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Abstract. The diffusion constant of
a

polymer chain1noving in
a

biomeInbrane is calcu-

lated within
a two-dimensional hydrodynamical model coupled to an ambient fluid through the

mornentuIn dissipation1nechanis1n. The obtained diffusion constant depends on the polymer
size logarithmically and algebraically for the weak and strong coupling lirnits~ respectively.

In a simple model of the diffusion of macromolecules such as proteins made of polymer chains in

a biomembrane, a lipid bilayer can be regarded as an infinitely thin sheet of viscous fluid. These

macromolecules move laterally in the fluid sheet as Brownian particles due to the forces exerted

by the surrounding lipid molecules. In general~ Brownian motion is uniquely characterized by a

diffusion constant D which is connected with the friction coefficient ( through the well-known

Einstein relation D
=

kBT/( (kB is the Boltzmann constant and T the temperature). As

given by the Stokes formula~ ( in a three-dimensional viscous fluid can be obtained from a

hydrodynamical argument ill.
However~ in a twc-dimensional fluid, such as the problem of a flow passing an infinitely

long moving cylinder, the hydrodynamics is not very simple. Once we neglect the convective

acceleration term in the Navier-Stokes equation, we face the Stokes paradox; the fluid which

follows the moving cylinder cannot be at rest at large distances from the cylinder ill. Even if the

convective acceleration term is partly included in the Oseen approximation~ we are
confronted

with the breakdown of the linear relation between the velocity of the cylinder and the drag
force acting on it [2].

Actually~ the Stokes paradox does not exist in real biomembranes. This is because a lipid
bilayer is not an isolated fluid but it is surrounded by'adjacent water. Hence the total mo-

mentum of the two-dimensional fluid membrane is not a conserved quantity and it leaks into

the surrounding water being
a three-dimensional fluid. Saffman and Delbrfick discussed the

motion of a cylinder of finite thickness in a membrane in the limit of large membrane viscosity
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by a singular perturbation technique [3~4] They predicted that the translational diffusion

constant of the cylinder depends logarithmically on its radius (see later Eq. (12) and Ref. [5]
for further arguments). The momentum transfer from the polar heads of the lipid molecules to

the water molecules would be purely of molecular nature. Although it is unclear whether such

a momentum leakage mechanism can be described by the hydrodynamic boundary condition

at the lipid-water interface~ the crucial point is the fact that the momentum in the membrane

dissipates.
On the basis of these considerations~ Izuyama and coworkers proposed a simplified version

of the twc-dimensional hydrodynamical model [6-9]. In their model~ the momentum leak is

simply represented by a phenomenological relaxation parameter T which should be inversely
proportional to the coupling strength between the membrane and the outer fluid. The linearized

hydrodynamic equations representing the total momentum decay are [8,9]

p°~~~~ ~~ ~v2v(r~ t) + grad p(r, t) + rv(r, t)
=

F(r~ t), iii

and the incompressibility condition div v(r~ t)
=

0. In the above~ v(r~ t) and p(r, t)
are the

velocity and pressure at space point r at time t~ the constants p and ~ are the density and

dynamic viscosity of the lipid membrane, respectively. F(r, t) represents any external force

acting on the membrane~ including Brownian forces. (Notice that both i7~ and grad are two-

dimensional operators If we start from this model~ the outer fluid can be excluded from our

consideration. Physically speaking, the term rv in equation iii introduces the screening effect

of the hydrodynamic interaction characterized by the screening length

t
=

l~/r)~/~i 12)

and hence equation (I) is free from the Stokes paradox. The same equation as equation (I)

was also proposed for a membrane associated with a rigid substrate [10] The corresponding
experiment has been done by the same group [11].

Browman dynamics of polymer chains in a p~re two-dimensional system was previously dis-

cussed by Muthukumar [12j. He showed that the mean square displacement of a monomeT

obeys the diffusive law and the square of the hydrodynamic screening length decays exponen-

tially at very high polymer concentrations. In this article~ we comment that the screening
effect does exist in real biomembranes even for the dilute polymer limit because of the above

reasons. We shall also give an explicit form of the diffusion constant of a single polymeT chain

using equation (1) and discuss its polymer size dependence.
The conformation of a single chain is represented by the set of (N + Ii position vectors

(Rn) e (Ro, .,RN). Following the book by Doi and Edwards [13j, we assume that the

typical hydrodynamic disturbances in the membrane relax much faster than the chain confor-

mation Within the preaveraging approximation, the equilibrium value of the mobility matrix

is expressed as
(Hnm)

=
h(n m)I, where denotes the average over the equilibrium

distribution function~ I is the unit tensor (I~a
=

d~p) and

h(n ml
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In the above, I is a unit vector parallel to k~ b is the effective bond length and Ei(-z) is the

exponential integral function defined by

Ei(-z)
=

/~ dt[.
(5)

In calculating equation (4)~ we have assumed that the distribution of rum =
Rn Rm is

Gaussian. For (
~ oo, equation (4) diverges as expected.

