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Unbinding and preunbinding in surfactant solutions
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We propose models for the first-order unbinding transition of lyotropic lamellae in surfactant
solutions. The coupling between the surfactant volume fraction and the elastic degree of freedom is
considered so that the net attractive interaction between the surfactant molecules is enhanced. The
elastic degree of freedom can be either �i� a membrane elastic degree of freedom or �ii� a bulk elastic
degree of freedom. The phase behaviors of these two models are analyzed. For both cases, the
unbinding transition becomes first order when the coupling is strong enough. We determine the
associated preunbinding line which separates two lamellar phases having different repeat
distances. © 2006 American Institute of Physics. �DOI: 10.1063/1.2159475�
I. INTRODUCTION

One of the simplest structures found in mixtures of water
and surfactant is the lamellar phase in which the bilayers of
amphiphile form roughly parallel layers separated by water.
In some binary systems, it is known that the lamellar phase
can be swollen almost without limit. For example, in the
mixture of water and C12E5 �n-akylpolyglycolether�, the re-
peat distance of the lamellar phase can exceed 3000 Å.1 The
amount of surfactant molecules in the unbound phase is less
than 1%. The transition from the bound lamellar phase to the
unbound phase is generally called the “unbinding transition.”

The concept of the unbinding transition was theoretically
introduced by Lipowsky and Leibler.2 Whether this transition
is second order or first order is a subtle problem �see also
Sec. V�. Using the functional-renormalization-group tech-
niques, Lipowsky and Leibler showed that two membranes
unbind continuously in the presence of thermal fluctuations.
More precisely, the mean distance between the two mem-
branes, �, diverges as ���Tu−T�−� with ��1 and Tu is so
called the unbinding temperature.2

For a bulk of lamellar phase, the volume fraction of
surfactant, �, is inversely proportional to the mean distance
�. If the above prediction by Lipowsky and Leibler for two
membranes is applicable to the lamellar phase of an infinite
number of membranes, the difference in volume fraction be-
tween the bound �lamellar� and the unbound phases should
decrease linearly with Tu−T.3,4 In other words, the lower
boundary of the lamellar phase in the temperature-
concentration plane should be a straight line of nonzero
slope. Several mean-field theories for a lamellar phase were
constructed in such a way to reproduce the exact results.5–7

Unfortunately, the critical behavior is not observed in the
experimental phase diagram of surfactant solutions.1 For ex-
ample, the unbinding transition in the C12E5/water system is
fairly abrupt because the lower boundary of the lamellar
phase is almost horizontal.3,4 This means that � diverges dis-
continuously as the temperature is raised along the phase
boundary, i.e., a first-order transition. Similar behavior of the
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lamellar phase is observed for other types of nonionic sur-
factant such as C16E6 and C16E7.8,9 We show in Fig. 1 the
phase diagram of the C16E7/water binary system. �The lower
boundary of the lamellar phase in this figure is the horizontal
line at around 67 °C�. These experimental results suggest
that the unbinding transition in surfactant solutions may be
generally first order rather than second order.

In the present paper, we propose a possible mechanism
that leads to a discontinuous first-order unbinding transition
in surfactant solutions. Based on the mean-field theory by
Milner and Roux �MR�,6 we consider a phenomenological
coupling between the surfactant concentration and the other
elastic degree of freedom. Although the predictive power of
the MR theory is relatively weak compared to the functional-
renormalization-group theory, it provides us a useful model
to incorporate other degrees of freedom in a simple manner.
Two possibilities are considered; �i� a membrane elastic de-
gree of freedom and �ii� a bulk elastic degree of freedom. For
both cases, we assumed that the coupling affects the second
virial coefficient in such a way to enhance the net attractive
interaction. Analysis of our models shows that the unbinding
transition is second order when the coupling is weak, while it
becomes first order when the coupling is strong enough. We

FIG. 1. Phase diagram of the C16E7 /water system, redrawn from Fig. 1 in
Ref. 9. L�, lamellar phase; L1, isotropic micellar phase; V1, cubic phase; H1,

hexagonal phase; and Nc, nematic phase.
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also determine the associated preunbinding transition line
which separates the two lamellar phases of different
spacing.10 In particular, the coupling to the bulk elastic de-
gree of freedom leads to a three-phase coexistence.

In the next section, we briefly review the theories of
unbinding transitions. We put an emphasis on the MR theory
for a stack of lamellae in a surfactant solution, and confirm
that it predicts a second-order unbinding transition. In Secs.
III and IV, we extend the MR theory to take into account the
above mentioned coupling mechanism. We show that our
model exhibits a first-order unbinding transition when the
coupling is strong enough. Finally, we give some discussions
in the last section.

