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Abstract
In this chapter, we investigate the dynamics of heterogeneity observed in mul-
ticomponent fluid membranes, particularly focusing on hydrodynamic effects due to
the membrane and solvent. Two situations are discussed separately: above and below
themiscibility transition temperature. In the former case, we calculate the wave number
dependence of the effective diffusion coefficient by changing the temperature and/or
the thickness of the bulk fluid. We also obtain the effective diffusion coefficient when
multicomponent membranes are regarded as two-dimensional microemulsions. For
the case below the transition temperature, we study the domain growth exponent
in a binary membrane using a particle-based simulation method. With the addition
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of bulk solvent, a change in the growth exponent from two- to three-dimensional nature
is observed. Along with the measurement of correlated diffusion, we conclude that
the phase separation takes place through the Brownian coagulation process in our
simulation. We shall review some other works which are related to the present subject.
1. INTRODUCTION

Biological membranes typically contain various components such as
lipid mixtures, sterols, and proteins that are indispensable to cell functions

[1,2]. Rather than being uniformly distributed in the membrane, there is

growing evidence that some cellular components are incorporated in

domains arising from lateral lipid segregation in membranes. In 1997,

Simons and Ikonen proposed a hypothesis which suggested that some lipids

organize themselves into submicron-sized domains termed “lipid rafts” [3].

It was postulated that lipid rafts serve as platforms for proteins which

attribute certain functionality to each domain.

In 2006, the definition of lipid rafts was proposed as follows [4]: “Mem-

brane rafts are small (10–200 nm), heterogeneous, highly dynamic, sterol-

and sphingolipid-enriched domains that compartmentalize cellular processes.

Small rafts can sometimes be stabilized to form larger platforms through

protein-protein and protein-lipid interactions.” In spite of such a definition,

the existence of lipid rafts is still debatable [5]. This is because lipid rafts have

not yet been directly observed in vivo. One of the key issues that has been

repeatedly asked is concernedwith the lateral size and lifetime of lipid domains

or clusters. The reported value ranges from 20 to 200 nm for the size, and from

10�2 to103 s for the lifetime [6].Recently, a high-resolutionobservationof the

lipid dynamics in living cells is achieved using stimulated emission depletion

fluorescentmicroscopy [7].They reported that sphingomyelineandmembrane

proteins are transiently (10–20 ms) trapped in about 20 nm diameter areas.

Stimulated by the lipid raft hypothesis, studies on artificialmodelmembranes

have been developed intensively in the last decade. Especially, the phase behav-

ior of ternary giant vesicles composedof saturated lipidswith high chain-melting

temperature, unsaturated lipids with low chain-melting temperature, and cho-

lesterol has been investigated for various mixtures [8,9]. It is known that such a

ternarymembrane is homogeneouslymixed in the high-temperature region.By

decreasing the temperature, the membrane undergoes a phase separation

between the coexisting liquid-ordered (Lo) and liquid-disordered (Ld)

phases. As a typical example, we show in Fig. 5.1 the phase diagram of a

ternary vesicle consisting of DOPC (dioleoylphosphatidylcholine), PSM
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Figure 5.1 Phases observed by fluorescence microscopy of giant unilamellar ves-
icles containing mixture of DOPC, PSM, and cholesterol at 298 K. The dark liquid
phase is rich in PSM and cholesterol, while the bright liquid phase is rich in DOPC.
Adapted from Ref. [10].
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(N-palmitoyl-D-sphingomyelin) and cholesterol together with several

fluorescence micrographs [10]. In these pictures, dark liquid domains are

rich in PSM and cholesterol, while bright liquid ones are rich in DOPC.

The minority liquid phase forms circular domains which undergo lateral

Brownian motion on the vesicle. In order to determine the ternary phase

diagrams and to identify the domain morphologies, a large amount of

research has been conducted using various experimental techniques [11].