Then the diffusion constant of a polymer chain can be simply calculated as

~P
= =

/~
dn /~ dm h(n m)

kBT ( N~
0 0

=
[(l + ~~) (2 log z + ~) z~ exp(z~)Ei(-~~ ))

,

(6)
41r~ ~~

where ~ e (b~N/4(~ )~/~ e Rp If (Rp being the Gaussian polymer size) and ~ is Euler's constant

~ =
0.5772

..
This is the main result of this paper. Although the excluded volume effect was

taken into account m reference [12]~ we have not considered this problem here for the sake of

simplicity~ the main results would not be changed as far as results are presented in terms of

the polymer size Rp.
In the weak coupling limit (~ « l)~ where the rate of momentum dissipation to the sur-

rounding medium is small~ the diffusion constant equation (6) reduces to

~
"

~~ ~°~ ~p
~ ~) ~~~

In this limit, Dp depends only weakly (logarithmically)
on the polymer size. In the strong cou-

pling limit (~ m I), on the other hand, the momentum dissipates rapidly from the membrane

to the surrounding medium and equation (6) gives

~P
~

j~j
kBT 41rJ~

Rp~~'

neglecting a logarithmic correction. In contrast to the weak coupling limit, Dp depends now

strongly (algebraically) on Rp.
These results should be compared with the translational diffusion constant of a cylinder

(radius R~) moving in a two-dimensional fluid with momentum decay. According to the calcu-

lations in References [8-10]~ the result is given as

Dc I y~
~

KI(§)) ~~

(9j@
41rJ~ 4 Ko(Y) '

where y =
R~ If Ko (z) and Ki (z) are the modified Bessel functions of the second kind of order

zero and one, respectively. In the weak coupling limit iv < I), equation (9) becomes

~~
m

log ~~
~) (10)

kBT 47rll Rc

whereas in the strong coupling limit iv » I) one finds

)m ())~. III)
B 7rll

c
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Fig. 1. Plot of the diInensionless diffusion constants 47r~Dp/kBT (solid curve) and 47r~Dc/kBT
(dashed curve)

versus x =
Rp/( and y =

Rc/(, respectively.

The dimensionless diffusion constants 4~~Dp/kBT (Eq. (6)) and 41r~D~/kBT (Eq. (9))
are

plotted in Figure I ueTms z =
Rp If and g =

R~/(~ respectively.
Saffman and Delbriick considered a system where a membrane of dynamic viscosity ~ and

thickness h is surrounded by a three-dimensional fluid which has lower dynamic viscosity $
satisfying J~'« ~ [3]. It can be shown that their result for the diffusion constant of a cylinder

~ /J~h ~°~ l~' ~)
~~~~

coincides with equation (10) by putting

r=J~(~~) (13)
~ ~

apart from h in the denominator of equation (12). By inserting typical values for membranes

immersed in water~
J~ ct I P~ J~' ct 0.01 P~ h ct 5 nm and R~ ct 2 nm, one can estimate

y =
2R~J~'/hJ~ ct

10~~, which
is quite small supporting the assumption y « I. However, this

does not guarantee the weak coupling condition in actual biomembranes, since the momentum

leak arises from molecular processes in the strongly coupled head group and water molecules.

Finally by noticing that ?nm is independent of [rum[ in equation (3), h(n m) can be also

written as

~~'~ ~~ ~J~~~°~~~"
~~~~~~~' ~~~~

Then the diffusion constant is expressed as
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which corresponds to the twc-dimensional analog of the Kirkwood formula [13]. This expres-

sion is rigorous and leads to the same result as equation (6) after evaluating the average.

Acknowledgments

We would like to thank Mr. K. Miyazaki for a useful discussion. This work was supported
by a Grant-in-Aid for Scientific Research, Ministry of Education, Science and Culture, Japan
(06740320).

References

[1] Lalnb H.~ Hydrodynamics (Calnbridge University Press, 1975).

[2] Landau L D. and Lifshitz E. M., Fluid Mechanics (Pergammon Press~ 1987).

[3] Saffman P G. and Delbruck M.~ Proc Nat. Acad. Sci. 72 (1975) 3111.

[4] Saffman P. G., J. Fluid Mech. 73 (1976) 593.

[5] Hughes B. D., Pailthorpe B. A. and White L R., J. Flutd Mech. l10 (1981) 349

[6j Izuyalna T
,

Dynamics of Ordering Processes in Condensed Matter, S Komura and H Furukawa

Eds. (Plenuln Press, 1988) p. 505.

[7] Suzuki Y. Y and Izuyama T
,

J Phys. Sac Jpn 58 (1989) l104.

[8] Komura S and Izuyama T., Dynamics and Patterns in Complex Fluids A New Aspects of

Physics-Chemistry Interface
-,

A Onuki and K. Kawasaki Eds. (Springer, 1990) p.31.

[9] Seki K. and Kolnura S., Phys Rev Rev E 47 (1993) 2377.

[10] Evans E. and Sacklnann E, J. Fluid Mech. 194 (1988) 553.

[ll] Merkel R., Sackmann E. and Evans E
,

J. Phys. France 50 (1989) 1535.

[12] Muthukulnar M, J Chem. Phys 82 (1985) 5296

j13] Doi M. and Edwards S. F., The Theory of Polylner Dynamics (Clarendon Press, 1986).


