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A Based on Brazovskii’s theory for fluctuation-induced first-order transition, we propose a
dynamical model of ordered phases such as lamellar and hexagonal phases. Analysis of the
suggested nonlinear equations shows that the system is bistable when the temperature is small
enough. Close to the end point of the stable branch, the system can be transiently trapped in the
intermediate ordered state.
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INTRODUCTION

Block copolymers are quite useful in many applications such as surfac-
tants, compatibilizers in polymer blends, or adhesives. It is known that
melts of block copolymers undergo microphase separation transition to
produce various spatially ordered modulated phases (1). In 1980 Leibler
obtained the phase diagram of block copolymer melts in the weak segre-
gation limit within a mean-field theory (2). For a symmetric diblock melt
for which the two blocks have the same length, the system is homoge-
neously disordered when temperature is higher than a critical value.
Only at the critical point of the phase diagram, Leibler’s mean-field
theory predicts a second-order phase transition to a lamellar phase. On
the other hand, asymmetric diblockmelts undergo a first-order phase tran-
sition to a body-centered-cubic (BCC) phase by decreasing temperature. By
further decreasing temperature, the mean-field theory suggests that there
are first-order transitions from the BCC phase to a hexagonal phase and
subsequently to the lamellar phase. Such a phase behavior coincides with
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that obtained by Matsen and Schick according to numerical solution of
self-consistent field equations without relying on any approximation (3).

However, the above mentioned phase behavior is modified when
fluctuation corrections to Leibler’s theory are taken into account. This fluc-
tuation effect is called “Brazovskii effect” (4), which has been particularly
calculated for diblock copolymers by Fredrickson and Helfand (5). They
predicted that a symmetric diblock copolymer exhibits a first-order tran-
sition at a lower temperature than the second-order transition found
within the mean-field theory. Moreover, the Brazovskii effect leads to
windows in composition through which it is possible to pass from the
homogeneous phase to each of the ordered phases by changing tempera-
ture. A similar phase diagram including the so-called “gyroid phase” was
calculated before (6, 7). In the presence of Brazovskii critical fluctuations,
a direct phase transition between the disordered and gyroid phases would
be possible.

The onset of the ordering at finite values of wave vector occurs not only
in block copolymers but also in other systems such as weakly anisotropic
antiferromagnets (4), liquid crystals near the nematic–smectic C transition
(8), and fluids near the Rayleigh-Bénard instability (9, 10). In all these
systems, fluctuation-driven first-order transitions are expected to take
place. Many efforts have been made to experimentally verify the
Brazovskii effect in liquid crystal mixtures (11, 12), or in block copolymer
melts (13–16).

Despite many investigations concerning equilibrium properties of
Brazovskii effect, there are few works that deal with its dynamical aspects
except those given in the references (17–19). In the present article, we
argue the kinetics of ordered phases by considering a dynamical version
of Brazovskii effect within a coarse grained level. We propose nonlinear
amplitude equations for the lamellar and hexagonal phases to discuss
the time evolution of the respective ordered phases. We analyze the prop-
erties of the stationary solution of the amplitude equations, which are
solved numerically. We find that the system is bistable when the tempera-
ture is low enough. In the next section, we first summarize the equilibrium
properties of Brazovskii effect and present phase diagrams both for mean-
field and Hartree approximations. In the third section, we present dyna-
mical models for the lamellar and hexagonal phases. Analysis of the
models and results of numerical simulations are given there. The final
section concludes the article.

EQUILIBRIUM PHASE BEHAVIOR

We consider an order parameter f(r), which vanishes on average in
the homogeneous disordered phase, while it takes non-zero values in the
ordered phases [see later Eqs. (2) and (3)]. Our starting point is the
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Landau-Brazovskii (LB) free energy functional, which can be written
(in units of kBT) (2, 5, 20)