On the other hand, behaviors of multicomponent membranes above the

transition temperature have also gained much attention. Performing deute-

rium NMR experiments, Veatch et al. made a notable attempt to investigate

critical fluctuations in lipid mixtures consisting of DOPC, DPPC

(dipalmitoylphosphatidylcholine), and cholesterol [12]. A broadening of

NMRresonances in the vicinity of the critical pointwas attributed to the com-

positional fluctuations on the scale less than 50 nm in the membrane. A more

quantitative analysis of critical fluctuations using fluorescence microscopy was

addressed byHonerkamp-Smith et al. for ternarymixtures ofDPPC, diPhyPC

(diphytanoylphosphatidylcholine), and cholesterol [13]. Typical microscope

pictures of concentration fluctuations are shown in Fig. 5.2 for higher temper-

atures. From themeasurement of the critical exponents, the authors concluded

that the critical behavior in ternarymembranes belongs to the universality class
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Figure 5.2 Giant vesicle consisting of DPPC, diPhyPC, and cholesterol passing through a
critical temperature at Tc�32.5 �C. For temperatures above Tc, the vesicle exhibits con-
centration fluctuations. For temperatures below Tc, the vesicle undergoes a macro-
scopic phase separation. The scale bar corresponds to 20 mm. Adapted from Ref. [13].
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of the two-dimensional (2D) Ising model [14]. Furthermore, by analyzing the

correlation length and the line tension, it was shown that giant plasma mem-

brane vesicles extracted from that of living rat basophil leukemia cells also ex-

hibit a critical behavior [15]. These results allow us to speculate that lateral

heterogeneity present in real cell membranes at physiological conditions could

correspond to critical fluctuations.

As mentioned in the first paragraph, it is important to note that lipid rafts

are highly dynamical objects. Being stimulated by various experiments, we

shall discuss in this chapter the dynamics of heterogeneity in mul-

ticomponent membranes. It will be stressed that the hydrodynamic interac-

tion mediated not only by the fluid membrane itself but also by the bulk

solvent plays an essential role in the dynamics of multicomponent mem-

branes at large scales. We discuss the cases of above and below the miscibility

transition temperature separately.

In Section 2, we first provide a general framework of the membrane hy-

drodynamics. In Section 3, we investigate the dynamics of critical concentra-

tion fluctuations above the transition temperature. Based on the

Ginzburg–Landau approach with full hydrodynamics, we calculate the wave
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number dependence of the effective diffusion coefficient. We shall also con-

sider the situation when the multicomponent membranes form micro-

emulsions [16]. In Section 4, we study the domain growth dynamics below

the transition temperature using dissipative particle dynamics (DPD) simula-

tions. We show that the presence of a bulk fluid will alter the domain growth

exponent from that of 2D to 3D, indicating a significant role played by the

membrane–solvent coupling. In order to elucidate the underlying physical

mechanism of this effect, we look into the diffusion properties in the mem-

brane by measuring two-particle correlated diffusion. We show that quasi-

2D phase separation proceeds by the Brownian coagulation (BC) mechanism

which reflects the 3D nature of the bulk solvent. We will also compare our

results with the related works in the literatures.

2. MEMBRANE HYDRODYNAMICS

In this section, we first establish the governing equations for the fluid
membrane and its surrounding environment. Our aim is to derive the mem-

brane mobility tensors which will be used in the later sections. More details

of the calculation are given in Refs. [17,18].

