introduced in
Eqs. (4) and (5), dA and dB are the amplitudes of the
oscillatory change, Ω is the common frequency, ϕ is the
relative phase difference between the two springs within the
swimmers, and Ψ is the relative phase difference between the
left and right swimmers. For each swimmer to move by itself,
the time-reversal symmetry of the spring dynamics should be
broken, i.e., � ≠ 0. In the absence of the hydrodynamic
interaction between the two swimmers, they move in the
same direction with the same velocity. Although this
assumption can be relaxed, the current situation already
provides us with very rich dynamical behaviors when they
interact hydrodynamically. We also note that the frequency Ω
can be different between the two swimmers, but such a study
is left as a future work.

It is convenient to introduce a characteristic time scale
defined by14)

� ¼ 6��a

KA
: ð17Þ

Then we use ‘ to scale all the relevant lengths and employ τ
to scale the frequency, i.e., �̂ ¼ ��. By further defining the
ratio between the two spring constants as � ¼ KB=KA, the
coupled equations can be made dimensionless. These
equations can be solved in the frequency domain, and we
further obtain uL,RA,B in Eqs. (6) and (7) after an inverse Fourier
transform.14) Since their explicit expressions are somewhat
lengthy, we give them in Appendix A. Finally, using Eqs. (9)
and (10), we calculate the average velocities VL and VR of
the two elastic swimmers. Their full expressions are given in
Appendix B.

Instead, we show here the mean and the difference between
the two average velocities VL and VR. The former is given by

VR þ VL

2
¼ V0 1 � 48‘3

7D3
sin2ð�=2Þ

� �
; ð18Þ

where the average velocity of a single elastic swimmer was
obtained before as14)

V0 ¼ 7dAdBa

24‘2�
F1ð�̂; �Þ sin�

þ 7ð1 � �ÞdAdBa
12‘2�

F2ð�̂; �Þ cos�

þ 7ðd2A � d2B�Þa
24‘2�

F2ð�̂; �Þ: ð19Þ

On the other hand, the velocity difference between the two
swimmers is given by

VR � VL ¼ a‘

D3�

�
2dAdBð1 þ �ÞF2ð�̂; �Þ sin�

� 3ðd2A � d2BÞF3ð�̂; �Þ
� ðd2A � d2B�

2ÞF4ð�̂; �Þ� sin�: ð20Þ
In the above equations, we have introduced four scaling
functions defined by

F1ð�̂; �Þ ¼ 3��̂ð3� þ �̂2Þ
9�2 þ 2ð2 þ � þ 2�2Þ�̂2 þ �̂4

; ð21Þ

F2ð�̂; �Þ ¼ 3��̂2

9�2 þ 2ð2 þ � þ 2�2Þ�̂2 þ �̂4
; ð22Þ

F3ð�̂; �Þ ¼ 3�2�̂

9�2 þ 2ð2 þ � þ 2�2Þ�̂2 þ �̂4
; ð23Þ

F4ð�̂; �Þ ¼ 3�̂3

9�2 þ 2ð2 þ � þ 2�2Þ�̂2 þ �̂4
: ð24Þ

These are the main results of this paper.
Equation (18) indicates that, owing to the hydrodynamic

interaction between the two elastic swimmers, the mean
velocity is always smaller than V0 irrespective of the relative
phase difference Ψ. Using the formula sin2ð�=2Þ ¼
ð1 � cos�Þ=2 in Eq. (18), we point out that the Ψ-inde-
pendent contribution to the correction is due to the passive
terms in Eqs. (9) and (10), whereas the Ψ-dependent
contribution comes from the active terms. The correction to
V0 vanishes only when � ¼ 0, and the mean velocity is
minimized when � ¼ �. In contrast, the velocity difference in
Eq. (20) can be either positive or negative depending on the
conditions. Obviously, we have VR ¼ VL when � ¼ 0. This
is reasonable because the two swimmers should move with
the same velocity when the relative phase difference
vanishes. A more detailed discussion concerning the velocity
difference will be given in the next section for symmetric
elastic swimmers.

In Fig. 2, we plot the scaling functions F1 and F2 as
functions of �̂ for � ¼ 0:1, 1, and 10.14) Note, however, that
the cases of � ¼ 0:1 and 10 are essentially equivalent because
we can always exchange springs A and B, whereas we have
defined the relaxation time τ through KA as in Eq. (17). As
shown in Eq. (19) and previously discussed in Ref. 14, the
frequency dependence of the average velocity V0 for an
isolated elastic swimmer is essentially determined by
F1ð�̂; �Þ and F2ð�̂; �Þ. Notice that F1 � � and F2 � �2

for �̂ � 1, whereas F1 � ��1 and F2 � ��2 for �̂ � 1.
Hence the average velocity increases for �̂ � 1, whereas it
decreases for �̂ � 1 when the frequency is increased.14) To
ensure the validity of our elastic swimmer model, we assume
here that a low-Reynolds-number flow field is justified even
in the high-frequency regime �̂ � 1.