F½fðrÞ� ¼

ð
dr

j40
2
fðr2 þ q20ÞfðrÞg

2 þ
t

2
½fðrÞ�2 þ

m

3!
½fðrÞ�3 þ

l

4!
½fðrÞ�4

� �
; ð1Þ

where j0 is the correlation length, q0 is the critical wavenumber, t is the
reduced temperature, m and l are higher order vertex functions that
are taken as constants (local approximation) (5).With the abovementioned
free energy, the Fourier transform of the two point correlation functions
shows a pronounced peak at jqj ¼ q0. Hence the dominant fluctuations
in the system are plane waves with wave vectors of magnitude q0, or super-
positions of such plane waves. The third order coefficient m measures the
intrinsic asymmetry, and vanishes for symmetric systems. Without loss of
generality, one can assume that m is positive because the LB free energy
is invariant under the simultaneous transformation of f ! 2f and
m ! 2m. The fourth order coefficient l is positive for the stability reason.

Mean-Field Approximation

We first discuss the mean-field theory for the formation of the lamellar
and hexagonal phases. For simplicity, we do not take into account the BCC
phase nor the gyroid phase in this article. In the weak-segregation limit,
the one-dimensional lamellar phase along the z-axis is expressed as

fðrÞ ¼ 2a‘ cosðq0zÞ; ð2Þ

and the two-dimensional hexagonal phase in the y-z plane can be given by

fðrÞ ¼ 2ah cosðq0zÞ þ cos q0

ffiffiffi
3

p
y � z

2

� �
þ cos q0

�
ffiffiffi
3

p
y � z

2

� �� �
; ð3Þ

where a‘ and ah are the lamellar and hexagonal amplitudes, respectively.
Inserting the above-mentioned forms of the order parameter in the LB
free energy (1) and taking the average over one period, we obtain (2, 21)

F‘ ¼ ta2‘ þ
l

4
a4‘ ð4Þ

for the lamellar phase and

Fh ¼ 3ta2h þ 2ma3h þ
15l

4
a4h ð5Þ

for the hexagonal phase. By the minimization of these free energies and
comparison of their respective values at the minimum, one can determine
the phase transition lines between the disordered–lamellar, disordered–
hexagonal, and hexagonal–lamellar phases.
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As shown in Fig. 1(a), the mean-field phase diagram can be
represented in the (m/l, t/l) plane. The disordered, hexagonal, lamellar,
and inverted hexagonal phases are denoted by “D,” “H,” “L,” and “IH,”
respectively. The phase diagram is symmetric with respect to m ¼ 0 as
discussed before. When t/l is large and temperature is high, we have
an homogeneous disordered phase. For symmetric cases with m ¼ 0,
the system exhibits a second-order phase transition from the
disordered phase to the lamellar phase at t ¼ 0. Hence the point (m/l,
t/l) ¼ (0, 0) is a critical point. For asymmetric cases with m = 0, both
the disordered–hexagonal and hexagonal–lamellar transitions are first-
order, and the amplitude changes discontinuously at the transition line.
By lowering temperature from the disordered phase, the hexagonal
(or the inverted hexagonal) phase appears first at the line given by
t/l ¼ (4/45)(m/l)2 � 0.089(m/l)2. As the temperature is further
lowered, then there is again a first-order phase transition from hexagonal
to lamellar. The corresponding transition line is determined by the
relation t/l ¼ 2[(7þ 3

p
6)/5](m/l)2 � 22.87(m/l)2.

Hartree Approximation

Brazovskii considered the role of the critical fluctuations on the phase
transition that occurs in systems described by LB free energy (4). This can
be done by the standard diagrammatic formalism, but attention must be
paid to those integrals that diverge as t vanishes. These divergences
occur near the spherical shell jqj ¼ q0. Brazovskii showed the way to

FIGURE 1 (a) Mean-field phase diagram of Landau-Brazovskii free energy functional (see Eq. (1)) as a
function of m/l and t/l. There are four different phases: the disordered phase (D), the hexagonal
phase (H), the lamellar phase (L), and the inverted hexagonal phase (IH). These phases are separated
by first-order transition lines. The filled circle at (m/l, t/l) ¼ (0, 0) indicates the critical point at which
the transition is second-order. (b) Hartree phase diagram of Landau-Brazovskii free energy functional
as a function of m̃ and t̃ defined in the text. The four phases are separated by first-order transition lines.
The filled triangles at (m̃, t̃) ¼ (+0.564, 22.03) indicate the triple points.
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handle these divergences using a self-consistent Hartree approximation
for the renormalized propagator. In this approximation, only a particular
class of diagrams are summed in the perturbation series. The final result of
Brazovskii’s theory can be represented by thermodynamic potentials for
the lamellar and hexagonal phases with respect to the disordered phase
as given by

