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Properties of dynamical shape fluctuations of spherically closed fluid membranes such as 
vesicles or microemulsion droplets are discussed. As a boundary condition at the interface, we 
employ the generalized Laplace's formula obtained by Zhong-can and Helfrich. We calculate 
the oscillation frequencies and the relaxation times of the membranes for a small deformation 
under the constraint of either constant area or constant volume. Furthermore, the diffusion 
coefficient of the droplet is estimated from the translational sideways mode. Our result does 
not depend on the form of the shape energy, in agreement with the recent prediction by 
Edwards and Schwartz. 

I. Introduction 

Properties of membranes with high flexibility are of current interest in 
connection with statistical mechanics of fluctuating surfaces, biophysics of 
membranes and also high-energy physics [1,2]. Such membranes are typically 
realized in microemulsion systems being homogeneous mixtures of oil, water 
and surfactants [3]. Since the surface tension of the membranes is zero or 
practically zero, the system can contain large internal interracial areas separat- 
ing oil and water. Alternatively, the deformation of the surface is governed 
mainly by the elastic bending energy [4]. Since the associated bending rigidity 
is known to be the order of kBT, membranes fluctuate due to thermal 
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excitations and hence one should handle this problem from the point of view of 
statistical mechanics. 

A similar system is also realized in spherically closed membranes of lipid 
bilayers called "vesicles" which are typically exemplified by red blood cells. 
This type of thin-walled fluid vesicles have received great attention as models 
of cell membranes. Shape transformation among various conformations can be 
caused by changing, e.g., the osmotic conditions, the temperature or the 
composition of the lipids [5-7]. These aspects of vesicles might be closely 
related to the physiological functions of biomembranes. Although vesicles 
differ from microemulsion droplets by several decades in length scale [8], the 
ruling physics behind them is expected to be the same. 

There have been several dynamical measurements of microemulsion droplets 
(neutron scattering [9]) and vesicles (fluorescence microscopy [10], video 
microscopy [11,12], reflection interference contrast microscopy [13]). Along 
with these experiments, some authors calculated the time correlation function 
of the out-of-plane displacement for spherically closed fluid membranes. 
Schneider, Jenkins and Webb were the first ones who obtained this quantity by 
using the stationary solutions of the Stokes equations which describe the 
surrounding incompressible fluids [10,14]. They required the so called "stick" 
boundary conditions and the balance of forces on the surface. Milner and 
Safran extended their results to the case of non-zero spontaneous curvature [8]. 
The important assumption in their calculations is that the total area is a 
conserved quantity as well as the total volume, both for vesicles and mi- 
croemulsion droplets. In order to incorporate these two constraints simulta- 
neously, they had to introduce the idea of "constant excess area" together with 
the unknown Lagrange multiplier. 

In fact, the appropriate constraint on these systems is still controversial. Van 
der Linden, Bedeaux and Borkovec insisted that only the area should be kept 
constant for vesicles, whereas only the volume constraint is necessary for 
microemulsion droplets since the supply and the loss of surfactants from the 
bulk phase would take place in a time scale short enough compared to the 
deformation of droplets [15]. Having focused on the microemulsion droplet 
case, namely, on the constant volume case, they obtained a dynamical correla- 
tion function different from previously mentioned results. Their calculation can 
be regarded as a generalization of the work by Mellema, Blom and Beekwilder 
who considered only finite surface tension but took into account the different 
viscosity inside and outside the droplet [16]. 

In this paper, we calculate the oscillation frequencies and the relaxation 
times of a spherically closed fluid membrane whose equilibrium shape is 
determined by the minimization of the following shape energy [5,7,17,18]: 
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Hf= ½K~dA(Cl +C2-Co)2+ Z~dA+~P f dV. (1.1) 

In the above, dA and dV are surface and volume elements, respectively, K the 
bending rigidity, c 1 and c 2 are two principal curvatures, c o the spontaneous 
curvature,  ~: the surface tension and Ap the (osmotic) pressure difference 

AP--=  e - P ' ,  (1 .2 )  

measured between outside and inside. (Here  and below we shall use the prime 
in order  to distinguish the quantities of the fluid inside from the corresponding 
quantities of the fluid outside.) The second and third terms either represent the 
constraints of constant area and volume or actual work. 