II. UNBINDING TRANSITION

Fluid bilayer membranes experience steric repulsion
arising from their reduced undulation entropy. The corre-
sponding interaction energy per unit area of the membrane
was considered by Helfrich,11

�s��� =
b�kBT�2

��� – ��2 , �1�

where kB is the Boltzmann constant, T the temperature, � the
bending rigidity, � the membrane thickness, and � the aver-
age distance between bilayers. Note that �–� represents the
intermembrane distance within which membranes can fluc-
tuate. The numerical prefactor b was calculated to be b
=3�2 /128 in the original paper,11 but subsequent various
simulation studies revealed that the value of b is smaller than
the above one by a factor of 2.12–14

In general, the combination of the above steric repulsion
and other direct microscopic interactions, such as long-
ranged van der Waals attraction and short-ranged hydration
repulsion, determines whether two membranes bind each
other or unbind between them.15 Lipowsky and Leibler
pointed out that solving a simple superposition of Eq. �1� and
other direct interactions at a mean-field level gives incorrect
�first-order� description of the unbinding transition.2 An ap-
propriate treatment of this problem using a functional
renormalization-group method predicted that the unbinding
transition should be second order �critical unbinding transi-
tion�.

Later, Milner and Roux proposed a theory for the un-
binding transition in a bulk of the lamellar phase following
the spirit of mean-field theory for polymers.6 In their treat-
ment, the Helfrich estimate of the entropy is taken into ac-
count accurately, whereas the other direct microscopic inter-
actions are approximately incorporated as a correction to the
hard-wall result for the second virial coefficient. The sug-
gested free energy per unit volume of a lamellar stack is

ĝMR��� = − kBT�̂�2 +
b�kBT�2

��3

�3

�1 − ��2 − 	̂� , �2�

where the membrane volume fraction �=� /�
0 cannot be
negative. In the above, �̂ is the correction to the hard-wall

result, and is calculated by
�̂ = −
1

2�2 � dr�1 − exp�− U��r�/kBT�� , �3�

where U��r� is the interaction between bits of membrane of
volume �. All the direct microscopic �van der Waals, electro-
static, and hydration� interactions are taken into account
through U��r�. The chemical potential, 	̂, is needed for the
conservation of the membrane volume fraction �. The factor
of �1−��−2 in the second term comes from the finite mem-
brane thickness �see Eq. �1��.16

It is convenient to rescale all the energy densities by
2b�kBT�2 / ���3�. Then Eq. �2� can be presented as

gMR��� = − ��2 +
�3

2�1 − ��2 − 	� . �4�

The corresponding phase diagrams in the �� ,�� and �� ,	�
planes are shown in Fig. 2. The volume fractions and chemi-
cal potentials for the binodal and the spinodal satisfy the
relations16

�bin =
�bin

�1 − �bin�3 , 	bin = −
�bin

2 �1 + �bin�
2�1 − �bin�3 , �5�

FIG. 2. The phase diagrams of the Milner and Roux model as a function of
�a� surfactant volume fraction � and virial coefficient �, and �b� surfactant
chemical-potential 	 and virial coefficient �. The solid line is a first-order
line, whereas the dashed line is a second-order one. The horizontal lines and
the dot-dashed line in �a� are tielines and the spinodal line, respectively. The
filled circle denotes the tricritical point �tcp�.
and
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�sp =
3�sp

2�1 − �sp�4 , 	sp =
�sp

2 ��sp
2 − 4�sp − 3�

2�1 − �sp�4 , �6�

respectively. When ��0 the binodal line separates between
the bound phase and the unbound phases where �=0. For
�
0, on the other hand, the complete unbinding of the
lamellae occurs at 	=0 upon swelling with excess water.17

These first-order and second-order lines are continuously
connected at the tricritical point �tcp�. If we denote �u as the
value of � at which the lamellae first unbind as a single
phase, we have here �u=�tcp=0. As we go down in � along
the binodal line in Fig. 2�a� �more precisely, infinitesimally
on the lamellar side of coexistence in Fig. 2�b�� and approach
�u from above, the repeat distance � increases continuously,
and the critical unbinding transition takes place. This is con-
sistent with the prediction by Lipowsky and Leibler.2

So far, the unbinding transition in a bulk of lamellar
phase has been discussed within the MR theory. Next, we
extend the MR theory by considering another degree of free-
dom which is coupled to the volume fraction of the surfac-
tant. Two models are proposed, �i� the coupling to the mem-
brane elastic degree of freedom �model A�, and �ii� the
coupling to the bulk elastic degree of freedom �model B�.

