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Abstract. We predict the elastic properties of mixed amphiphilic monolayers in the swollen state within the
blob model using scaling arguments. First the elastic moduli and the spontaneous curvature of a bimodal
brush are determined as a function of the composition and the relative chain length. We obtain simple
and useful scaling functions which interpolate between the elastic moduli of a pure short-chain brush and
a pure long-chain brush. By using the analogy between block copolymer interfaces and polymeric brushes,
the effect of mixing on self-assembled diblock copolymer monolayers is investigated in the swollen state.
We calculate various interfacial properties, such as the equilibrium surface coverage, interface curvature,
and the mixing free energy as a function of the composition. In general, we find a nonlinear dependence
on the composition, which deviates from the simple linear averaging of the properties of pure components.
Our results are used to discuss a recent experiment on the effect of amphiphilic block copolymers on the
efficiency of microemulsions.

PACS. 36.20.-r Macromolecules and polymer molecules — 68.05.-n Liquid-liquid interfaces — 82.70.-y Dis-

perse systems; complex fluids

1 Introduction

There are many technological applications of self-
assembled amphiphiles such as their use as stabilizers of
two immiscible solvents, or equilibrium vesicles for encap-
sulation. Accurate control of the interfacial properties is
thus necessary to utilize these materials. The most ba-
sic and important physical property of an adsorbed am-
phiphilic layer at a liquid-liquid interface is its preferred
interfacial curvature. A formal expansion of the free en-
ergy per unit area of a bent surface up to quadratic order
in the curvatures is written as [1,2]

K
Fy(c1,c0) = 5(01 + ¢y — 200)2 + Kkgcica. (1.1)

Here ¢; and ¢y are two principle curvatures, x and kg are
the bending and Gaussian moduli, respectively, and cq
is the spontaneous curvature. The quantities (¢; + ¢3)/2
and cjcy are the mean curvature and Gaussian curvature,
respectively. The free energy expresses the fact that the
mean curvature that minimizes F}, has a value ¢y when
ke = 0. Much progress has been made in understanding
the thermodynamics, structural, and dynamic properties
of microemulsions and surfactant membranes using the
concept of curvature energy [3-5].
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In addition to short-chain surfactants, long-chain poly-
mers can sometimes also show surfactant-like behavior [6].
Examples include block copolymers, where two or more
incompatible polymers are chemically joined together [7].
When mixed with two incompatible homopolymers or
small-molecule solvents which are also selective for the
two blocks, these copolymers can function as compatibi-
lizers and thus make stable microemulsions [8-11]. Due to
their temperature stability and high efficiency in reducing
the interfacial tension, it is sometimes preferable to use
these long-chain polymeric surfactants.

1.1 Monodisperse interfaces

The curvature elasticity of monodisperse diblock copoly-
mer monolayers or bilayers has been widely investigated
theoretically. There are several approaches to this prob-
lem. One of them is to utilize the analogy between block
copolymer interfaces and polymeric brushes, namely,
chains that are irreversibly anchored by one end to an
impenetrable surface [12-14]. (A short review of theoret-
ical works on brushes will be provided in the next sec-
tion.) Once the stretching energy of a brush is known,
the stretching energy for a copolymer layer can be sim-
ply obtained by adding the stretching energy of the two
diblock sections. Wang and Safran [15] calculated the elas-
tic moduli of the diblock copolymer monolayers under melt
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(no solvent) condition by using the results from the self-
consistent field theory (SCFT) of a brush [16-20]. They
also studied the onset and morphology of various equi-
librium emulsion phases for an A and B homopolymer
mixture with AB diblock copolymers [15].

Similar calculations have been done for swollen mono-
layers of diblock copolymers which can be obtained if the
two solvents are good for one of the blocks and poor for
the other, and if the molecular weight of the solvents are
small compared to the blocks. This case was first con-
sidered by Cantor [21]. Leibler later treated the problem
of a random dispersion of A and B homopolymers by a
small amount of AB block copolymer [22,23]. In a dif-
ferent paper by Wang and Safran [24], within the SCFT
employing a scaling-augmented free-energy functional [16,
17], the elastic moduli and the spontaneous curvature for
monolayers of diblock copolymers under swollen condition
was calculated.

In the case of self-assembled monolayers, the surface
density adjusts itself to minimize the total free energy
which includes both the chain stretching contribution and
the interfacial energy [15,24]. This is different from grafted
polymer brushes whose surface density is fixed a pri-
ori. References [15,24] showed that, for both the melt
and swollen states, the surface density decreases with the
molecular weight of the chain, whereas the interface cur-
vature increases with the molecular weight ratio of the two
blocks. Hence the control of the overall molecular weight
or asymmetry leads to the manipulation of the interfacial
properties. However, synthesis of many different types of
copolymer chains, each with different molecular weights or
symmetries, is a formidable task and may be impractical.

1.2 Mixed interfaces

Another way to control the interfacial properties is to mix
different types of amphiphilic molecules through composi-
tion variation. For low molecular surfactants, it was shown
that a mixture of surfactants can spontaneously form large
bilayer vesicles, whereas the single components do not [25].
The appearance of equilibrium vesicles in mixtures of sur-
factants is explained by a phenomenological model [26-28]
where the spontaneous curvature ¢ is dependent on the
monolayer composition (so-called “curvature instability”).
This idea was further extended by Dan and Safran [29,30]
to the amphiphilic interfaces consisting of mixture of di-
block copolymers in the melt state.

Recently, a very interesting experiment by Jakobs
et al. has shown that amphiphilic block copolymers
(PEP-PEO) dramatically enhance the solubilization ca-
pacity of medium-chain surfactants (C;E;) in ternary
(oil/water /surfactant) microemulsions [31]. By adding
small fractions of amphiphilic block copolymers, the min-
imum amount of surfactant (C,E;) needed to form a
one-phase microemulsion is greatly reduced. More recent
small-angle neutron scattering experiments demonstrated
that the copolymers sometimes form mushroom conforma-
tions (where the polymer chains do not overlap each other)

The European Physical Journal E

on both sides of the surfactant monolayer [32]. In that pa-
per, the observed solubility enhancement is attributed to
the variation of the elastic moduli ¥ and kg, which has
been calculated by Lipowsky and coworkers for mushroom
conformations of anchored (end-grafted) polymers [33,34].
The assumption of a uniform curvature distribution is
correct only when the mushrooms just begin to overlap.
At relatively higher copolymer concentrations in the ex-
periment, however, the copolymers start to form brushes
and the mushroom picture breaks down [32]. In this case,
the monolayers in the microemulsions can be regarded
as brushes comprising a mixture of short (surfactant)
and long (polymer) amphiphilic diblock copolymers in the
swollen state. The curvature elasticity of mixed brushes in
the swollen case has not yet been studied, although there
is a calculation for the melt case [19]. It is therefore desir-
able to consider the theory of the elastic moduli of mixed
diblock copolymer monolayers in the swollen state.