T h e  first point we would like to stress in this paper is that our results hold 
regardless of whether  area or volume is kept constant. This fact is based on the 
calculation of shape energy for fluid vesicles by Zhong-can and Helfrich [18]. 
Hence  the present results can be applied both to vesicles and microemulsion 
droplets in the sense that one of the constraints is incorporated. We consider 
that simultaneous inclusion of the both constraints needs separate considera- 
tions. Secondly, as conditions of balance of forces at the boundary,  we employ 
the generalized Laplace's formula given also by Zhong-can and Helfrich [18]. 
We believe that this choice is much simpler and straightforward as compared to 
the previously used boundary conditions [8,10,14,15]. Our calculation differs 
from that by van der Linden et al. at this stage. Thirdly, we estimate the 
diffusion coefficient of such a deformable spherically closed membrane accord- 
ing to the translational sideways excitation mode. In contrast to the result by 
van der Linden et al., our expression does not depend on the surface tension 
nor  on the bending rigidity. This is consistent with the recent papers on the 
stochastic dynamics of a deformable membrane by Edwards and Schwartz 
[19,20]. 

The outline of this article is as follows. First, after some mathematical 
definitions, the generalized Laplace's formula is extended to the case where the 
viscous forces are also taken into account. In section 3, we list the expressions 
of the variations of the shape energy (1.1) up the second order in terms of the 
out-of-plane displacement. In section 4, simple fluctuating hydrodynamics 
describing the surrounding fluids are summarized. In section 5, the expression 
of the oscillation frequencies in the absence of viscous dissipation are derived 
for small deformations.  Although our result is identical to that given by van der 
Linden et al., we have derived it in a somewhat different manner. In section 6, 
using the boundary conditions of section 1, we derive the formulae of the 
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relaxation times which are one of the main and new results in this paper. 
Brownian motion of a droplet is discussed in the last section. 

2. Shape equation and boundary condition 

First, we will collect some formulas from differential geometry. One can, in 
general,  parameterize a 2-dimensional membrane in 3-dimensional space by 
two real inner coordinates s = (s 1, s2). The shape of the membrane is then 
described by a 3-dimensional vector r = r(s). At  each point on the membrane,  
there are two tangent vectors r / =  8r /Os  i with i = 1, 2. The outward unit normal 
vector fi is perpendicular to these tangent vectors, i.e., fi = (r~ x r 2 ) / [ r  1 x rzl. 

All properties related to the intrinsic geometry of the membrane are 
expressed in terms of the metric tensor defined by 

gij = ri  " ri  • (2.1) 

Two important  quantities are the determinant and the inverse of the metric 
which will be denoted by 

g = det(gq)  and gq = ( g 6 )  - 1  (2.2) 

In addition, one has to consider the (extrinsic) curvature tensor given by 

h~ = f i . r~  = - f i i ' ~  , (2.3) 

with rij = 02r/OsiOs j. Similar to (2.2), the determinant and the inverse of the 
curvature tensor are denoted by 

h = det(h/i ) and h ii = (hq) -1 (2.4) 

The  mean curvature H and the Gaussian curvature K are calculated according 
to 

/ 4 =  _1(¢ ,  + ¢2) = ½g"hij, (2.5) 

and 

K =  ClC 2 = h / g ,  (2.6) 

respectively. 
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At  zero temperature,  the membrane is supposed to be in the (undeformed) 
reference state described by r = R .  Any deformed state of the membrane 
without any overhangs can then be parameterized by using the normal vector 
in the reference state, i.e., lq = (R 1 × R 2 ) / I R  ~ × R21, in the following way: 

r = R + l(s ], s 2, t) 1~. (2.7) 

Here the variable l(s 1, s 2, t) represents the transverse (out-of-plane) displace- 
ment field which can generally depend on time t. (Here we did not include the 
in-plane displacements which are irrelevant in the bending energy up to the 
second order in terms of displacement fields. In-plane displacements should be 
taken into account in describing polymerized elastic membranes [21].) 

By requiring that the first variation of the shape energy (1.1) vanishes for 
any infinitesimal displacement 1, Zhong-can and Helfrich obtained the me- 
chanical equilibrium condition of the membrane vesicle such that [18] 

A P - - 2 ~ H  + K(2H + Co)(2H 2 -  2 K -  Coil ) + 2KV2BH= 0 ,  (2.8) 

where V2~ is the Laplace-Beltrami operator on the surface defined by 

VZLB = 1 ij V ~  Oi(g ~ 0 / ) .  (2.9) 

(2.8) represents the balance of normal forces per unit membrane area and 
reduces to the well-known Laplace's formula when K = 0. (Recently a more 
general case has been obtained by Onuki and Kawasaki [22].) 