III. MODEL A

A. Free energy

As an example of the membrane elastic degree of free-
dom, we consider the interfacial area S per surfactant mol-
ecule. This quantity can fluctuate around the so-called satu-
rated state S=S* at which the effective surface tension
vanishes.18 If we define the fluctuation of the area by s= �S
−S*� /S*, the free energy per surfactant molecule is simply
given by19

fs�s� =
A

2
s2, �7�

where A�0 has the dimension of energy.
The proposed scaled free energy per unit volume of the

system is

gA��,s� = − ��2 +
�3

2�1 − ��2 − 	� − ��2s +
a

2
�s2, �8�

with the constraint �
0 as before and a= �A /S*��
����3 /2b�kBT�2�. The first three terms depend only on �,
and are identical to the right-hand side of Eq. �4�. The term
−��2s represents a phenomenological coupling between �
and s with a dimensionless coefficient ��0. It is assumed
here that the area fluctuation affects the bare virial coefficient
so that the binary interaction between the surfactant mol-
ecules is shifted. Note that �eff=�+�s can be regarded as an
effective virial coefficient of the system. Moreover, a con-
stant shift in s can always be adsorbed by redefining �. A
lower-order coupling term such as �s simply renormalizes �
after the minimization with respect to s, and is neglected
here. A somewhat similar coupling was proposed in Ref. 20
where the unbinding of a single mixed membrane was dis-

cussed.
Minimizing the free energy in Eq. �8� with respect to s
gives

s =
�

a
� . �9�

By substituting back this relation into Eq. �8�, the free energy
as a function of � only becomes

gA��� = − ��2 +
�3

2�1 − ��2 −
�2

2a
�3 − 	� . �10�

We then minimize gA��� with respect to � to get the equa-
tion of state. The two-phase region is obtained by the stan-
dard Maxwell construction.

The variable s can represent other physical quantities.
For example, s can be the nematic order parameter magni-
tude of the surfactant molecules. In liquid-crystal systems,
the microscopic interaction between two rodlike molecules
depends not only on their relative distance but also on their
relative orientation. Maier and Saupe considered that the in-
teraction potential is lowered as the molecules align each
other when they are located at a fixed distance.21 Such an
effect would lead to a virial coefficient which depends on the
orientational order, as expressed in Eq. �8�. In the lyotropic
systems, however, the orientational order should vanish
when �→0, and the last term in Eq. �8� is necessary. In fact,
a linear relation between the orientational order parameter s
and the volume fraction � �see Eq. �9�� has been indicated in
some NMR studies of nonionic surfactant solutions.22,23

B. Phase behavior

Here we discuss how the shape of the phase diagrams
changes as the value of the coupling strength �2 /a is
changed. �We do not change � and a independently.� De-
pending on the coupling strength, there are two different
types of phase behavior; �i� weak coupling regime ��2 /a

1� and �ii� strong coupling regime ��2 /a�1�. The corre-
sponding phase diagrams are shown in Figs. 3 and 4 for
�2 /a=0.5 and 5, respectively.

In the weak coupling case �2 /a
1 �see Fig. 3�, the
phase behavior is basically unchanged compared to that of
the MR model �see Fig. 2�. Here the binodal and the spinodal
are given by

�bin =
�bin

�1 − �bin�3 −
�2

a
�bin,

�11�

	bin = −
�bin

2 �1 + �bin�
2�1 − �bin�3 +

�2

2a
�bin

2 ,

and

�sp =
3�sp

2�1 − �sp�4 −
3�2

2a
�sp,

�12�

	sp =
�sp

2 ��sp
2 − 4�sp − 3�

2�1 − �sp�4 +
3�2

2a
�sp

2 ,

respectively. We immediately see that these relations reduce
2
to Eqs. �5� and �6� in the limit of � /a→0. The binodal
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separates between the lamellar phase and the excess water.
The tricritical point appears at �tcp=0 which again coincides
with the unbinding transition point; i.e., �u=�tcp=0. It should
be noted, however, that the two-phase region in Fig. 3�a� is
wider compared to that in Fig. 2�a�. This is due to the en-
hanced attractive interaction between the surfactant mol-
ecules.