1.3 The present work

In this paper, we discuss the elastic properties of mixed
amphiphilic monolayers within the blob picture. By us-
ing scaling arguments, we first extend the results in refer-
ences [33,34] to a bimodal brush (a mixture of shorter and
longer chains) in order to calculate its elastic moduli and
spontaneous curvature in the swollen state. In contrast to
the fairly complicated results for the elastic moduli of a bi-
modal brush in the melt state [19], we obtain a simple and
useful scaling functions which interpolate between those of
a pure short-chain brush and a pure long-chain brush [35].
‘We then make use of the analogy between block copolymer
interfaces and polymeric brushes and add the stretching
energy of the two diblock sections to calculate the stretch-
ing energy of mixed amphiphilic monolayers composed of
two types of diblock copolymers. Using arguments simi-
lar to those of reference [30] (that treats the melt case),
we discuss the effect of mixing on self-assembled diblock
copolymer monolayers in the swollen state. By taking into
account the fact that the surface density adjusts itself to
minimize the total free energy, we calculate the equilib-
rium surface coverage, interface curvature, and the free
energy as a function of the composition. In general, we find
a nonlinear dependence of these quantities on the compo-
sition, which deviates from the simple linear averaging of
the pure component monolayers.

Our work can be regarded in part as an extension of
the work by Dan and Tirrell who considered the phase
behavior of monodisperse diblock copolymer microemul-
sions [36]. Within a scaling model, they showed that sym-
metric copolymers form lamellar interfaces, whereas asym-
metric copolymers aggregate in spherical microdomains.
In the present work, we concentrate on the effect of mix-
ing on bimodal diblock copolymer microemulsions.

This paper is organized as follows. We first give a brief
review of the theoretical work on end-grafted brushes. In
section 3, we discuss the elastic properties of a bimodal
brush in the swollen state within the scaling theory. We
calculate the free energy of the bimodal brush for the flat,
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spherical, and cylindrical cases. Using this result, we ex-
tract the elastic moduli and the spontaneous curvature
from a curvature expansion. The effect of mixing on self-
assembled amphiphilic monolayers is considered in sec-
tion 4. Various surface properties are calculated there by
the minimization of the chain stretching energy. The paper
ends with a summary and a discussion of the experiments
by Jakobs et al. [31,32] in light of our result.

2 Previous work on monodisperse brushes

Before explaining our calculations, we briefly summarize
some previous theoretical work on monodisperse poly-
meric brushes [6]. This is useful since the analogy between
polymeric brushes and block copolymer interfaces is uti-
lized later in this paper. A brush on a flat surface was first
considered by de Gennes [12,13] within a mean-field the-
ory. When all the chains are of the same molecular weight
N (monodisperse brush), he showed that, as a function of
molecular weight N and surface coverage I" (see Eq. (3.2)
below), the height of the brush scales as NI''/3 and the
free energy per unit area scales as NI'5/3. Subsequently,
Alexander introduced the blob picture for a polymer brush
and developed a scaling theory [14]. He predicted the same
scaling for the height NI''/3 whereas the free energy per
unit area is shown to scale as NI''/6. The difference in
the free energy reflects the fact that the mean-field theory
overestimates both repulsive and attractive terms in the
same manner.

An important development in this field was advanced
by Milner and his coworkers [16,17] by applying self-
consistent field theory (SCFT) to polymeric brushes based
on the work of Semenov [37]. The SCFT exploits the
fact that in the limit of strong stretching, the parti-
tion function of the brush is dominated by the “classi-
cal paths” of the chains, and random-walk fluctuations
about these paths can be neglected. Their work goes
beyond the Alexander-de Gennes theory in several as-
pects; for example, it was shown that the density pro-
file is parabolic [16,17] rather than a step-function [12—
14]. However, for chains at moderate concentration in a
not-too-good solvent (referred to as the “moderate density
case”), the scaling behavior of the brush height and the
free energy is the same with the mean-field theory by de
Gennes mentioned above. (Hence this case is sometimes
called as the mean-field version of SCFT.) The SCFT
of swollen brushes has been also considered by using a
scaling-augmented free-energy functional [16,17].

More recently, Lipowsky and his coworker investigated
the effects of the addition of anchored polymers on bilayer
membranes and calculated the changes in the bending
moduli and the spontaneous curvature due to the poly-
mers [33,34]. By considering anchored polymers in the
mushroom regime (low polymer coverage) and the brush
regime (high polymer coverage) separately, they found
that, in both cases, the bending modulus s increases,
whereas the Gaussian modulus k¢ decreases. Similar the-
oretical results have been also reported in other works [38,
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39]. Note that these results are in contrast to the previ-
ous theoretical works on the effect of adsorbed polymers
on membranes [40-43], where the bending modulus de-
creases and the Gaussian modulus increases due to the
polymers. The effect of adding polymers to both sides of
the membrane have been considered in references [44,45].
The increase in the bending modulus of the polymer dec-
orated membranes has been confirmed by several experi-
ments [46-52].

3 Mixed swollen brushes: a scaling theory

In this section, we consider a bimodal brush in the swollen
state using a scaling argument in which each chain is
treated as a string of blobs [53]. Brushes are formed when
the mean distance between the polymer chains is smaller
than the radius of the polymer coil so that they overlap
each other. Our goal in this section is to calculate the elas-
tic moduli and the spontaneous curvature of a swollen bi-
modal brush by extending the scaling arguments in refer-
ences [33,34] to a bimodal brush. We obtain simple scaling
functions which interpolate between the bending moduli
of a pure short-chain brush and a pure long-chain brush.
Our results will be compared with those derived using the
SCFT for mixed brushes [18,19].

We consider a bimodal brush containing a fraction ¢
of longer chains of molecular weight Ny, and a fraction
(1 — ¢) of shorter chains of molecular weight Ng (Ng <
Np,). If the total number of polymer chain (including both
longer and shorter chains) is denoted by X, there are X ¢
longer chains and X (1 —¢) shorter chains. Both chains are
assumed to have the same segment length a. We define a
measure of the molecular weight difference between the
two chains as

N1, — Ng
Ns

Hence Ny, and Ng are related by Ny, = (1+«)Ns. The size
of a polymer chain is characterized by the mean end-to-
end distance R =~ aN" of the polymer in solution, where
v is the correlation exponent. In this paper, we are mainly
interested in polymer brushes under good solvent condi-
tions and consider the swollen brush case. Hence, within
the Flory approximation, the corresponding exponent v
has the numerical value v ~ 3/5.