In order to construct the boundary condition that must be satisfied at the 
interface between two viscous fluids in motion, it is natural and straightforward 
to extend (2.8) in accordance with Landau and Lifshitz [23]. Hence in the 
presence of both surface tension and bending rigidity, the equality of the forces 
on the surface of each fluid can be written as 

(P - P ' ) n ,  - (%8 - °",t3)n~ 

+ [ - 2 ~ H  + K(2H + Co) (2H 2 - 2 K  - Coil  ) + 2KVZsH]n,~ = 0 ,  
(2.10) 

where n~ are components of the normal vector and o-~t ~ is the viscous stress 
tensor given in section 4. (We shall use Greek indices for the range 1, 2 and 3.) 
(2.10) will be used in sections 5 and 6. 
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3 .  S p h e r i c a l l y  c l o s e d  f lu id  m e m b r a n e s  

Now, consider a spherically closed fluid membrane of radius r o with internal 
coordinates (s 1, s 2) = (0, ok). As a local basis of 3-dimensional space, we 
introduce three unit vectors: 

(s,nOcos:) ,' cos O :) 
e r  = sin 0 sin , eo = ~ cos 0 sin , ~+ = cos ~b ] . 

cos0 \ - s i n 0  0 / 
(3.1) 

With these notations, the reference state is described by 

R = roe  r , (3.2) 

and a slightly deformed sphere can be represented by (see (2.7)) 

r = R + l(0, dp, t) N = [r o + l(0, oh, t)]~ r . (3.3) 

The undeformed reference sphere (3.2) is always a solution of the equilibrium 
shape condition (2.8) if the next relation holds among the parameters [18]: 

A P r  3 + 2 ~ r ~  + KCoro(cor o -  2) = 0 .  (3.4) 

This relation is called the "capillarity condition" [15]. 
When a spherical membrane deforms slightly without any overhangs accord- 

ing to (3.3), a straightforward calculation up to the first order in terms of the 
out-of-plane displacement l yields the following expression for the normal 
vector: 

1 0 l  1 3l 
f i ~ e r - - - - - e 0  ~ ,  (3.5) 

r o 00 r 0s in0 0~b 

and for the mean curvature H and the Gaussian curvature K: 

_ _ 1 2 ) l ( 0 ,  ~b, t) ( 3 . 6 )  2 H ~  2 + - 5 ( 2 + V ±  
r o  r 0 

and 

K ~- 1 1 (2 + V])/(0, ¢, t) (3.7) 
2 3 

ro r0 

respectively, where 
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1 O / s in0  0 \  ( ) 1 02 V 2 - 
sin 0 00 0-0 + sin2~ 04) 2" (3.8) 

It is convenient to expand the function l(O, 4), t) in terms of the spherical 
harmonics Y,m(O, oh), 

l(O, d), t )= ~ l,m(t ) Y,m(O, 4>). (3.9) 
n , r t l  

As usual, we have l,*m(t ) = (--1)mQ_m(t) in order to ensure that the displace- 
ment field is real (the asterisk denotes the complex conjugate value) and the 
summation is over n = 0, 1, 2 , . . .  and Iml ~< n. Hereafter,  the well-known 
relation 

vZ Y, m(O, 4>) = - n ( n  + 1)Y~m(O, 4)) (3.10) 

will be used frequently. 
So far, the variations of the bending energy Hb, the area A and the volume 

V for spherical parameterization have been calculated by several authors 
[8,10,18,24,25]. Up to the second order in terms of l,m, they can be summar- 
ized as 

8Hb -~ ~ KCoro(Cor o -- 2) l°-~° 
r o 

+ ½K ~'~ {[n(n + 1)12 (2 + 2Cor o ½ 2 2 2 2 [/n,~[ 2 - - Coro)n(n + 1) + Coro} - , 
n , m  r 0 

(3.11) 

8 ~ d A  = 2X/-4--~ ro/oo + ~ [1 + ln(n + 1)]]l.m] 2 , (3.12) 
n , m  

and 

8 f  2 2 dV~- X/-4--~ roloo + ro ~, II.ml , (3.13) 
n . m  

respectively. Upon  adding all these expressions in accordance with the shape 
energy (1.1), the total second variation turns out to be 

8Hf--SHb +.~ 8 ~ d A  + b P S  f dV 

_ 1 ~ (n - 1)(n + 2){K[n(n + 1) -- Cor0] -- ~Ap1 ro }3 II, 2[ 2 
,,,m r o 

= ½ Z ( n -  1)(n + 2){•ro 2 + K[n(n + 1 ) - 2 C o r  o + ½c2r2]} 
n , m  r 0 

(3.14) 
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Here the capillarity condition (3.4) has been used to obtain the last identity 
and all the first order terms have cancelled each other as they should. Since 
(3.14) depends only on n but not on m, the shape energy has (2n + 1)-fold 
degeneracy. Notice that we have not incorporated any constraints at this stage. 