As shown in Fig. 5.3, we assume that the membrane is an infinite planar

sheet of liquid, and its out-of-plane fluctuations are totally neglected, which

is justified for typical bending rigidities of bilayers. The liquid membrane is

embedded in a bulk fluid such as water or solvent that is bounded by hard

walls. Such a situation is worth considering because biological membranes

interact strongly with other cells, substrates, or even the underlying cyto-

skeleton which can affect the structural and transport properties of the
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Figure 5.3 Schematic picture showing a planar liquid membrane having 2D viscosity �
located at z¼0. It is sandwiched by a solvent of 3D viscosity �s

�. Two impenetrable walls
are located at z¼�h� bounding the solvent.
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membrane. Let v(r) be the 2D velocity of the membrane fluid and the 2D

vector r¼ (x,y) represents a point in the plane of the membrane. We first

assume the membrane to be incompressible

r�v¼ 0, ð5:1Þ
wherer is a 2D differential operator. We work in the low-Reynolds num-

ber regime of the membrane hydrodynamics so that the inertial effects can be

neglected. This allows us to use the 2D Stokes equation given by [19]

�r2v�rpþ f sþF¼ 0, ð5:2Þ
where � is the 2D membrane viscosity, p(r) the 2D in-plane pressure, fs(r)

the force exerted on the membrane by the surrounding fluid (“s” stands for

the solvent), and F(r) is any other force acting on the membrane which we

shall discuss in later sections.

As presented in Fig. 5.3, the membrane is fixed in the xy-plane at z¼0.

The upper (z>0) and the lower (z<0) fluid regions are denoted by “þ”

and “�,” respectively. The velocities and pressures in these regions are writ-

ten as v�(r,z) and p�(r,z), respectively. Since the 3D viscosity of the upper

and the lower solvent can be different, we denote them as �s
�, respectively.

Consider the situation in which impenetrable walls are located at z¼�h�,
where hþ and h� can be different in general. Similar to the liquid membrane,

the solvent in both regions are taken to be incompressible

~r�v� ¼ 0, ð5:3Þ
where ~r represents a 3D differential operator. We also neglect the solvent

inertia, and hence, it obeys the 3D Stokes equations

��s ~r2v�� ~rp� ¼ 0: ð5:4Þ
The presence of the surrounding solvent is important because it exerts force

on the fluid membrane. This force, indicated as fs in Eq. (5.2), is given by the

projection of sþ�s�ð Þz¼0�êz on the xy-plane. Here êz is the unit vector

along the z-axis, and s� are the stress tensors due to the solvent

s� ¼�p�Iþ��s ~rv�þ ~rv�
� �Th i

: ð5:5Þ

In the above, I is the identity tensor and the superscript “T” indicates the

transpose.

Using the stick boundary conditions at z¼0 and z¼�h�, we solve the
hydrodynamic equations (5.3) and (5.4) to obtain fs. Then we calculate the

membrane velocity from Eq. (5.2) as
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v k½ � ¼G k½ ��F k½ �, ð5:6Þ

where v[k] and others are the Fourier components defined such as by

v rð Þ¼
ð

dk

2pð Þ2v k½ �exp ik�rð Þ, ð5:7Þ

with k¼ kx,ky
� �

. After some calculations, one can show that the mobility

tensor G[k] in Fourier space is given by [17,18]

Gab k½ � ¼ 1

�k2þk �þs coth khþð Þþ��s coth kh�ð Þ� � dab�kakb

k2

� �
, ð5:8Þ

with a,b¼x,y and k¼ jkj. For simplicity, we consider the case when the

two walls are located at equal distances from the membrane, that is,

hþ¼h�¼h. Then the above mobility tensor becomes

Gab k½ � ¼ 1

� k2þ nkcoth khð Þ½ � dab�kakb

k2

� �
, ð5:9Þ

where n�1¼�/2�s with �s¼ (�s
þþ�s

�)/2. An almost equivalent expression

to Eq. (5.9) has been derived for Langmuir monolayers in which there is

only one wall or a substrate [20,21]. In the following, we will employ

Eq. (5.9) as the general membrane mobility tensor.

We now discuss the two limiting situations of Eq. (5.9). Saffman and

Delbrück (SD) investigated the case when the twowalls are located infinitely

away from themembrane, which is called as the freemembrane case [22–24].