In Fig. 3, we plot the scaling functions F3 and F4 as
functions of �̂ for � ¼ 0:1, 1, and 10. As shown in Eq. (20),
the scaling functions F3ð�̂; �Þ and F4ð�̂; �Þ as well as
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F2ð�̂; �Þ characterize the frequency dependence of the
hydrodynamic interaction between two elastic swimmers.
Here, we have F3 � � and F4 � �3 for �̂ � 1, whereas
F3 � ��3 and F4 � ��1 for �̂ � 1. When the swimmers are
asymmetric such as when � ¼ 0:1 and 10, on the other hand,
there are intermediate regions where the scaling functions
behave as F3 � ��1 and F4 � �. Note that the velocity
difference also decreases in the high-frequency regime.

4. Two Symmetric Elastic Swimmers

Having discussed the case of two general (asymmetric)
elastic swimmers, we now discuss the case when both elastic
swimmers have symmetric structures, i.e., dA ¼ dB ¼ d and
KA ¼ KB (or � ¼ 1). In this case, the two average velocities
can be simply written as

VL ¼ V0 1 � 48‘3

7D3
sin2ð�=2Þ þ �̂

3 þ �̂2
sin�

� �� �
; ð25Þ

VR ¼ V0 1 � 48‘3

7D3
sin2ð�=2Þ � �̂

3 þ �̂2
sin�

� �� �
; ð26Þ

where the average velocity of a single elastic swimmer now
becomes14)

V0 ¼ 7d2a

24‘2�

3�̂ð3 þ �̂2Þ
9 þ 10�̂2 þ �̂4

sin�: ð27Þ

In Eqs. (25) and (26), the Ψ-independent terms of
sin2ð�=2Þ ¼ ð1 � cos�Þ=2 correspond to the passive terms
as before. In Fig. 4, we plot the Ψ-dependences of VL � V0

and VR � V0 when �̂ ¼ 1. We see that both VL and VR can
be larger than V0 for certain ranges of Ψ. For �̂ ¼ 1, as
shown in Fig. 4, we have VL > V0 for �0:927 < � < 0 and
VR > V0 for 0 < � < 0:927. However, as we have already
explained with Eq. (18) for the general asymmetric case, the
mean of VL and VR is always smaller than V0.

Furthermore, the velocity difference is now given by

VR � VL ¼ 4d2a‘

D3�

3�̂2

9 þ 10�̂2 þ �̂4
sin� sin�: ð28Þ

This is an interesting result because, for 0 < � < � and hence
V0 > 0, we have VL < VR for 0 < � < � or VL > VR for
�� < � < 0. In the former case, the interaction between the
two swimmers is repulsive and the distance between them
increases as they move, i.e., an unbound state. In the latter
case, on the other hand, the interaction is attractive and they
form a moving hydrodynamic bound state.

It is worthwhile noting that, in the case of �̂ � 1, the
average velocity in Eq. (27) behaves as V0 � �̂, whereas the
velocity difference in Eq. (28) scales as VR � VL � �̂2 for
two symmetric swimmers. Such a difference arises from the
presence of the active terms in Eqs. (9) and (10) [or the last
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Fig. 2. (Color online) Plots of the scaling functions (a) F1ð�̂; �Þ and
(b) F2ð�̂; �Þ defined in Eqs. (21) and (22), respectively, as functions of
�̂ ¼ �� for � ¼ KB=KA ¼ 0:1, 1, and 10. The numbers indicate the slope,
representing the exponent of the power-law behaviors.
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Fig. 3. (Color online) Plots of the scaling functions (a) F3ð�̂; �Þ and
(b) F4ð�̂; �Þ defined in Eqs. (23) and (24), respectively, as functions of
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representing the exponent of the power-law behaviors.

J. Phys. Soc. Jpn. 88, 054804 (2019) M. Kuroda et al.

054804-4 ©2019 The Physical Society of Japan

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by 首都大学東京 on 05/08/19



�̂-dependent terms in Eqs. (25) and (26)] owing to the
simultaneous motion of the two swimmers. According to
the above frequency dependences, the velocity difference
VR � VL (for finite D) becomes much smaller than V0 in
the limit of �̂ ! 0, and the two velocities turn out to be
identical, as shown later in Eq. (33). A similar argument
holds also for �̂ � 1 because we have V0 � �̂�1 and
VR � VL � �̂�2, the latter being the higher-order active
contribution.