Next we consider the case where either the area or the volume is kept 
constant. The constraint of constant volume can be easily incorporated by 
using the expression (3.13) for the volume. It then follows from 8V = 0 that 

V ~  100 ~ - ~] II"ml2 (3.15) 
n,m r 0 

Hence the constant volume constraint leads to the elimination of the/00-terms. 
Inserting this into (3.11) and (3.12) and forming the variation 

~Hr = ~H b + Z ~ d A ,  (3.16) 

we obtain 

1 2 21a ~Hf ~ ½ (rt -- 1)(n + 2){•ro z + K[n(n + 1) - 2c0r o + ~Cor0l ~ - 
n,m r0  

(3.17) 

where the only change compared to (3.14) is the prime on the summation 
indicating that (n, m) = (0, 0) is excluded. This expression is identical to that 
by van der Linden et al. [15] (our spontaneous curvature differs in sign). 

Likewise, the constraint of constant area can be incorporated by requiring 
6A = 0, namely, 

V~-~ roloo ~- -½ E [1 + ½n(n + 1 ) ] l l . m l  2 . 
n , m  

(3.18) 

By eliminating the 100-terms, one finds 

~ H f  = ~ H  b + A P  ~ f d V  (3.19) 

is identical to (3.17) again. Therefore (3.17) holds generally regardless of 
whether volume or area is kept constant. In the following sections, we shall 
consider the case (3.17) where one of the constraints is included. Although we 
use the word "microemulsion droplets" in the following, the readers are 
advised to replace it also by "vesicles". 
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4. Hydrodynamic equations 

In describing the motion of the surrounding fluids, we assumed that both the 
inside and the outside fluids are incompressible. The basic hydrodynamical 
equations of mass conservation (continuity equation) and momentum conserva- 
tion (Navier-Stokes equation) are 

div v = 0 ,  (4.1) 

(0o ) 
P -~- + (v .  grad)v -- - g r a d  P + rlVZe, (4.2) 

respectively. Here p denotes the density of the fluid, v the velocity, r I the 
dynamic viscosity. In (4.2), we have used the fact that the viscous stress tensor 
for an incompressible fluid is 

{ Ov,~ Ovt3 ~ 
°"~t~ = ~7~, Oxt3 + Ox~,/ (4.3) 

(4.3) will be used later to apply the boundary condition (2.10). 
When we are interested only in the fluctuating properties, the above 

equations can be linearized by putting 

P = Po + ~P,  P = Po + ~ P ,  v = ~v ,  (4.4) 

where Po, Po stand for the values in equilibrium and ~p, ~P, 8v are their 
variations. Retaining in (4.2) only up to the first order terms, we obtain 

a u  

Po ~ -  = - g r a d  ~P + ~TVzv. (4.5) 

In the above equations, it is convenient to decompose the velocity field into 
irrotational (longitudinal) and rotational (transverse) parts according to 

V = V ~ + V t , (4.6) 

div U t =  O, rot v e = O. (4.7) 

Obviously, only the longitudinal part remains in (4.1); 

div o e = 0 ,  (4.8) 

while (4.5) splits into two equations: 
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O v t  '0 V2vt, (4.9) 
3t P0 

Ov e 
Po Ot - gradgP.  (4.10) 

Hereafter we will be concerned only with the longitudinal part of the velocity 
o e which will be denoted simply by v. 

Like any vector field having zero rotation, it is advantageous to introduce the 
velocity potential 6 which provides the velocity o through 

v = grad 6 -  (4.11) 

Substituting (4.11) into (4.8) and (4.10) yields 

V21// = 0,  (4.12) 

06 (4.13) 8 P = - P o  O t '  

respectively, where the constant term has been neglected in (4.13). Upon 
neglecting the inertial term in (4.2), the incompressible condition (4.1) implies 
that the pressure field also satisfies Laplace's equation 

V 2 8P = O. (4.14) 

5. Undamped oscillations 

In this section, we determine the characteristic oscillation frequency of a 
spherically closed membrane in the absence of any viscous damping effect. The 
system is regarded as an infinite set of uncoupled harmonic oscillators; each 
oscillator identified by the set of (n, m). Then the equation of motion of the 
out-of-plane displacement lnm(t ) becomes [15] 

= 2 

--09 nmlnm(t ) , (5.1) 

where the dot indicates the derivative with respect to time. Our purpose is to 
express the oscillation frequency OOnm in terms of surface tension and bending 
rigidity. In view of (5.1), we write lnm(t) = lnm e i%mt in (3.9), yielding 

l(O, eh, t) = 2 lnmYnm(O, qb) e i~°m' . (5.2) 
n , m  
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(As mentioned in section 3, we exclude (n, m) = (0, 0) due to the presence of 
the constraint.) 