Taking the limit of kh�1 in Eq. (5.9), the mobility tensor becomes [25,26]

Gfree
ab k½ � ¼ 1

� k2þ nkð Þ dab�kakb

k2

� �
: ð5:10Þ

The quantity n�1 is called as the SD hydrodynamic screening length.

The real space expression of this mobility tensor is obtained by the Fourier

transform of Eq. (5.10) [21,25,26]

Gfree
ab rð Þ¼ 1

4�
H0 nrð Þ�Y0 nrð Þþ 2

pn2r2
�H1 nrð Þ

nr
þY1 nrð Þ

nr

" #
dab

þ 1

4�
� 4

pn2r2
þ2H1 nrð Þ

nr
�2Y1 nrð Þ

nr
�H0 nrð ÞþY0 nrð Þ

" #
rarb

r2
,

ð5:11Þ

where r ¼ jrj. In the above,Hn zð Þ are Struve functions and Yn(z) are Bessel

functions of the second kind.
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Evans and Sackmann (ES) considered the opposite kh	1 limit, for

which the membrane is confined between the two walls although the sol-

vent is still left [27]. In this case, Eq. (5.9) takes the following form:

Gcon
ab k½ � ¼ 1

� k2þk2ð Þ dab�kakb

k2

� �
: ð5:12Þ

In the above, k�1¼ ffiffiffiffiffiffiffiffiffi
n�1h

p
is called as the ES hydrodynamic screening

length, and it is the geometric mean of n�1 and h [28]. The above mobility

tensor was used in a phenomenological membrane hydrodynamic model

with momentum decay [26,29–31]. The real space representation of the

above mobility tensor becomes

Gcon
ab rð Þ¼ 1

2p�
K0 krð ÞþK1 krð Þ

kr
� 1

k2r2

" #
dab

þ 1

2p�
�K0 krð Þ�2K1 krð Þ

kr
þ 2

k2r2

" #
rarb

r2
,

ð5:13Þ

where Kn(z) are the modified Bessel functions of the second kind. In

Section 3, we shall mainly use the general mobility tensor Eq. (5.9), whereas

either Eq. (5.10) or (5.12) is used in Section 4.

3. DYNAMICS OF CONCENTRATION FLUCTUATIONS
3.1. Time-dependent Ginzburg–Landau model

In this section, we use the idea of critical dynamics to calculate the effective

diffusion coefficient in multicomponent lipid membranes. Based on

Ginzburg–Landauapproachwith fullhydrodynamics,wecalculate thedecayrate

of the concentration fluctuations occurring inmembranes [32,33].Wedealwith

the general case where the membrane is surrounded by a bulk solvent and

two walls as depicted in Fig. 5.3. We also study the situation when the

multicomponent membranes form 2D microemulsions [16]. This interesting

viewpoint is motivated by a recent work which predicts the reduction of the

line tension in membranes containing saturated, unsaturated, and hybrid lipids

(one tail saturated and the other unsaturated) [34–37]. We shall explore the

concentration fluctuations in 2D microemulsion with full hydrodynamics.

Consider a two-component fluid membrane composed of lipid A and

lipid B whose local area fractions are denoted by fA rð Þ and fB rð Þ, respec-
tively. Since the relation fA rð ÞþfB rð Þ¼ 1 holds, we introduce a new
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variable defined by c rð Þ¼fA rð Þ�fB rð Þ. Then the simplest form of the

free-energy functional F cf g describing the fluctuation around the homo-

geneous state is

F cf g¼
ð
dr

a

2
c2þ c

2
rcð Þ2

h i
, ð5:14Þ

where a>0 is proportional to the temperature difference from the critical

temperature Tc and c>0 is related to the line tension.