F‘ða‘Þ ¼
1

2l
ðr2‘ � r2dÞ þ aðr1=2‘ � r1=2d Þ �

l

4
a4‘ ; ð6Þ

and

FhðahÞ ¼
1

2l
ðr2h � r2dÞ þ aðr1=2h � r1=2d Þ þ 2ma3h �

3l

4
a4h; ð7Þ

respectively (4, 5), with a constant a ¼ q0/(8pj0
2) (20). In the above

mentioned equations, the renormalized inverse susceptibilities of the
disordered (rd), lamellar (r‘), and hexagonal (rh) phases are determined
by the following self-consistent equations (4, 5):

rd ¼ tþ
al

r1=2d

; ð8Þ

r‘ ¼ tþ
al

r1=2‘

þ la2‘ ; ð9Þ

rh ¼ tþ
al

r1=2h

þ 3la2h: ð10Þ

For our later purpose, we rescale the quantities as F̃i ; l(al)24/3Fi,
r̃i ; (al)22/3ri, ãi ; l1/2(al)21/3ai (“i” stands for either “d,” “‘,” or “h”),
and the Landau coefficients as t̃ ; (al)22/3t, m̃ ; l21/2(al)21/3m.

As in the case of the mean-field theory, the phase diagram in the pre-
sence of critical fluctuations can be obtained by minimizing the above
mentioned thermodynamic potentials and comparing their values at the
minimum. The resulting phase diagram is presented in Fig. 1(b) on the
(m̃,t̃) plane. The same phase diagram was previously presented in Ref.
(21). Compared to the mean-field phase diagram shown in Fig. 1(a),
there are two important differences. First the horizontal disorder–lamellar
phase transition line is shifted to negative values of the temperature par-
ameter at t̃ � 22.03. Moreover, the transition is first-order even for sym-
metric cases with m̃ ¼ 0. Hence a fluctuation-induced first-order transition
takes place. Secondly, there exists a finite region of m̃ for which the hexa-
gonal phase can never be stable. In fact the hexagonal phase appears only
when the asymmetry is larger than jm̃j � 0.564. Notice that the three
first-order transition lines meet at the triple point denoted by the filled
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triangles. For large values of m̃, the transition lines approach their mean-
field values as given in Fig. 1(a).

DYNAMICS OF ORDERED PHASES

Lamellar Phase

In this section, we discuss the dynamics of the lamellar and hexagonal
phases. Phenomenologically, we assume that the time evolution of the
modulation amplitude is driven by the external force. For the lamellar
phase, the proposed coarse grained amplitude equation has a relaxation
form:

d~a‘ðtÞ

dt
¼ �~h‘; ð11Þ

where the kinetic coefficient is taken to be unity, for simplicity, and h̃‘ is the
external field defined by the derivative of the lamellar potential F̃‘ with
respect to the lamellar amplitude ã‘:

~h‘ ¼
1

2

d ~F‘

d~a‘
¼ ~r‘ ~a‘ �

1

2
~a3‘ : ð12Þ

This is the Brazovskii’s equation of state for the lamellar phase. In the
above, the rescaled inverse susceptibility r̃‘ satisfies

~r‘ ¼ ~tþ
1

~r1=2‘

þ ~a2‘ ð13Þ

according to Eq. (9). Eqs. (11), (12), and (13), describe the nonlinear time
evolution of the lamellar amplitude ã‘(t). The only control parameter in
the equation is t̃, corresponding to temperature.