Since both inside and outside fluids are assumed to be incompressible, the 
respective velocity potentials satisfy Laplace's equation (4.12). Hence, as given 
by Lamb [15,26], they can be expanded in terms of the solid spherical 
harmonics: 

tp'(r, t) = ~dnm Ynm(O, ~t~) e it°hint , (5.3) 
n , m  

~O(r,,) ~ ~nm(rO) n+l = Ynm(O, ~)) e it°nmt . (5 .4 )  
n , m  \ r /  

In the absence of a dissipation mechanism due to the viscous damping effect, 
the so called "slip" boundary condition is employed here [15]. This condition 
requires the continuity of the radial component of the velocity, i.e., v r = 
O~/Or = Ol/Ot at the boundary. Since the velocity field is linear in the displace- 
ment amplitude l, one can impose the boundary condition at r = r 0. According- 
ly, the first boundary condition follows from (5.3) and (5.4) as 

or(r = r° ) = __1 ~ Ht~tlnmYnrn(O, ~)) eiOJnm t 
r 0 n , m  

_ 1 ~ (n + 1)~nmYnm(O , tip) e i°~mt 
r 0 n,m 

= ~ i°)nmlnmYnm(O, 6 ) e i % m t  , 
n , m  

(5.5) 

where we took the time derivative of (5.2) to obtain the last equation. By 
comparing the coefficients of the spherical harmonics, one finds 

n~rnm = - - ( n  + 1)t~n m = irotOnmlnm . (5.6) 

The second boundary conditions stems from the balance of forces on the 
surface. In the absence of viscous forces, the boundary condition (2.10) 
reduces to the generalized Laplace's formula (2.8). By noticing that the 
Laplace-Beltrami operator is now the usual Laplacian operator on the sphere 

V~ s V~ 
- 2 ,  ( 5 . 7 )  

r0 

and substituting (3.6) and (3.7) into (2.8), the force balance for the radial part 
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up to the first o rde r  in terms of  l(0, 4~, t) turns out  to be 

~ p _ ~ p , _  _l [ x r 2 _ K ( v Z  +2coro _ ~Coro)]( 2 1 2 2  + VZ)l(O, qa, t ) = O ,  (5.8) 
r o  

at r = r o. In  the above ,  we used the fact that  n r ~ 1 and all the constant  terms 

have  cancel led each o ther  because of  the capillarity condi t ion (3.4). I f  we 

replace  ~P and ~P '  with the use of  (4.13),  one  obtains 

Po -~- P ;  + 1 [~r2  ° _ K(V2 + 2Coro 1 2 2 = - - -  - ~Cor0)](2+ 72)1(0, qS, t) 0 ,  
F 0 

(5.9) 

at r = r o. By substi tut ing (5 .2 ) - (5 .4 )  into (5.9) and compar ing  the coefficients 
o f  the  spherical  harmonics  as before ,  we have 

• ¢ t 

iPo O0,m On,~ -- lP0%m 0,m 

1 1 2 2 
= ~ ( n -  1)(n + 2 ) { X r ~  + K[n(n + 1 ) - 2 C o r  o + 5Corol}l.m . (5.10) 

FO 

(5.6)  and (5.10) are sufficient to obta in  the oscillation f requency  O.)nm which 
is 

1 2 21a 2 1 (n - 1)(n + 2 ){~r~  + K[n(n + 1) - 2Cor 0 + ~CoroD , (5.11) O)nm - -  5 
P, ro 

with 

! 