The distance between the grafting points is denoted
&o. Then it is convenient to introduce the reduced surface
coverage I given by

a 2
F(5>’

which gives the dimensionless number of polymer chains
per unit area. The reduced overlap coverage scales as
Iy ~ Ng 2 The mushroom regime, applicable to non-
overlapping chains, extends from I" = 0 up to I" = I, 33,
34]. For I > T, the chains overlap to form a brush and
the polymers experience an additional loss of entropy aris-
ing from the steric confinement by the neighboring chains.

a (3.1)

(3.2)
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Fig. 1. Scaling picture of a bimodal polymer brush on a flat
surface. The height of the first layer (closer to the grafting
surface) is h1 and that of the second layer is hs. In the second
layer, (N. — Ns) monomers are “dawdling” beyond hi. The
distance between the anchor points is £ on the grafting surface.
In the second layer, the blob size increases discontinuously to
fo/¢1/2 where ¢ is the fraction of longer chains.

The free ends of the chains must be segregated vertically
by molecular weight and the brush consists of two layers
of blobs as shown in Figure 1. This is the case considered
in this section.

However, it is important to note that we cannot use
the brush model in the limit of only a few long chains.
In our theory, we will assume that the long chains on top
of the short ones form a brush, which is only true if the
long chains are close enough to overlap. For the second
upper layer one may define an effective coverage I'' = I'¢
where I' is given by (3.2). Hence I vanishes for ¢ — 0.
The overlap coverage for the second layer scales as I ~
(N1, — Ng)~2v. If the long chains are too dilute, they are
effectively isolated and do not form a brush. For this case,
the mushroom (on top of a brush) picture is relevant and
will be discussed in section 5 separately.

3.1 Flat surface

Consider a bimodal brush on a flat surface for which the
free ends of the shorter chains are found at distances closer
to the grafting surface than those of the longer chains as
in Figure 1 [18,19]. The first layer, which is closer to the
grafting surface, consists of blobs containing both shorter
and longer chains, whereas the second layer consists of
blobs containing only longer chains. In the first layer, each
blob is of radius &y and contains (£y/a)/* segments. The
number of blobs is equal to hi/& where hy is the height
of the first layer (see Fig. 1) and satisfies

1/v
sl
a

& (3.3)
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By solving this equation for h; and using (3.2), we obtain

hy = Nga'/" €™V = aNg(1-1)/27 (3.4)
This expression for the height is the same as equation (46)
in reference [34] and scales as NgI''/3 for v = 3/5, which is
in agreement with results for monodisperse brushes men-
tioned in section 3.

In the second, upper layer, (N, — Ng) monomers are
“dawdling” beyond hj. These extra (Np, — Ng) monomers
are analogous to a chain of (N1, — Ng) segments attached
to a wall at hi. However, the effective grafting distance
is larger than that of the first layer, and is given by the
distance between long chains, & /¢'/?, due to the two-
dimensional nature of the surface. Similar to (3.3), the
height of the second layer hs (see Fig. 1) satisfies the fol-
lowing relation:

1/v
Ni — Ns = hy (50/31/2> / 50/;1/2, (3.5)
Hence we obtain
hy = (Ni = Ns)a'/v&y~ "=/ =
a(Ny, — Ng) (=120 g(1=v) /20 (3.6)
From (3.4) and (3.6), h; and hs are related by
hy = agt=)/2p, (3.7)

which will be used later to eliminate hs.

Next, we consider the free energy which is proportional
to the number of blobs. Let us denote the total area of the
grafting surface by A. There are A/£2 and A/(£2 /) chains
in the first and the second layer, respectively. Notice that
A/€&2 is equal to the total number of chains X. Since the
number of blobs is proportional to hy /& and hy/(&o/¢"/?)
in the first and the second layer, respectively, the total
free energy of the system (aside from a numerical factor
of order unity) is given by

OIONCICTOIE

AN (b (1+2v)/2v
T(%)<@>“+“¢ J

where we have used (3.7) to eliminate hs, and T is the
temperature measured in energy units. (The Boltzmann
constant kg is contained in T'.) The above energy accounts
for chain stretching and excluded-volume interactions of
the bimodal brush. By using (3.2) and (3.4), the free en-

ergy per unit area Fy = Fy/A is then given by

(3.8)

Th T
Fo =g fole.¢) = NI o), (3.9)
where we define the function fy(«a, @) by
fola, @) = 14 g2/, (3.10)



Shigeyuki Komura and S.A. Safran: Scaling theory of mixed amphiphilic monolayers

0.8 b

04 r b

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

¢
Fig. 2. Plot of go = [fo(e, ¢) — 1]/[fo(e, ¢ = 1) — 1] = ¢'V/¢

as a function of ¢ (fraction of longer chains). The function
fo(a, @) is defined in (3.12).

For v = 3/5, (3.9) and (3.10) becomes

T
Fo = —NsI"/ fo(a, 0), (3.11)

and

fo(aa ¢) =1+ a¢11/67

respectively. Notice that fo = 1 for either « = 0 (monodis-
perse brush) or ¢ = 0 (pure short-chain brush). In this
limit the above scaling behavior coincides with that given
by Alexander [14] or by equation (47) in reference [34]
(note also [54]). It is easy to see that for ¢ = 1 (pure
long-chain brush), we have Fy = (T/a?) NI +2Y)/2¥ a5
it should be.

The behavior of the function gy = [fo(a,¢) — 1]/
[fo(la, ¢ = 1) — 1] = ¢''/6 is shown in Figure 2. No-
tice that gg does not depend on «, and the slope of gg
vanishes for small ¢. For ¢ near unity, the curve drops
more steeply than a linear interpolation between the pure
brushes (¢ = 0 and 1). These facts indicate that, as far
as the free energy of the flat bimodal brush is concerned,
adding a small fraction of shorter chains is much more
effective than the addition of a small fraction of longer
chains as has been pointed out before [18,19,29,30].

One can compare (3.11) with the free energy of a bi-
modal brush obtained within the SCFT [18]. For the mod-
erate density case, their result of the free energy per unit
area scales as NgI"®/3[14+a¢®/3]. The small differences be-
tween our results and those of SCFT are of order I''/% and
¢'/6 and are due to correlation effects that are neglected
in the mean-field version of the SCFT used for the case of
moderate density [18].

By subtracting the free energy of two separate assem-
ble of brushes made of the pure Ni, and Ng chains, we

(3.12)
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Fig. 3. Scaling picture of a bimodal polymer brush on a spher-
ical surface of radius R. The height of the first layer (closer
to the grafting surface) is his and that of the second layer is
has. In the second layer, (N, — Ns) monomers are “dawdling”
beyond his as in Figure 1. The distance between the anchor
points is & on the grafting surface. The blob size scales as
€1(r) = &r/R in the first layer and &4(r) = &or/(R¢'/?) in
the second layer, where r is the distance from the center of the
sphere (see (3.14)).

obtain the free energy of mixing as

T (Ni — NS)F11/6 [¢11/6 . ¢]-

AF, = o (3.13)

As long as I' is fixed, this free energy is minimized for
¢ = (6/11)%/> ~ 0.483.