The time evolution of concentration in the presence of hydrodynamic

flow is given by the time-dependent Ginzburg–Landau equation for a

conserved order parameter [38]

@c
@t

þr� vcð Þ¼Lr2 dF
dc

, ð5:15Þ

where L is the kinetic coefficient. In the membrane hydrodynamic equa-

tion (5.2), we need to incorporate the thermodynamic force due to the con-

centration fluctuations. Hence we have

F¼�crdF
dc

: ð5:16Þ

We implicitly assume that the relaxation of the velocity v is much faster

than that of concentrationc. The membrane velocity can be formally solved

as follows using the appropriate 2D mobility tensorGab r,r0ð Þ derived in the
previous section

va r, tð Þ¼
ð
dr0Gab r,r0ð Þ r0

bc
	 
 dF

dc r0ð Þ : ð5:17Þ
Since our interest is in the concentration fluctuations around the homogeneous

state, we define dc r, tð Þ¼c r, tð Þ� �c, where the bar indicates the spatial

average. The free-energy functional expanded in powers of dc becomes

F dcf g¼
ð
dr

a

2
dcð Þ2þ c

2
rdcð Þ2

h i
: ð5:18Þ

Substituting Eq. (5.17) into Eq. (5.15), we get

@dc r, tð Þ
@t

¼Lr2 dF
d dcð Þ

�
ð
dr0 radc rð Þð ÞGab r,r0ð Þ r0

bdc r0ð Þ� � dF
d dc r0ð Þð Þ : ð5:19Þ
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Wenow consider the dynamics of the time-correlation function defined by

S r, tð Þ¼ dc r1, tð Þdc r2,0ð Þh i, ð5:20Þ
where r¼ r2� r1. Within the factorization approximation [39], the spatial

Fourier transform of S r, tð Þ defined by

S k, t½ � ¼
ð
drS r, tð Þexp �ik�rð Þ ð5:21Þ

satisfies the following equation

@S k, t½ �
@t

¼� G 1ð Þ k½ �þG 2ð Þ k½ �
	 


S k, t½ �: ð5:22Þ

The first term, G 1ð Þ k½ �, denotes the van Hove part of the relaxation rate

given by

G 1ð Þ k½ � ¼LkBTk2w�1 k½ �: ð5:23Þ
Here, the static correlation function is defined by

w k½ � ¼ dc k½ �dc �k½ �h i¼ kBT

c k2þx�2
� � , ð5:24Þ

where x¼ (c/a)1/2 is the correlation length, kB the Boltzmann constant, and

T the temperature.

As for the second term in Eq. (5.22), G 2ð Þ k½ � denotes the hydrodynamic

part of the decay rate given by

G 2ð Þ k½ � ¼ 1

w k½ �
ð

dq

2pð Þ2 kaGab q½ �kbw kþq½ �: ð5:25Þ

When we use Eq. (5.9) for the mobility tensor Gab, the hydrodynamic part

of the decay rate is expressed with an integral as

G 2ð Þ k½ � ¼ kBT

�w k½ �
ð

dq

2pð Þ2
w q½ �

jk�qj2þ njk�qjcoth jk�qjhð Þ
k2q2� k�qð Þ2

jk�qj2 :

ð5:26Þ

3.2. Effective diffusion coefficient
We now introduce an effective diffusion coefficient (due only to the hydro-

dynamic part) D[k] defined by
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G 2ð Þ k½ � ¼ k2D k½ �: ð5:27Þ
In order to deal with dimensionless quantities, we rescale all the lengths by

the SD hydrodynamic screening length n�1¼�/2�s such that K¼k/n,
Q¼q/n, X¼xn, and H¼hn. Then D[k] can be rewritten as

D K ;X ,H½ � ¼ kBT

4p2�
1þK2X2
� �ð1

0

dQ

ð2p
0

dy

Q3 sin2y

1þQ2X2ð Þ G2þG3=2 coth
ffiffiffiffi
G

p
H

� �� � , ð5:28Þ

with G¼K2þQ2�2KQ cos y. Since this integral cannot be performed

analytically, we evaluate it via a numerical method. We explore the depen-

dencies of D on the variable K, and the parameters X and H. Notice that

the dimensionless correlation length X also measures the proximity of the

temperature with respect to the critical temperature Tc.