= P_20+ Po (5.12) 
P" n n +-----]- " 

W h e n  K = 0, (5.11) reduces  to the old expression first given by Rayle igh  a long 
t ime ago [27]. (5.11) is also identical to the result by  van der  L inden ,  Bedeaux  

and B o r k o v e c  [15]. 
Since the express ion (5.11) vanishes for  n = 1, the smallest possible fre- 

quency  of  oscillations cor responds  to n = 2, and is 

[Xr  2 + K(6--2COr o + 1 
4 = C0ro)] . 2  z (5.13) 

¢'Omin (O~/2 + po/3)r~ 
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Furthermore, the total variation of the shape energy (3.17) can be simply 
expressed in terms of OJ, m as 

t~nf = 1 ~ 3 z , ,z (5.14) Dnro°Jnm tnm • 
n,m 

With the use of equipartition theorem (or straightforward Gaussian integra- 
tions), the fluctuation amplitudes are easily estimated: 

( i t °ml  2)  - _ _  

kBT 
3 2 

PnrOO)nm 

2 2 ( n -  1)(n + 2){Zr 2 + K[n(n + 1 / - 2 c o r  o + Coro/2]} 
(5.15) 

where k B is the Boltzmann constant and T is the temperature. It is important to 
realize that (5.15) is valid only for n/> 2, since n = 1 corresponds to the simple 
translational sideways displacement of the droplet as a whole requiring no 
energy. This mode is essentially related to the Brownian motion of the droplet 
and will be discussed in detail in the last section. 

6. Overdamped oscillations 

In the previous section, the frictional forces due to the viscous damping 
effect have been neglected. The inclusion of viscous forces introduces the 
damping term in the equation of motion (5.1) in such a way that [15] 

~mn(t) = __Tnmlnm(t) 2 
- tOnmlnm(l). (6.1) 

In this section, we consider the case where the motion of the membrane 
surface is overdamped. Then the restoring forces of the membrane balance 
with the viscous resistance forces due to the surrounding fluid after a short 
initial period of motion. In such a case, (6.1) reduces to 

] n m ( t ) _  1 l .m( t )  ' (6.2)  
rnm 

where 

2 
1 £Onm 

,l.nm )tnm (6.3)  
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From (6.2), the time dependence of l ,m(t  ) is now given by l ,m(t ) = l,m e - ' / '° ' .  
This leads to the expansion of l(O, 49, t) in the form of 

l(O} 49, t )  = ~ lnmYnm(O , ~)) e - '/*'m . (6.4) 
tl,m 

By using the results of the fluctuation amplitudes (5.15), the time correlation 
function is simply provided by 

( lnrn( t )  lnm(O)* ) -- k B Z  --t/.rnm 3 2 e 
pn?'OOJ nm 

k Bzr~ e t/,,,. 
2 2 ( n -  1)(n + 2){2r 2 + K[n(n + 1 ) -  2cor o + Coro/2]} 

(6.5) 

Upon taking the viscous effect into account, the motion of the surrounding 
fluid is described by the "creeping flow" neglecting the inertial term at low 
Reynolds number (Stokes equation), 

r/V2v = grad P ,  (6.6) 

together with the incompressibility condition 

div v = 0. (6.7) 

As has been already discussed by several authors [8,10,15], we are interested in 
the irrotational solutions, which simplifies the problem to some extent. The 
solution of (6.6) and (6.7) in spherical coordinates can be constructed by the 
two scalar functions describing inside the fluid, q/(r ,  t), P ' (r ,  t), and by those 
outside the fluid, ~b(r, t), P(r,  t). Since all of these functions satisfy Laplace's 
equation (see (4.12) and (4.14)), they can be expanded in terms of solid 
spherical harmonics as before: 

,~ , / r ~" e_,/,,,m tp'(r, t) = m q & ' ~ )  Y"m(O' 49) , (6.8) 

° 

r r e_t/~, m P ' (r ,  t) = P,,~ Y,m(O, 49) , (6.9) 

and 

~b(r, t) = .,,. ~b.,. r Y.m(O, 49) e -'/~"r" , (6.1o) 
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r0) n+l 
P(r, t) = • P.., r Y.m(O, 6)  e - ' /"" (6.11) 

n,m 

(For the pressure fields P' and P, we include (n, m) = (0, 0) terms because of 
the presence of the non-fluctuating hydrostatic pressure.) 