3.2 Spherical surface

In order to obtain the elastic moduli and the spontaneous
curvature, one has to extend the scaling argument for a
bimodal brush grafted on spherical and cylindrical sur-
faces. A polymer brush on a sphere or a cylinder consists
of concentric layers of blobs. As in the flat surface case,
a bimodal brush on curved surfaces also consists of two
layers. This is illustrated in Figure 3 for a spherical sur-
face. Let us denote the size of blobs in the first and the
second layer by &1;(r) and & (r), respectively, where r is
the distance from the center of the sphere, and i = s and
i = c for spherical and cylindrical geometries, respectively.
In each of the layers, the size of the blobs increases with
the distance from the grafting surface. In the first layer
the surface area is given by S(r) ~ X&;;(r)?, where X is
the total number of polymer chains, whereas in the second
layer it is S(r) ~ X ¢&a;(r)? since the second layer consists
of X ¢ longer polymer chains. These relations hold both
for the spherical and the cylindrical cases.

For a sphere of radius R, S(r) = 4nr? and X =
41 R? /€2 where & is the distance between grafting points.
Using these relations, we obtain the blob size as a function
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of concentration from

E1a(r) = Eor Sor

= Ro/2’

R )

§as(7) (3.14)

in each of the layer. Each blob contains [¢14(r)/a]'/" and
[€0s(r)/a]'/? segments in the first and the second layer,
respectively.

As described in appendix A, we follow a similar proce-
dure as in the flat surface and obtain the free energy per
unit area

(R = a%NSF(M")/Q”fs(%), (3.15)
with
() = 1o <1 N i)
LA s (z/v)(1 + agpt=1)/)

For either &« = 0 (monodisperse brush) or ¢ = 0 (pure
short-chain brush), the above result reduces to equa-
tion (50) in reference [34]. (We did not subtract the free
energy of the flat brush (3.9).) Our results generalize this
to the case of the mized polymer brush. We note here that
the equations such as (A.3), (A.6), (3.15) will not change
even if we include additional dimensionless coefficients in
Ns (Ny,) or Fy [34].

3.3 Cylindrical surface

Here we repeat a similar argument for a bimodal brush on
a cylindrical surface of radius R and length D. The surface
area of a cylinder is now S(r) = 2rDr and X = 2rDR/&3.
Hence the blob size varies as

507.1/2

g 7A1/2
1(r) = “pi7as "

§ac(r) = W, (3.17)
in each of the layer. Each blob contains [¢.(r)/a]'/" and
[€ac(r)/a]'/” segments in the first and the second layer,
respectively.

As described also in appendix A, we follow a similar
procedure as in the spherical surface and obtain the free
energy per unit area

T h
FC(R) — FNSF(l"rQl/)/zl/fC (_1>’

R (3.18)

with

fely) = H(H

v/(1+v)
1 1+
o H”Tyymad’(”)”y)}

< = >V/(1+V)]
-1+ Y .
v

1+U )IJ/(I-‘,—IJ) :|
Y -1
14

(3.19)
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For either @ = 0 (monodisperse brush) or ¢ = 0 (pure
short-chain brush) the above result reduces to equa-
tion (53) in reference [34]. Our results generalize this to
the case of a mized polymer brush.

We comment here that the same scaling picture can be
also applied to a bimodal brush grafted to the inside of a
sphere or a cylinder as long as the innermost blob is larger
than a. (See the more detailed discussion in reference [34].)

3.4 Small curvature expansion

Here we determine the elastic moduli and the spontaneous
curvature of a bimodal brush by expanding the free ener-
gies in (3.15) and (3.18) up to second order in hy/R. For
the spherical geometry, we have

T

a2

<[ f0) = o Pt o s+ | 3:20)

FS(R) NSF(1+2D)/2V

with = hy/R and I' is the surface coverage. For cylin-
drical geometry, we find

FC(R) ~ ;NSF(1+2V)/2V
1 2
<Aoo= 5 et 2 Flas o] (321

with y = h1/2R. In the above, fo(«, ¢) is given by (3.10),
and f1(a, @) and fo(a, ¢) are defined as

fila, @) = 1+ 2ag(1F20/2 4 o294/ - (3.99)
fala, @) =1+ 3a¢(1+2v)/2u + 3a2¢(2+y)/zy
FaPg?/. (3.23)

Since f; = fo = 1 for either &« = 0 (monodisperse brush)
or ¢ = 0 (pure short-chain brush), (3.22) and (3.23) co-
incide in this limit with equations (59) and (60) in ref-
erence [34], respectively. Notice also that for x — 0 and
y — 0 (small curvature limit), both (3.20) and (3.21) re-
duce to the free energy of a bimodal brush on a flat surface
(3.9).

Both (3.20) and (3.21) show a minimum as a func-
tion of 1/R, whereas the original expressions (3.15) and
(3.18) decrease monotonically. For the cylindrical case, the
second-order expansion (3.21) exhibits a minimum at

R 3v fl(aa¢)
Ymin = 21/+4f2(a,¢)' (324)

Hence the above expansion breaks down for hy /2R 2 Ymin-

Once we have obtained the free energy of a brush bent
into the inside or outside of a sphere or cylinder, we can
compute the elastic moduli and the spontaneous curvature
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in (1.1) using the following relations:

k = R*[F.(R) + Fo.(—R) — 2Fy], (3.25)
2k + kg = %RQ [Fy(R) + Fs(—R) — 2F], (3.26)
keg =k = %R[FC(fR) — Fo(R)], (3.27)

where Fj is the free energy of the flat brush given by (3.9).
We then finally extract x, kg, and ¢y as

v+2

=5 TNEI3/? fy(ar, ), (3.28)
1
kG = —6—VTN§’F3/2”f2(a,q§), (3.29)
— 1T 2 n(2+v)/2v
RCy = k= 8_]/ZNSF fl(a,(b), (330)

where f1(«, ¢) and fo(a, ¢) are given by (3.22) and (3.23),
respectively. These are the main new results of this paper.
The calculated bending modulus is positive whereas the
Gaussian modulus is negative. This means that bending
into a saddle-shaped surface costs energy. For v = 3/5,
the above equations become

65

K= ETNSFS/QfQ(a, b), (3.31)
kg = —%TN§F5/2f2(a,¢), (3.32)
k= %%Ngrl?’/ﬁfl (ar, @), (3.33)

where
filo, @) = 1+ 209"/ + a2¢13/6, (3.34)
fala, ) = 14 3006 +3a24™/0 + a®¢/6.  (3.35)

For either &« = 0 (monodisperse brush) or ¢ = 0 (pure
short-chain brush) which implies f; = fo = 1, the above
results reduce to the elastic moduli and the spontaneous
curvature obtained in reference [34]. We also note that for
¢ = 1 corresponding to a pure long-chain brush, (3.22) and
(3.23) become f; = (1 + a)? and fo = (1 + )3, respec-
tively. Hence (3.28) to (3.30) become those for monodis-
perse brush with Ng being replaced by Ni,. (Notice that
N, = (1+a)Ng.)