5. Limit of Two NG Swimmers

The interaction between two asymmetric NG swimmers
can be recovered simply by taking the limit of �̂ ¼ �� ! 0.
This is because the spring constants KA and KB are infinitely
large and the characteristic time scale � ¼ 6��a=KA is
infinitely small for NG swimmers. In this limit, the two
average velocities defined by vL,R ¼ VL,Rð�̂ ! 0Þ become

vL ¼ v0 � a‘�

2D3

�
4dAdB sin

2ð�=2Þ sin�

� ðd2A � d2BÞ sin�
�
; ð29Þ

vR ¼ v0 � a‘�

2D3

�
4dAdB sin

2ð�=2Þ sin�

þ ðd2A � d2BÞ sin�
�
; ð30Þ

where the average velocity of a single NG swimmer is5)

v0 ¼ 7dAdBa�

24‘2
sin�: ð31Þ

Hence, the mean of vL and vR is again given by Eq. (18) in
which V0 is replaced by v0. As mentioned in the previous
section, both vL and vR are proportional to Ω. The velocity
difference, on the other hand, becomes

vR � vL ¼ � a‘�

D3
ðd2A � d2BÞ sin�: ð32Þ

This result indicates that the velocity difference depends not
only on Ψ but also on the relative magnitude between dA and
dB for asymmetric NG swimmers.

For symmetric NG swimmers, i.e., dA ¼ dB, vL and vR are
identical and are given by

vL ¼ vR ¼ v0 1 � 48‘3

7D3
sin2ð�=2Þ

� �
: ð33Þ

This result means that the average velocities vL and vR of the
two symmetric NG swimmers are always smaller than that
of an isolated NG swimmer, i.e., vL,R < v0. Hence, the
possibility of VL,R > V0 under certain conditions, as shown in
Eqs. (25) and (26), is a unique feature of two elastic
swimmers. Since vL ¼ vR for two symmetric NG swimmers,
the distance between them remains constant, which is in
contrast to the case of two symmetric elastic swimmers [see
Eq. (28)]. Such a difference arises from the internal relaxation
dynamics of the spheres in elastic swimmers, leading to
asymmetric motion of the two springs in each swimmer.

6. Summary and Discussion

We have investigated the hydrodynamic interaction
between two elastic swimmers consisting of three spheres
and two harmonic springs. In this model, the natural length of
each spring is assumed to undergo a prescribed cyclic change
in time, reflecting the internal states of an elastic swimmer.
For two interacting three-sphere microswimmers, we first
obtained their average velocities in terms of the distance D
between them [see Eqs. (9) and (10)]. Using these expres-
sions, we further obtained the explicit forms of the average
velocities of two identical elastic swimmers. The mean of the
two average velocities was shown to be always smaller than
that of a single elastic swimmer [see Eq. (18)]. On the other
hand, the velocity difference depends on the relative phase
difference Ψ between the two elastic swimmers [see
Eqs. (20) and (28)]. As a result, the swimming state of two
elastic swimmers can be either bound or unbound depending
on the relative phase difference.

In this paper, the hydrodynamic interaction was considered
only between two three-sphere microswimmers, although
there are several other model swimmers. For example, two
rigid helices neither attract nor repel each other when they
are rotating with zero phase difference,19) two puller-type
squirmers undergo a significant change in their orientations
after an encounter,20) and two spherical swimmers with
spatially confined circular trajectories cause either attractive
or repulsive interaction.21) Using the Quadroar model,
Mirzakhanloo et al. showed that two swimmers, which
generate flow fields mimicking that of Chlamydomonas
reinhardtii, exhibit very rich behaviors.22) The three-sphere
swimmer model in one-dimensional space is especially
suitable for analytical analysis because it is sufficient to
consider only the translational motion, and the tensorial
structure of the fluid motion can be neglected.

In our work, we have assumed that the two elastic three-
sphere swimmers are confined in one-dimensional space and
moving in the same direction. For two NG swimmers, on the
other hand, it was shown before that the interaction between
them depends on their relative orientation.10,12) The main
reason that we have investigated only the one-dimensional
case is that our primary interest is to analytically obtain
the frequency dependence of the hydrodynamic interaction
between two elastic swimmers, which was not studied before.
Another motivation to restrict our study to one-dimensional
space is to clarify how the correlation between a three-sphere
swimmer and a two-sphere system, as reported in Ref. 13, can
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Fig. 4. (Color online) Average velocities VL (black) and VR (red) of two
symmetric elastic swimmers with respect to V0 as a function of the relative
phase difference Ψ between them when �̂ ¼ 1. See Eqs. (25) and (26).
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be generalized for two three-sphere swimmers [see Eqs. (9)
and (10)]. The future study of the hydrodynamic interaction
between two elastic swimmers having different orientations
would require a numerical treatment. For instance, the
oscillatory motion reported in Refs. 10 and 12, would be
observable only when the space dimension is higher than one.