We first argue the steady state condition (nullcline) of the above-
mentioned equation. This is equivalent to consider the zero field condition,
that is, h̃‘ ¼ 0. Then we have r̃‘ ¼ ã‘

2/2 from Eq. (12). Inserting this relation
in Eq. (13), we obtain

~t ¼ �
1

2
~a2‘ �

ffiffiffi
2

p

j~a‘j
: ð14Þ

The above-mentioned equation is plotted in Fig. 2(a) in the (t̃, ã‘) plane.
We see that the system is bistable when t̃ , 21.89 (denoted by the filled
circles). Notice that this value is larger than the equilibrium disorder–
lamellar transition temperature at t̃ ¼ 22.03 (see Fig. 1(a)). In
Fig. 2(a), the stable branches are drawn by the solid lines. The dashed
lines correspond to the threshold values of the initial amplitude ã‘0.
The stationary state is the homogeneous disordered phase with ã‘ ¼ 0
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when jã‘0j is smaller than these threshold values. In the opposite case, on
the other hand, the system relaxes to the lamellar phase with ã‘ = 0.
When t̃ . 21.89, on the other hand, the disordered phase is always
the stationary state.

In Fig. 3, we plot the time evolutions of the lamellar amplitude ã‘ for
six different initial values of ã‘0 while the temperature parameter is fixed
to t̃ ¼ 23. The set of equations are solved numerically. Because different
initial values of ã‘0 are realized at different temperatures, such a simu-
lation corresponds to a temperature jump experiment in the lamellar
phase. With this choice of parameter, the stationary value of the lamellar
amplitude is jã‘j ¼ 2.17 (see the cross points of the solid and dotted lines
in Fig. 2(a)). In all the cases, the lamellar amplitude changes monotoni-
cally and approaches to its stationary value. Compared to the relaxation
to the lamellar phase, it takes much longer time to decay to the disor-
dered phase with ã‘ ¼ 0. (Note that the time scale is different in
Fig. 3(b).) In Fig. 4(a), we plot the time evolutions of the lamellar ampli-
tude starting from the same initial value (ã‘0 ¼ 2) but with different
temperature parameter values t̃. As mentioned earlier, the disordered
phase is the stationary state when t̃ . 21.89 and the amplitude ã‘
decays to zero. For the values close to t̃ ¼ 21.89, however, the ampli-
tude decreases in two steps. This means that the system is transiently
trapped in the intermediate lamellar state. The trapping time becomes
longer as the temperature is approached to t̃ ¼ 21.89. For large

FIGURE 2 (a) Nullclines of the dynamic equation for the lamellar phase (see Eq. (11)) as a function of t̃
and ã‘. The solid lines correspond to the stable branches, whereas the dashed lines give the threshold
values of the initial amplitudes ã‘0.The filled circles at (t̃, ã‘) ¼ (21.89, +1.12) indicate the end points
of the stable branches. Six different filled squares at t̃ ¼ 23 are the initial values of ã‘ used in the cal-
culations of Fig. 3. (b) Nullclines of the dynamic equation for the hexagonal phase (see Eq. (15)) as a
function of t̃ and ãh. The asymmetry parameter is set to be m̃ ¼ 0.5. The meaning of the solid and
dashed lines is the same as in (a). The filled circles at (t̃, ãh) ¼ (22.01, 20.515) and (27.06, 1.23) indi-
cate the end points of the stable branches. Six different filled squares at t̃ ¼ 210 are the initial values of
ãh used in the calculations of Fig. 5.
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FIGURE 3 Time evolution of the lamellar amplitude ã‘ for six different initial values ã‘0 shown in
Fig. 2(a) when the temperature parameter is fixed to t̃ ¼ 23. The initial amplitudes are (a) ã‘0 ¼ 2.5
and 1.5, (b) 0.3 and20.3, (c)21.5 and22.5. The steady state values are (a) ã‘ ¼ 2.17, (b) 0, (c)22.17.