In the strong coupling regime �2 /a�1 �see Fig. 4�, there
exists a first-order line separating two lamellar phases of dif-
ferent spacing �. This first-order line corresponds to the pre-
unbinding line and ends at an ordinary critical point �cp�.
The locus of the critical point can be calculated from the
conditions that both the second and the third derivatives of
gA��� vanish; gA� ���=gA����=0. This yields

�cp = −
6�cp

2

�1 − �cp�5 ,
�2

a
=

1 + 3�cp

�1 − �cp�5 . �13�

In Fig. 5, we have plotted �cp as a function of �2 /a.
As shown in Fig. 4�b�, the second-order line ends at the

critical end point �cep� on the first-order line. It is important
to note that the value of � at the critical end point is negative;
�cep
0. Since �u=�cep in the strong coupling regime, the
unbinding transition point is determined by the conditions

FIG. 3. The phase diagrams for �2 /a=0.5 in model A as a function of �a�
surfactant volume fraction � and virial coefficient �, and �b� surfactant
chemical-potential 	 and virial coefficient �. The same notation of different
lines is used as in Fig. 2. The filled circle denotes the tricritical point �tcp�.
fA���= fA� ���=0, where fA���=gA���+	�. Then we have
�u = −
�u

2

�1 − �u�3 ,
�2

a
=

1 + �u

�1 − �u�3 . �14�

The behavior of �u as a function of �2 /a is also plotted in
Fig. 5.

IV. MODEL B

A. Free energy

In the model B, we consider the bulk elastic degree of
freedom �. The suggested free energy per unit volume of the
system is

FIG. 4. The phase diagrams for �2 /a=5 in model A. The same notation of
different lines is used as in Fig. 2. The filled square and diamond indicate
the critical end point �cep� and critical point �cp�, respectively.

FIG. 5. The values of � at the critical point �cp �solid line� and the unbind-
ing transition point �u �dashed line� as a function of the coupling strength

2
� /a for model A.
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gB��,�� = − ��2 +
�3

2�1 − ��2 − 	� − ��2� +
c

2
�2, �15�

where � is a new dimensionless coupling constant and c
�0. The physical meaning of the coupling term −��2� is
similar to that in Eq. �8�. The only difference compared to
Eq. �8� is that the last term c�2 /2 does not vanish in the limit
of �→0. This is the reason why � is called the bulk elastic
degree of freedom. Such a variable could play a role, for
example, when not only the surfactant molecules but also the
solvent molecules can sustain a local orientational order
throughout the system. Although the above model may not
directly describe the binary surfactant solutions, it is worth
considering because of the conceptual difference and signifi-
cance.

By minimizing Eq. �15� first with respect to �, we obtain

� =
�

c
�2. �16�

Then the minimized free energy becomes

gB��� = − ��2 +
�3

2�1 − ��2 −
�2

2c
�4 − 	� . �17�

which contains a quartic term in � with a negative coeffi-
cient. This should be contrasted with the cubic term in Eq.
�10�, and leads to a somewhat different phase behavior.

B. Phase behavior

For the model B, there are three different regimes; �i�
weak coupling regime ��2 /c
5.36�, �ii� intermediate cou-
pling regime �5.36
�2 /c
6.75�, and �iii� strong coupling
regime ��2 /c�6.75�.

In the weak coupling regime �2 /c
5.36, the phase dia-
grams are similar to those obtained for the weak coupling
regime in the model A �see Fig. 3�. The binodal and the
spinodal are now given by

�bin =
�bin

�1 − �bin�3 −
3�2

2c
�bin

2 ,

�18�

	bin = −
�bin

2 �1 + �bin�
2�1 − �bin�3 +

�2

c
�bin

3 ,

and

�sp =
3�sp

2�1 − �sp�4 −
3�2

c
�sp

2 ,

�19�

	sp =
�sp

2 ��sp
2 − 4�sp − 3�

2�1 − �sp�4 +
4�2

c
�sp

3 ,

respectively.
In the intermediate coupling regime 5.36
�2 /c
6.75,

the phase behavior turns out to be qualitatively different, as
shown in Fig. 6 for �2 /c=6. In this regime, a lamellar-
lamellar coexisting region starts to appear. In addition, there
is another coexistence region between the lamellar phase
with a larger spacing �smaller �� and the excess water phase.

As seen in Fig. 6�b�, the corresponding first-order line, ends
at a tricritical point ��tcp=	tcp=0� from which a second-
order line emerges. Hence the unbinding transition takes
place at �u=�tcp=0 in this regime. As � is increased, we
reach a triple point �tr� at which the two lamellar phases and
the unbound phase coexist. Above the triple point, the first-
order line separates between the lamellar phase and the ex-
cess water. The locus of the critical point which appears for
�2 /c�5.36 is

�cp =
3�cp�1 − 5�cp�

4�1 − �cp�5 ,
�2

c
=

1 + 3�cp

4�cp�1 − �cp�5 . �20�

In Fig. 7, we have plotted �cp as a function of �2 /c. We see
that �cp is a decreasing function of �2 /c, and is limited to
�cp
0.068.