We have shown analytically that even the interaction
between two elastic microswimmers can be complicated,
depending on the relative displacement, structure, and phase
difference. Nevertheless, it is possible and straightforward to
increase the number of interacting swimmers as long as the
assumption of low-Reynolds-number hydrodynamics is valid
and the swimmers are confined in one-dimensional space. We
believe that the present analysis of the hydrodynamic
interaction between two swimmers will be useful in studying
the collective behavior of a large number of self-propelled
microswimmers immersed in a viscous fluid.23,24)
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Appendix A: Displacements uL
A, u

L
B, u

R
A, and uR

B

The four displacements uLA, uLB, uRA, and uRB of two
interacting elastic swimmers are given as follows:

uLA ¼ 1

9�2 þ 2ð2 þ � þ 2�2Þ�̂2 þ �̂4

� �½9�2 þ ð4 þ �Þ�̂2�dA cosð�tÞ
þ 2ð3�2 þ �̂2Þ�̂dA sinð�tÞ
� 2�ð1 þ �Þ�̂2dB cosð�t � �Þ
� �ð�3� þ �̂2Þ�̂dB sinð�t � �Þ	; ðA:1Þ

uLB ¼ 1

9�2 þ 2ð2 þ � þ 2�2Þ�̂2 þ �̂4

� ��2ð1 þ �Þ�̂2dA cosð�tÞ
þ ð3� � �̂2Þ�̂dA sinð�tÞ
þ �½9� þ ð1 þ 4�Þ�̂2�dB cosð�t � �Þ
þ 2�ð3 þ �̂2Þ�̂dB sinð�t � �Þ	; ðA:2Þ

uRA ¼ 1

9�2 þ 2ð2 þ � þ 2�2Þ�̂2 þ �̂4

� �½9�2 þ ð4 þ �Þ�̂2�dA cosð�t ��Þ
þ 2ð3�2 þ �̂2Þ�̂dA sinð�t ��Þ
� 2�ð1 þ �Þ�̂2dB cosð�t � � ��Þ
� �ð�3� þ �̂2Þ�̂dB sinð�t � � ��Þ	; ðA:3Þ

uRB ¼ 1

9�2 þ 2ð2 þ � þ 2�2Þ�̂2 þ �̂4

� ��2ð1 þ �Þ�̂2dA cosð�t ��Þ
þ ð3� � �̂2Þ�̂dA sinð�t ��Þ
þ �½9� þ ð1 þ 4�Þ�̂2�dB cosð�t � � ��Þ
þ 2�ð3 þ �̂2Þ�̂dB sinð�t � � ��Þ	: ðA:4Þ

Appendix B: Average Velocities VL and VR

The average velocities VL and VR of two interacting
elastic swimmers are given as follows:

VL ¼ V0 � a‘

D3�

�
2dAdB sin

2ð�=2ÞF1ð�̂; �Þ sin�
þ dAdBð1 þ �ÞF2ð�̂; �Þ sin� sin�

þ 4dAdBð1 � �ÞF2ð�̂; �Þ sin2ð�=2Þ cos�
þ 2ðd2A � d2B�ÞF2ð�̂; �Þ sin2ð�=2Þ

� 1

2
½3ðd2A � d2BÞF3ð�̂; �Þ

þ ðd2A � d2B�
2ÞF4ð�̂; �Þ� sin��

; ðB:1Þ

VR ¼ V0 � a‘

D3�

�
2dAdB sin

2ð�=2ÞF1ð�̂; �Þ sin�
� dAdBð1 þ �ÞF2ð�̂; �Þ sin� sin�

þ 4dAdBð1 � �ÞF2ð�̂; �Þ sin2ð�=2Þ cos�
þ 2ðd2A � d2B�ÞF2ð�̂; �Þ sin2ð�=2Þ

þ 1

2
½3ðd2A � d2BÞF3ð�̂; �Þ

þ ðd2A � d2B�
2ÞF4ð�̂; �Þ� sin��

; ðB:2Þ
where V0 is given by Eq. (19) and the four scaling functions
are given by Eqs. (21)–(24).
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