According to the general stationary solution of the Stokes equation given by 
Lamb [26], the velocity field inside of the droplet is written as [28] 

~ (  n + 3  , 2  
vt(r, t) = n,m Otnm grad + 2r/'(n + 1)(2n + 3) P~mr grad 

_ n , r e - ' / " ~  
~'(n + 1)(2n + 3) e .mr L~(O, 4)) , (6.12) 

whereas the corresponding solution for the outside is provided by 

o ( r ,  t)  = ~ (0nm grad t/,m 
n - 2  2 

2r/n(2n - 1) Pnmr grad 

n + 1 \ [ r o  \"+1 
q- T/n(-2n -~ 1) e n m r ) ~ r )  Ynm(O' q~) e-t/'~"m" (6.13) 

In (6.12) and (6.13), the gradient operators also act on the solid spherical 
harmonics outside the square bracket. For the purpose of writing down the 
boundary conditions explicitly, we should keep in mind that the gradient 
operator in spherical coordinates takes the form 

O 1 0 1 0 
grad = er ~rr + e0 - + e6 r ~ r sin 0 O~b 

(6.14) 

In contrast to the previous section, the so called "stick" boundary condition 
is used here as in van der Linden et al. [15]. This condition requires that both 
the velocity of the membrane and the velocity of the fluid on each side of the 
membrane are equal to Or/Ot (see (3.3)). The first two boundary conditions 
come from the continuity of the velocity field. In the ~r-direction, this is 
written as 

~ (  , n 2 , )ynm(O, qb) e-t/~,,, vr(r = r° ) = lro n,m n6nm + 2r/'(2n + 3) r°Pnm 

_ 1 ~ (  n + l  2 )  e--t/rn,n 
r0 ,.m (n + 1)~0,,, 2r/~n Z 1) r°Pnm Ynm(O' 6)  

= ~ --1 lnmYnm(O ' q~)e_,,¢,,, ' (6.15) 
n ,m "l"nm 
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where the last equation has been obtained by taking the time derivative of 
(6.4). Likewise, the continuity of the velocity in the ~0-direction yields 

Vo(r=ro)= 1- ~ ( ~' nm 
r 0 n,m 

m 
r 0 n,m 

n + 3  2 t ) O Y n m  
+ 2~/'(n + l )(2n + 3) r°Pnm - - ~  

n - 2 2 ) 3 Ynm --t/~.m 
2r~n-(-2-n Z 1) r°P"m ~ e 

e-t/~'.m 

(6.16) 

The continuity condition in the ~6-direction results in the same condition as 
(6.16). From (6.15) and (6.16), we obtain the following relations among 
coefficients of the spherical harmonics: 

n + l  2 
, n 2 , - ( n  + 1)~,, m + 2T/~n ---- 1) r°Pnm n6"m + 2r/'(2n + 3) r°P"'~ = 

- r° ln~ ( 6 . 1 7 )  
%m 

and 

, n + 3  2 , n - 2  2 ( 6 . 1 8 )  
~ltnm -~- 2~7'(n + 1)(2n + 3) r°Pnm = &n,n 2~Tn(2n - 1) r°Pnm ' 

a t  r -- r 0. 
Additional sets of boundary conditions follow from the balance of forces on 

the membrane. Up to the first order in terms of the amplitudes I, the force 
balance in the ~r-direction is given by 

( S p _  8 p , ) _  (2r/ OG 0v '~  
0 7  - 2rf O r /  

1 [,Vr 2 K(V2+2c0r  ° , 22 - - ~Cor0)l(2 + V2)/(0, 6, t) = 0 ,  
r 0  

(6.19) 

at r = r 0. Like in eq. (5.8), the fact that nr ~ 1 and the capillarity condition 
(3.4) has been used. In fact, (6.19) differs from (5.8) only due to the viscous 
terms. Likewise, the force balance in the ~0-direction yields 

( P o - / ' ~ ) n o -  n r O0 + Or -~7 r - ~  + Or 

(2  Co ) 
+ y ( 2 -  coro) n o = 0 ,  (6.20) 

r o 

at r = r o. Notice that n o ~ -(1/ro)(Ol/O0) which is linear in I. Again the terms 
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proportional to n o cancel each other because of the capillarity condition (3.4). 
After  substituting the expressions for the velocity and the pressure fields into 
(6.19) and (6.20), the relations between the coefficients for n/> 1 are given by 

' n(n + 1) , )  
P ' , , -  2 r f n ( n - 1 )  6 ~ +  2 n + 3  P,m 

- -  Pnm -~ (2"q(n + 1)(n + 2) qj"'~2 n(n + 1) P,m) 
r o 2n - 1 

1 1c2r21~ l = --~ (n - 1)(n + 2){.Vro 2 + K[n(n + 1) - 2Cor 0 + ~ o o,, ,m,  
r0 

(6.2l)  

and 

t 

2r/'(n - 1) ~b 2 + n(n  + 2) p ,  
r o (n + 1)(2n + 3) n m  

+ 2r/(n + 2) ff~'' (n - 1)(n + 1) 
r 2 n (2n  - 1) Pnm = 0.  (6.22) 