The general behavior of the functions defined g =
(e, @) — 1]/[f1(as 6 = 1) — 1] and g5 = [fala,6) — 1)/
[f2(a, = 1) — 1] as a function of ¢ are shown in Fig-
ure 4(a) and (b), respectively, for v = 3/5 and three dif-
ferent values of a. Similar to Figure 2, the dependence
of the elastic moduli on the volume fraction ¢ is not a
simple linear interpolation between the modulus of a pure
short-chain brush and a pure long-chain brush. We find
that the effect of mixing a small number of long chains in
a brush of mostly short chains is much less effective than
the mixing of a small number of short chains in a brush
of mostly long chains. This is because the long chains are
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Fig. 4. Plots of (a) g1 = [fi(e,¢) — 1]/[fi(c, ¢ = 1) — 1]
and (b) g2 = [fo(a, @) — 1]/[f2(a,¢ = 1) — 1] as a function
of ¢ (fraction of longer chains) for three different values of
a = 0.1 (solid line), 1 (dashed line), and 10 (dotted line). The
functions f1(a, ¢) and f2(a, ¢) are given by (3.34) and (3.35),
respectively.

strongly affected by the free volume introduced even a
small number of short chains. Moreover, in the present
scaling theory, the ratio x/kg is a constant and given by

K v+2
—_— = . 3.36
el 2v ( )

For v = 3/5, we have k/kg = —13/6 =~ —2.167.

In the case of a monodisperse brush (f; = fo = 1),
we can compare the above expressions with those ob-
tained by Milner and Witten for monodisperse brushes
in the moderate density case using SCFT [19]. Their
results are x = (9/64)(12/72)/3TN3I7/3, kg =
—(3/35)(12/72)Y/3TN3T7/3, and k ~ (T/a)N?I'> which
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are of the same sign and have the same molecular weight
dependence (~ N?3) as those obtained within the present
scaling theory. However, the dependence on I is different
by a factor of I''/6. As mentioned before, this difference
is due to the correlation effects which are neglected in the
mean-field version of SCFT.

For a bimodal brush, the elastic moduli of a mixed
brush has previously been calculated only for the melt
case [19,30,35], and we can not directly compare this with
our results. It is important to stress that a and ¢ depen-
dence of k and kg are exactly the same and are repre-
sented by a single function fa(c, @) in the swollen case.
This is not the case for the melt state, although it is re-
ported that the ratio x/k¢ is constant to within a few per-
cent [19,30,35]. In general, the replacement of a small frac-
tion of long-chain molecules by short-chain molecules dra-
matically changes the elastic moduli both for the swollen
and the melt cases. Equations (3.34) and (3.35) can be
expanded for ¢ ~ 1 as

2 &

fila, o = 1) = (1+a) 6(22+13a)(17¢),

3—%(11+13a+5a2)(1—(;5).(3.38)

(3.37)
fola,p — 1) = (14+a)

Hence the bending modulus and other quantities decreases
linearly with (1 — ¢) for ¢ & 1 in the present swollen case
as well as in the melt case [19]. For a small fraction of
long-chain molecules, the bending modulus increases as
#° in the melt case [19], whereas it increases as ¢!/ in
the swollen case (see (3.35)) which has an even stronger
effect than the melt case. (See, however, the discussion in
section 5.2.)

4 Mixed amphiphilic monolayers

Up to now we have discussed the elastic properties of a
bimodal brush within the scaling theory. Using the ob-
tained results for polymer brushes, we investigate here
the effect of mixing on the interfacial properties of self-
assembled amphiphilic monolayers in the swollen state.
Typical examples of such systems are mixtures of two AB
amphiphilic diblock copolymers or surfactant molecules
with different overall molecular weights and/or asymme-
tries, in a blend of highly incompatible solvents. For sim-
plicity, we discuss mixed AB diblock copolymer monolay-
ers between two immiscible solvents.

We consider the case where the solvents are inversely
selective, i.e., the two solvents are, respectively, good for
one of the blocks and poor for the other. Then the unfavor-
able interaction between incompatible block-solvent pairs
drives the copolymer chain to the liquid-liquid interface,
and the system thereby reduces the interfacial tension.
When the incompatibility between the solvents is high
enough, the A-B junction points are constrained to the
liquid-liquid interfaces. Since for large incompatibilities,
the width of this interface is narrow compared to the chain
size, one can assume that the two blocks form brush-like
regions on both sides of the interface as shown in Figure 5
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Fig. 5. Schematic diagram showing a mixed diblock copoly-
mers at a liquid-liquid interface. When the copolymers aggre-
gate at liquid-liquid interfaces, the A block forms a brush in
one of the solvents and the B block in the other solvent. The
two solvents are, respectively, good for one of the blocks and
poor for the other. Hence each block is assumed to be in the
swollen state. 1/I" is the dimensionless area per chain

as long as the copolymer concentration at the interface
is high enough. Hence one can calculate the elastic prop-
erties of mixed diblock interfaces by using the results for
polymer brushes discussed in the previous section.

Mixed diblock monolayers in the melt state has been
considered by Dan and Safran [30]. Here we apply their
argument to the mixed monolayers in the swollen state.
According to references [15,24,29,30], the stretching en-
ergy of a copolymer monolayer can be simply obtained by
adding the stretching energies of the two block sections.
For each of the blocks, the stretching energy per unit area
is given by (1.1) which can be rewritten as

Fy(c1,c0)=Fy—2k(c +02)+g(cl +co)+rgeicr, (4.1)

where Fy = Fy,(¢c; = c2 = 0) is the free energy of the brush
on a flat surface given by (3.9). For our later calculations,
we consider the free energy per chain for each of the block
given by F}, = F},/I" and write it in the form

1 _
Fb(Cl,CQ) = F5/6F0 + §F7/6k(01 + 62)

+19/6 [R(e1 + c2)? + Raeiea], (4.2)

where I is the surface coverage given in (3.2). By using the
results (3.9) and (3.28) to (3.30) in the previous section,
Fy, k, R, and Rg can be defined by the unbarred quantities
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by omitting the I' dependence as

Fy = 5 Nsfo(a, ), (1.3
F= - N0, 0), (4.4
K= g TNEfo(0, ), (4.5)

o = — 1 TNE fa(a ). (4.6)

Here we have used the value v = 3/5, and fo(a, o),
fila, @), and fo(o, @) are given by (3.12), (3.34), and
(3.35), respectively.