FIGURE 4 (a) Time evolution of the lamellar amplitude ã‘ for different temperature parameters. The
initial value is fixed to ã‘0 ¼ 2. The temperature parameters are t̃ ¼ 21.89, 21.88, 21.87, 21.86,
21.85,21.8,21.7 from top to bottom. (b) Time evolution of the hexagonal amplitude ãh for different
temperature parameters when m̃ ¼ 0.5. The initial value is fixed to ãh0 ¼ 21. The temperature
parameters are t̃ ¼ 22.01, 22.00, 21.99, 21.98, 21.97, 21.90, 21.80 from bottom to top.
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enough t̃ such as t̃ ¼ 21.7, the amplitude ã‘ decays to zero almost
monotonically.

Hexagonal Phase

Next we discuss the dynamics of the hexagonal phase. Similar to
the case of the lamellar phase, the amplitude equation for ãh can be
written as

d~ahðtÞ

dt
¼ �~hh; ð15Þ

where h̃h is the external field given by

~hh ¼
1

6

d ~Fh

d~ah
¼ ~rh ~ah þ ~m~a2h �

1

2
~a3h: ð16Þ

This is again the Brazovskii’s equation of state for the hexagonal phase. In
Eq. (16) the rescaled inverse susceptibility r̃h satisfies the relation

~rh ¼ ~tþ
1

~r1=2h

þ 3~a2h ð17Þ

from Eq. (10). Eqs. (15), (16), and (17) describe the time evolution of the
hexagonal amplitude ãh(t). The control parameters are now t̃ and m̃.

The stationary state condition of ãh(t) is again the zero field condition
h̃h ¼ 0, or equivalently, r̃h ¼ ãh

2/2 2m̃ãh. By substituting this relation into
Eq. (17), we obtain

~t ¼ �
5

2
~a2h � ~m~ah �

ffiffiffi
2

p

ð~a2h � 2 ~m~ahÞ
1=2

; ð18Þ

when ãh
2 2 2m̃ãh . 0. The above-mentioned relation is plotted in

Fig. 2(b) for m̃ ¼ 0.5. When m̃ = 0, the two nullclines become asym-
metric. The meaning of the solid and dashed lines is the same as in
Fig. 2(a). The two end points of the stable branches are located at
(t̃, ãh) ¼ (22.01, 20.515) and (27.06, 1.23). When the absolute value
of the initial amplitude ãh0 is smaller than the dashed lines, the
system decays to the homogeneous disordered phase with ãh ¼ 0.
The two dashed lines asymptotically approach ãh ¼ 0 and 1 for small
enough t̃.

In Fig. 5, we plot the time evolutions of the hexagonal amplitude ãh for
six different initial values of ãh0 when t̃ ¼ 210 and m̃ ¼ 0.5. With these
parameters, the stationary values of the hexagonal amplitude are
ãh ¼ 1.78 and 22.05. As in the case of the lamellar phase, the relaxation
time for the disordered phase is longer than that for the hexagonal
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phase. In Fig. 4(b), we show the time evolutions of the hexagonal ampli-
tude starting from the same initial value (ãh0 ¼ 21) but with different
values of t̃. For the values close to t̃ ¼ 22.01, the relaxation occurs in
two steps so that the system is transiently trapped in the intermediate hex-
agonal state.

CONCLUSION

In this article we have discussed the dynamics of ordered phases by
extending Brazovskii’s theory for fluctuation-induced first-order tran-
sition. We have proposed self-consistent nonlinear equations both for
the lamellar and hexagonal phases. Analysis of the stationary solutions of
the equations shows that the system is bistable for small enough tempera-
ture parameter. This result has been confirmed by performing numerical
simulation of the time evolution equations. Furthermore, we found that
the system can be transiently trapped in the intermediate ordered state

FIGURE 5 Time evolution of the hexagonal amplitude ãh for six different initial values ãh0 shown in
Fig. 2(b) when the temperature and the asymmetry parameters are fixed to t̃ ¼ 210 and m̃ ¼ 0.5,
respectively. The initial amplitudes are (a) ãh0 ¼ 2.2 and 1.2, (b) 0.5 and 20.5, (c) 21.2 and 22.2.
The steady state values are (a) ãh ¼ 1.78, (b) 0 and 22.05, (c) 22.05.
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(either lamellar or hexagonal) close to the end point of the stable branch.
These phenomena are expected to be observed in the future experiments.
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