In the strong coupling regime �2 /c�6.75, the phase dia-
grams are similar to Fig. 4 of model A. The unbinding tran-
sition point is given by

�u =
�u�1 − 3�u�
4�1 − �u�3 ,

�2

c
=

1 + �u

2�u�1 − �u�3 . �21�

The behavior of �u as a function of �2 /c is plotted in Fig. 7
as well.

V. DISCUSSION

A few points merit further discussion. There are some
other possibilities which may cause the unbinding transition

15

FIG. 6. The phase diagrams for �2 /c=6 in model B. The same notation of
different lines is used as in Fig. 2. The filled circle, triangle, diamond indi-
cate the tricritical point �tcp�, triple point �tr�, critical point �cp�,
respectively.
to become a first-order one. First, Lipowsky argued that,
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even in the presence of fluctuations, the unbinding transition
of two membranes can be first order when the interaction
potential exhibits a sufficiently high potential barrier.24 We
encounter such a potential barrier when the membranes carry
electric charges. In this case, the direct interaction exhibits
an attractive potential well at small separations and a repul-
sive potential barrier at intermediate separations. For non-
ionic surfactant systems, however, the direct interaction po-
tential exhibits only a single minimum resulting from a
repulsive hydration and an attractive van der Waals interac-
tion.

Second, Lipowsky discussed that, for a stack of N mem-
branes, the amplitude of the critical singularities have a
strong N dependence so that the critical region for the
second-order transitions become very small.25 As a result, the
unbinding transition may be very abrupt in the large N limit.
This conjecture could explain, at least in part, the discontinu-
ous nature of the unbinding transition in the surfactant sys-
tems. However, the quantitative phase behavior for an infi-
nite stack has not yet been considered prior to our work.

Next, we refer to some other works which are related to
the present paper. Some years ago, a direct observation of a
discontinuous unbinding transition was reported for hydrated
multilamellar phospholipid membranes.26 Using x-ray reflec-
tivity techniques, they measured the repeat distance as well
as the fluctuation spectra. But since they did not observe an
increase in the repeat distance as the temperature is raised,
they concluded that the steric repulsion was not responsible
for the unbinding. Later the same systems were reinvesti-
gated by another group using grazing angle neutron-
scattering techniques.27 In contrast with the previous experi-
ment, they detected the increase of the repeat distance, which
was attributed to the enhancement of thermal fluctuations.
On the other hand, they did not observe the unbinding tran-
sition, and even questioned the results of Ref. 26. At the
moment, it is not clear whether multilamellar phospholipid
membranes exhibit the unbinding transition or not. However,
we expect that the coupling between the local lipid concen-
tration and the elastic degree of freedom will drive the un-
binding transition to be first order.

From theoretical viewpoints, Matsen showed that a

FIG. 7. The values of � at the critical point �cp �solid line� and the unbind-
ing transition point �u �dashed line� as a function of the coupling strength
�2 /c for model B.
blend of asymmetric diblock copolymers and homopolymers
exhibits an unbinding transition by using a self-consistent-
field theory.28,29 With the use of the same method, Janert and
Schick investigated a mixture of symmetric diblock copoly-
mers and homopolymers which have identical chain lengths.3

They demonstrated that the unbinding in this system is first
order, and located the preunbinding transition line. In their
later work, the channel of unbinding is shown to close as
soon as the homopolymer is made slightly larger than the
block.4 It should be noted, however, that these calculations
do not include the attractive long-ranged van der Waals in-
teraction, nor do they include the effect of fluctuations.

In this paper, we did not consider the presence of the
isotropic micellar phase, and argued only the phase separa-
tion between the bound and unbound phases. However, in the
experimental phase diagram shown in Fig. 1, the micellar
phase �denoted by L1� exists in the lower surfactant concen-
tration region. This micellar phase not only coexists with the
lamellar phase �denoted by L��, but also exhibits the phase
separation between a dilute and a dense micellar phases. In
order to explain all of these phase behaviors, one has to take
into account the free energy of the micellar phase and com-
pare it with that of the lamellar phase. Such an analysis as
well as other extensions of the present study are currently
under progress.

In summary, we have proposed a phenomenological
model which exhibits a first-order unbinding transition of
lamellae in surfactant solutions. The main idea is to take into
account the coupling effect between the surfactant volume
fraction and the other elastic degree of freedom. For the lat-
ter, we considered two cases, �i� a membrane elastic degree
of freedom or �ii� a bulk elastic degree of freedom. For both
models, the unbinding transition becomes discontinuous
when the coupling is strong enough. We also determined the
associated preunbinding line which separates the two lamel-
lar phases having different repeat distances.
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