It is important to notice that, in the case of self-
assembled monolayers, the surface coverage, I', is not fixed
a priori as in the grafted brush, but adjusts itself to min-
imize the total free energy [2,15,24]. In the present case,
the total free energy consists of the chain stretching con-
tribution (4.2) and the interfacial energy. The interfacial
energy is linearly proportional to the area of the liquid-
liquid interfaces on which the A-B junction points are
constrained. Let us take the liquid-liquid interface as the
center of curvature so that the curvatures of the B block
brush have signs opposite to those of the A block brush.
Then the mixed free energy F,, including both the stretch-
ing energy and the interfacial energy can be written as

(T ery02) = &+ Fi(en, ) + FP (1, —e2) =
5 1
L+ I8 4 ZI7/% (e + )

+I[(RY + RP)(c1 + c2)? + (RE + &8 ) cica], (4.7)

where 7 is the interfacial tension,

F=Fg +Fy (4.8)
and
§=kA— kP =
—2% [(NE)* {1+ 20 (%) + (a)* (67) "/}

—(NE)* frr20” (7)1 (a”)" (67) )] (49)

In the above, the quantities with the superscript A or B
are the corresponding quantities for the A and B blocks,
separately. Namely, F}ﬂ k7, k7, and Ré (J = A, B) are de-
fined in (4.3) to (4.6) for Ns = N¢, a = a’, and ¢ = ¢,
respectively. The spontaneous curvature contribution of
the interface is proportional to §. Since ¢/ denotes the
fraction of longer J blocks in the J brush, there are, in
general, two possible cases [30]. The first case is a situ-
ation where the same chain contains both the longer A
block and the longer B block as typically shown in Fig-
ure 6(a). In this case, $* = ¢ holds. The second case
is that one chain contains the longer A block, while the
other chain contains the longer B block as shown in Fig-
ure 6(b). In the latter case, $* = 1—¢” holds. Comparing
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Fig. 6. Two representative mixtures of block copolymers con-
sidered in the text. (a) The two chains have the same asym-
metry but different overall molecular weights, so that a® =
a® # 0 and ¢* = ¢P. (b) The two chains have the same
overall molecular weights, but different asymmetries, so that
Ng' = (o /a?)NE and ¢* =1 — ¢P.

the mixed free energy for the melt case (Eq. (6) in refer-
ence [30]) with that for the swollen case (4.7), we see that
(4.7) has a lower order I' dependence. This leads to the
different scaling behaviors of various interfacial properties
as discussed below.

We note that ¢” is controlled by the experimentally
imposed composition of the mixture as long as all the
copolymer chains are localized at the liquid-liquid inter-
face. However, both the surface coverage I' and the inter-
face curvature ¢; and co are free to vary, and these quan-
tities are determined by the minimization of the mixed
free energy F,, in (4.7). Consider a spherically deformed
interface with ¢; = co = ¢. In this case (4.7) becomes

Fo(lc) = % 4 I5/SF 4 I7/5c + T9°K e, (4.10)

where

K = (4-* + k) + (4% + R§), (4.11)
which provides the overall bending modulus. As can
be seen from (4.5) and (4.6), &4 and &4 depend on
f2(a?,¢?), while K2 and RE on fo(af, ¢P). In the case
of a? = af and ¢ = ¢f = ¢, for example, the ¢ de-
pendence of the overall bending modulus K is given by
Figure 4 as before, and the softening effect can be seen
from (3.38).

Minimization of (4.10) with respect to both I" and ¢
(without any constraint) gives the equilibrium condition

dF (T, ¢)
ar

dF (T ¢)

=0, Oc

= 0. (4.12)
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The equilibrium surface coverage is determined, to the
lowest order, by the balance between the interfacial energy
and the flat monolayer energy. Hence we have

6/11
ro _ (5 !
5F)

which scales as 7%/ (NB)=6/11 where 4 = va?/T is the
dimensionless interfacial tension. The equilibrium inter-
face curvature c is determined by the balance between
the spontaneous curvature that depends linearly on § =
kA — kB (see (4.9)) and the bending modulus K (see
(4.11)). To the lowest order, we have

2/11
_i<£> @
2K \ 6v

which scales as (1/a)y~2/11(N£)=9/11. Note that the cur-
vature vanishes for zero spontaneous curvature. Hence a
flat lamellar structure is stable only when § = 0. Using the
above results, the lowest-order mixing free energy turns
out to be

5/11
FO — % [F(O)}S/GF - 1 <6’y> F,

(4.13)

_i[p(0>]—1/3 —

0 _
¢ 2K

(4.15)

which scales as (T/a?)7°/11(NF)S/11. Although the
present results are for mixed monolayers, the scaling be-
haviors in (4.13), (4.14), and (4.15) are similar to those
for monodisperse monolayers [21,36] as far as the sur-
face tension and the chain length dependences are con-
cerned. For mixed monolayers in the melt conditions,
on the other hand, the corresponding quantities scale
as 'O~ ~1/3(NSB)71/3’ c0) :}/71/3(]\783)72/3 and
FO ~ 32/3(NB)1/3 [30]. Calculating higher-order terms
in a dimensionless small parameter §2/(K F), the equilib-
rium surface coverage, curvature, and mixing free energy
per chain are obtained as

rr=ro 1+ o, (4.16)
62
=0 (1— 22KF>, (4.17)
_ 362 1584
F*=rO(1— - ) 4.18
m ( 2KF 1936K2F2> (4.18)

To see the effect of mixing on the interfacial prop-
erties of swollen monolayers, we examine here two typ-
ical mixtures of block copolymer monolayers as consid-
ered in reference [30]. Notice again that o’ and ¢’
(J = A, B) are the molecular weight difference between
the two chains (see (3.1)) and fraction of longer chains
for each of the blocks, respectively. i) The two chains
have the same asymmetry but different overall molecu-
lar weights, so that a* = o # 0 and ¢* = ¢ as shown
in Figure 6(a). ii) The two chains have the same over-
all molecular weights, but different asymmetries, so that
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Ng = (aPJa?)NE and ¢* = 1 — ¢P as shown in Fig-
ure 6(b). In the latter case one chain contains the longer
A block, while the other chain contains the longer B block.
In Figures 7 and 8, we have plotted I'*, ¢*, and F;; ac-
cording to (4.16), (4.17), and (4.18), respectively, for these
two cases. In Figure 7 (case 1)), we fixed N§' = 2N and

considered three different values of a? = o = 0.1, 1, 10;
all the plots are shown as a function of ¢ = ¢4 = ¢&. In
Figure 8 (case ii)), we fixed o = 1 and considered three
different values of a? = 0.1,1,10; all the plots are shown
as a function of ¢ = ¢ =1 — ¢B.

Since the surface coverage is related to the overall in-
terfacial area in the system (see section 5.3), I'* can be re-
garded as a measure of the emulsification efficiency of the
copolymer. When o = o is not so large (< 1) in case i),
we find that adding a small fraction of shorter chains to
a copolymer monolayer is more effective in changing the
surface coverage than addition of a small fraction of longer
chains (see Fig. 7(a)). This is because the stretching en-
ergy of the longer chains is considerably reduced by the
presence of shorter chains which act as spacers. However,
this dramatic effect of adding a small fraction of shorter
chains is suppressed for larger a? = of = 10. The de-
pendence of the equilibrium surface coverage I'™ on ¢ is
non-monotonic in case ii), and each curve obtains a maxi-
mum at a finite composition (see Fig. 8(a)). The maximum
point shifts to higher ¢ as o is increased.