Combining (6.17), (6.18), (6.21) and (6.22), one can express q/rim, P'm, qtnm 
and P,m in terms of l,m. After some calculations, the relaxation time Tnm in 
(6.2) turns out to be 

1 1 

"l'nm ~Tr 3 

(n - 1)n(n + 1)(n + 2)(2n + 1)(E + 1) 

r/r o [(2n 2 + 4 n + 3 ) E + 2 n ( n + 2 ) l [ 2 ( n  2 - 1 ) E + 2 n  2 + 1 ]  

1 2 2 
× {2fr 2 + K[n(n + 1 ) -  2Cor 0 + ~c0r0]}, (6.23) 

with E---r/'hT. For K = 0, the result (6.23) reduces to that given by Mellma, 
Blom and Beekwilder [16]. This relaxation time is quite similar to that 
obtained by Lisy [29], at least concerning the dependence on n, but it still 
differs in the prefactor. 

Since OOnm has already been obtained in the previous section, one can 
immediately obtain the frictional coefficient %,, via (6.3) as 

2 
~ n m  = "i'nm tO n m  

r/ [ ( 2 n  2 + 4 n  + 3 ) E  + 2n(n + 2 ) ] [ 2 ( n  2 - 1 ) E  + 2 n  2 + 11 
2 

Pn r0 n(n  + 1)(2n + 1)(E + 1) 
(6.24) 

It is important to note that our result for the frictional coefficient depends only 
on the properties of the surrounding fluids but not on the membrane prop- 
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erties, such as the surface tension or the bending rigidity. This point is in sharp 
contrast  to the result by van der Linden et al. [15]. 

7. Diffusion coefficient 

In this section, we estimate the diffusion coefficient of a deformable droplet. 
The  simplest way is to use the expression of the frictional coefficient with 

respect to the translational motion identified with the n = 1 mode. Since (6.24) 
corresponds to the frictional coefficient per unit mass, the total frictional 
coefficient F can be effectively obtained by [15] 

3 E + 2  F = ( 4  3 (7.1) 3"rrPn=lr°)Y"=l'm = 2"rr~?r° E + 1 

Hence  the diffusion coefficient D can be calculated through Einstein's relation 

a s  

kBT kBT rl + 7 l' 
D -  F - 2rrr/r 0 277 +3r / '  ' (7.2) 

which coincides with the old result by Hadamard [30] and Rybczynski [31], 
who did not take into account the deformation of the droplet. When r / ' =  r/, 
(7.2) reduces to 

D -  kBT (7.3) 
57r.0r ° • 

As discussed by Landau and Lifshitz [23], in the case of r/'--~ ~ (corresponding 
to a solid sphere), (7.2) becomes the well-known Stokes formula 

D -  kBT (7.4) 
6~.qr ° " 

In the opposite limit T/'---~ 0 (corresponding to a gas bubble), (7.2) reduces to 

D -  kBT (7.5) 
4~rr/r 0 

In view of (7.2), one can conclude that the form of the shape energy is 
irrelevant to the diffusion coefficient as far as the deformation of the droplet is 
small enough. A more general case has been recently discussed by Edwards 
and Schwartz in their theory of stochastic dynamics of a deformable membrane 
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[19,20]. In fact, (7.2) can be also derived by following their arguments. In the 
absence of thermal agitation, the equation for [nm should be of the following 
form: 

o nf 
i n m = - K n  aln_m 

I 2 2 , . l n  2 = - K , ( n -  1)(n + 2 ) { ~ r ~  + K[n(n + 1 ) -  2Cor o + ~Corol ) = . 
ro 

(7.6) 

Combining this result with our result of Tnm (see (6.23)), one concludes that 

1 n(n + 1)(2n + 1)(E + 1) 
K, = - -  (7.7) 

nro [(2n 2 + 4n + 3 )E  + 2n(n + 2)][2(n 2 - 1)E + 2n 2 + 1] 

When E = 1 (~7' = ~7), (7.7) reduces to 

K,  = 2 n(n + 1) (7.8) 
r/r o (2n - 1)(2n + 1)(2n + 3) ' 

as given by Edwards and Schwartz [20] who considered only the surface tension 
in the shape energy. One of their important results is that the diffusion 
coefficient of the deformable droplet is identified with the n = 1 mode as 

D = k B T (  3 K,=1) .  (7.9) 

Substituting (7.7) into (7.9) yields (7.2). 
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