The equilibrium curvature ¢* is inversely proportional
to the microemulsion droplet size. When a? = o = 0.1
(i.e., when the polymers have almost equal molecular
weights) in case i), the optimal curvature ¢* is almost con-
stant for small ¢, whereas it decreases almost linearly for
¢ close to unity (see Fig. 7(b)). However, ¢* is not very
much affected if a small fraction of either short or long
chains are added when a® = a® = 1. The behavior of c*
for a? = o =10 (i.e., the two polymers differ greatly in
their molecular weights) is completely different. It drops
sharply for small ¢ and stays almost constant for ¢ = 0.5.
Next we discuss the ¢ dependence of ¢* in case ii) in which
the two chains have the same overall molecular weights but
different asymmetries. From Figure 8(b), we see that for
a® = 0.1 and 10, ¢* depends only weakly on ¢, whereas
c¢* changes its sign at ¢ = 0.5 for a®(= a?) = 1. For the
latter case, ¢* just changes its sign for ¢ = 0 and ¢ = 1,
as it should.

All the curves of the reduced free energy F¥ in case i)
increase monotonically (see Fig. 7(c)). On the other hand,
all the curves in case ii) obtain a single minimum at a finite
composition (see Fig. 8(c)). In other words, there are no
inflection points in both cases. Therefore the system does
not tend to phase separate and the mixed monolayer is
preferred. This is due to the fact that the interactions be-
tween chains of different asymmetry or molecular weights
are always attractive [30]. The attractive interaction origi-
nates from the relaxation in the stretching energy by mix-
ing shorter chains. A similar discussion has been presented
by Cantor [21]. Although the scaling behaviors of various
interfacial properties are different in the present swollen
case and the melt case [30], the effect of mixing and the
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Fig. 7. Plots of equilibrium (a) surface coverage I'* (in units
of 48/11g12/1p=6/11( NBY=6/11) (1) interface curvature ¢* (in
units of y~2/11q =18/ 2/1(NEY=9/11) "and (c) monolayer free
energy Fi% (in units of 4%/11q =12/ 0/ (NBY6/1Y when the
two chains have the same asymmetry but different overall
molecular weights (case i) in the text or Fig. 6(a)). All the
graphs are shown as a function of ¢ = ¢* = ¢P. The molec-
ular weight is fixed N§' = 2NZ. Different curves correspond
to a®* = a® = 0.1 (solid line), 1 (dashed line), and 10 (dotted
line), respectively.
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of 48/11g12/1p=6/11( NBY=6/11) " (1) interface curvature ¢* (in
units of y~2/11q =18/ 2/1(NEY=9/11) "and (c) monolayer free
energy FY% (in units of 4%/11q =12/ 0/1(NB)6/1) when the
two chains have the same overall molecular weights, but dif-
ferent asymmetries (case ii) in the text or Fig. 6(b)). All the
graphs are shown as a function of ¢ = ¢* = 1 — ¢Z. The
molecular weight is chosen as N§' = (o /a?)NE with a? = 1.
Different curves correspond to a® = 0.1 (solid line), 1 (dashed
line), and 10 (dotted line), respectively.
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underlying physics as discussed above, are rather similar
in both cases.

Finally, we remark that the case of a cylindrical mono-
layer can also be calculated by putting ¢c; = c and co =0
in (4.7) and minimizing with respect to I" and ¢ as in
the spherical case. One can obtain the equilibrium sur-
face coverage, interface curvature, and the free energy by
(4.16), (4.17), and (4.18) with § and K being replaced by
(k4 — kP)/2 and R + RB, respectively. However, cylin-
drical monolayers are unlikely to form because the free
energy is always higher than that of spherical monolay-
ers as long as there is no constraint on the volume of the
microemulsion phase [30,36]. But if there are conservation
constraints on the solvent, then we get the transition from
spheres to cylinders or to lamellae [2].

5 Summary and discussion
5.1 Main findings

In this paper, we applied the blob model and scaling ar-
guments of a bimodal brush, to predict the elastic and in-
terfacial properties of mixed amphiphilic monolayers. We
first extended the results in reference [34] for a flat, bi-
modal brush consisting of shorter and longer chains in
the swollen state. Next, we calculated the elastic moduli
and the spontaneous curvature as a function of the com-
position and the relative chain length. We obtained sim-
ple scaling functions which interpolate between the elastic
moduli of a pure short-chain brush and a pure long-chain
brush. We then used the analogy between block copoly-
mer interfaces and polymeric brushes in order to calcu-
late the stretching energy of mixed amphiphilic monolay-
ers. Following the argument in reference [30], we discussed
the effect of mixing on self-assembled diblock copolymer
monolayers in the swollen state. Since the area per chain
adjusts itself to minimize the total free energy in such a
system, the free energy per chain is minimized with re-
spect to both the surface coverage and the curvature. We
then calculated the equilibrium surface coverage, inter-
face curvature, and the mixing free energy as a function
of the composition, and discussed their behavior for two
cases of mixed, block copolymer monolayers. For a certain
choice of parameters, we find that adding a small fraction
of shorter chain to a copolymer monolayer is more effec-
tive in changing the surface properties than addition of a
small fraction of longer chains. In general, we find a large
deviation of the various surface properties from the simple
linear averaging of the pure component monolayers. This
nonlinear dependence on the composition is due to the
effectively, attractive interactions between different types
of chains, because the addition of shorter chains leads to
a relaxation in the stretching energy of the longer blocks.
These properties are qualitatively the same as those of
mixed brushes in the melt state [30], although the scal-
ing behavior is different between the melt and the swollen
cases.
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5.2 Applicability of the present theory

Although we have mainly discussed the elastic properties
of mixed monolayers composed of AB diblock copolymers,
one can apply our theory to mixtures of longer-chain sur-
factant molecules and shorter-chain surfactant molecules
(cosurfactants) as considered in references [55,56]. Our re-
sult is consistent with their finding that the bending mod-
ulus is significantly reduced by the replacement of long-
chain molecules by short ones. In fact, this phenomenon
is experimentally observed in fluctuating flexible bilay-
ers composed of surfactant-cosurfactant mixtures [57,58].
Strictly speaking, however, the blob picture used in this
paper is valid only for long chains and the model applies to
flexible diblock copolymer monolayers. Hence it should be
kept in mind that the results concerning small surfactants
are merely suggestive.

At the beginning of section 3, we mentioned that the
brush model is inappropriate in the limit of only a few
long chains. Notice that fi(«, ¢) and fa(«, ¢) in (3.34)
and (3.35), respectively, are nonanalytic for ¢ — 0. This
reflects the invalidity of the model in this limit. If the
long chains are too dilute, the mushroom (on top of a
brush) picture is relevant for the upper second layer. As
described in section 2, the variation of the elastic moduli
k and kg for mushroom conformations of anchored (end-
grafted) polymers has been calculated in references [33,34,
38,39]. Using their results, the elastic moduli of a bimodal
brush for small ¢ can be written as

65
~ —TN3I/?

e ¢ = 0) ~ 155 TN

1 T alNg

—(1+ = )72 1

+12( +2> =y, (5.1)

1, aN,

kol ¢ — 0) ~ —%TN§F5/2 — ET%H;S. (5.2)

The first term in each of the equations corresponds to
the elastic modulus for a pure short-chain (see (3.31) and
(3.32)). The mushroom part of the long chains is assumed
to be ideal and its gyration radius is given by (aNg/6)/2.
Note also that I'¢ is the effective coverage for the second
upper layer, and both of the above expressions change
linearly with ¢, which is in contrast to the brush case.

5.3 Relation to experiment

Our theory may be used to interpret recent experiments on
the effect of amphiphilic block copolymers on ternary mi-
croemulsions as described in the Introduction. Experimen-
tally, the amount of surfactant molecules (C,;E;) which is
sufficient to form a one-phase microemulsion can be dra-
matically reduced by the addition of a small amount of
amphiphilic block copolymers (PEP-PEO) [31,32]. The
neutron scattering experiments showed that the above
finding is connected to the increase in the structural length
scale d (typical size of an oil or water domain) of the mi-
croemulsion [31]. For small concentrations of copolymers,
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mushroom picture predicts that the observed solubility
enhancement is attributed to the variation of the elastic
moduli [32]. For relatively high copolymer concentrations,
however, the brush regime is entered and the mushroom
picture ceases to be valid. In this case our theory can be
applied. The surfactant molecules and amphiphilic block
copolymers in the experiment correspond to shorter and
longer chains in our theory, respectively.

We now briefly explain why the change in the bend-
ing modulus affects the structural length scale of the
microemulsion [2]. We denote the number of surfactant
molecules per unit volume by n. Then the domain size d
is roughly related to n by [59]

r
d~—

— (5.3)

This domain size should be compared with the persistence
length ¢, of the monolayer defined by [59,60]

4, ~ aexp (%)

The interface remains flat over distances smaller than £,
but is crumpled at larger length scales. For ¢, > d, the
monolayers tend to be parallel to each other, whereas for
{, < d, the monolayers are wrinkled and can form mi-
croemulsions [59,61-64]. Therefore, as a rough estimate
of the minimum surfactant concentration n. needed to
solubilize oil and water, we set £, ~ d and obtain

r K

Ne ~ Eexp (— ?>
Since n. decreases exponentially with k, the efficiency
boost can reflect an increase in x [31,32]. It may be then
convenient to define an emulsification enhancement factor
7 given by 1 = exp(Ak/T), where Ak is the change of the
bending modulus due to the presence of the added longer
chains.

When the volume fraction of the block copolymer is
sufficiently small, each copolymer may be considered to
be in the mushroom regime. The change of the bending
modulus in the mushroom regime has been calculated by
several authors in references [33,34,38,39]. In that case,
the enhancement factor can be given (ignoring some nu-
merical factors)

(5.4)

(5.5)

Tlmush ™~ €XP (NLF)a (56)
for Ny, > Ns. However, it is important to notice that
the polymer mushroom influences the properties of the
interface only on a scale of the order of polymer size. The
uniform distribution of the curvature is correct only when
mushrooms just begin to overlap [32]. When the volume
fraction of the copolymer is high enough to form brushes,
one should use the expression of the bending modulus cal-
culated in this paper or in reference [34]. Using (3.28), the
enhancement factor is given by

Tbrush ~ €XP (NEFS/Q) ~ exp (Nﬁs/u), (5.7)
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for Np, > Ng and we have used (4.13). Notice that nprush
has a much stronger dependence on Np, and I" than in
Nmush- Hence the solubility enhancement should be much
more dramatic in the brush regime. When Ny, = 100, for
example, the overlap coverage is Iy, =~ 0.004. At this sur-
face coverage, the enhancement factor in the mushroom
and brush regimes are nyush =~ 1.49 and nppush = 2.75, re-
spectively. A combination of these two regimes would ac-
count for the effect of the added block copolymers on the
microemulsions in both the mushroom and brush regimes.
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Appendix A. Bimodal brush on a sphere and
a cylinder

In this appendix we derive the free energy of a bimodal
brush on a sphere and a cylinder. First we consider the
spherical surface as illustrated in Figure 3. The brush
height of the first layer his(R) is implicitly given by the
following equation:

ool (®) ey @
From (3.14), this leads to
(1)

where hy is the height of the first layer in the flat case
and is given by (3.4). Solving this equation for hi5(R), we
obtain

i a1 2) ]

This equation is the same as equation (48) in reference [34]
which treats the monodisperse case. For the second layer,
the height of the brush hog(R) satisfies the equation

- B R+his+has 525(7“))1/1/( 1 )
NL NS_/R+h15 dr( . ) ) (A4)

From (3.14), this leads to

hy = VRH hQS]éR) + <1+Zf2)y}w (1 + f}l{ﬂ L (A.5)

(A.3)
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where hs is the height of the second layer in the flat case
and is given by (3.6). Solving this equation for hos(R), we

obtain
hi+ ha\" hi\”
— ) -1+ —= . A.
) -(+3) | 0o

vR
Similar to the flat surface, the total free energy Fj of
a bimodal brush on a spherical surface is proportional to
the number of blobs. Thus it can be calculated (to within
a constant of order unity) as

has(R) = R[(l +

B A R+his 1
F=T|= dr———
ng) /R N0
A R+his+hog 1
—_ dr—— A7
+<53/¢>/R+h15 re)

where &15(r) and &a5(7) are given by (3.14), his and hog are
given by (A.3) and (A.6), respectively. After some calcula-
tions, the free energy per unit area defined by Fy = F, /A
is given by (3.15).

Next we consider the cylindrical surface case. The
brush height of the first layer hi.(R) implicitly satisfies
an equation analogous to (A.1) with his and &15(r) being
replaced by hi. and &;.(r), respectively. Using (3.17) and
solving for hic(R), we have

(14+v)hy 2v/(1+v)

th(R) = R|:<1 +
This equation is the same as equation (51) in reference [34]
which treated the monodisperse case. Similarly, the height
of the second layer ho.(R) satisfies an equation analogous
to (A.4). We then solve for ha.(R) to obtain

R[(1 + M)QW(HW

2vR
2v/(1+v)
—(1 ' ) ]

(1 + Z/)hl
2vR
We calculate the the total free energy F, analogous to
(A.7), and convert to the free energy per unit area F, =
F./A. Then we obtain (3.18).

hac(R)

(A.9)
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