In Fig. 5.4, we plot the diffusion coefficient D (scaled by kBT/4p�) as a
function of dimensionless wave numberK for a different solvent thicknessH

while the correlation length is fixed to X¼1 (i.e., fixed temperature). In the

limit of K	1, D is almost a constant. The calculated D starts to increase
H = 100

H = 1

10–210–3

4p
hD

/k
B
T

10–2

10–1

10–1

100

100

K

101

101

102 103

H = 0.01

X = 1

Figure 5.4 Scaled effective diffusion coefficient D as a function of K for H¼0.01, 1, and
100 when X¼1. The solid lines are from the analytical expression given in Eq. (5.29)
obtained in the limit of small H.
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around K�1, and a logarithmic behavior (extracted via numerical fitting) is

seen forK�1. In this plot, we see thatD becomes smaller for smaller values

of H. Figure 5.5 shows the diffusion coefficient D as a function of wave

number K for different X (i.e., different temperatures) while the solvent

height is fixed to H¼1. Here D is nearly constant for K	1/X and follows

an S-shaped curve with increasing K. Finally, a logarithmic dependence is

observed for large K. We note that this logarithmic behavior for K�1/X is

in contrast to that of 3D critical fluids given by the Kawasaki function which

increases linearly with the wave number [40].

In Fig. 5.6, we explore the effect of the correlation length X on D for

different values of H when K¼10�3. The quantity X is a measure of an ef-

fective size of the correlated region formed transiently in the membrane due

to thermal fluctuations. When X	1, the diffusion coefficient D decreases

only logarithmically, which is typical for a pure 2D system [22–24]. The

proximity to the walls results in a loss of momentum from the membrane

[29]. This leads to a rapid suppression of the velocity field within the

membrane. Consequently, the values of D are smaller for smaller H. The

flattening of the curves for X�1 is due to the dominance of the X2

terms in the numerator and denominator in Eq. (5.28). In Fig. 5.7,
X = 100
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100
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K
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102 103

X = 0.01

X = 1

H = 1

Figure 5.5 Scaled effective diffusion coefficient D as a function of K for X¼0.01, 1, and
100 when H¼1.
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Figure 5.6 Scaled effective diffusion coefficient D as a function of X for H¼0.01, 1, and
100 when K¼10�3. The solid lines are from the analytical expression given in Eq. (5.29)
obtained in the limit of small H.
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Figure 5.7 Scaled effective diffusion coefficient D as a function of H for X¼0.01, 1, and
100 when K¼10�3.
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we plot D as a function of H for different values of X when K¼10�3. Here

the values of D are smaller for larger X, as it should be. In general, there is a

monotonic increase of D followed by a saturation to a constant value for

largerH. It is interesting to note that the crossover occurs whenH�X holds.

For confinedmembranes (small h), we showed in Section 2 that the general

mobility tensor Eq. (5.9) reduces toGab
con given by Eq. (5.12). In this case, one

can obtain an analytical expression for the effective diffusion coefficient [32]. In

terms of the dimensionless quantities K, X, and H, it is written as

D K ;X ,H½ � ¼ kBT

4p�
1þK2X2

2K2X2
� ln

Xffiffiffiffiffi
H

p
0
@

1
A

2
4

þ H

X2
1þK2X2
� �

ln
Xffiffiffiffiffi

H
p

1þK2X2ð Þ

0
@

1
A

þHO
2X2

ln
K4

þþK2
�þK2

þO
O�K2��1

 !
,

ð5:29Þ

where

O¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2X2þX2=H�1ð Þ2þ4K2X2

q
, ð5:30Þ

and

K� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2X2�X2=H

p
: ð5:31Þ

Equation (5.29) is plotted using solid lines in Fig. 5.4 forH¼0.01 and 1 with

X¼1. For H¼0.01, the analytical and numerical data coincide, giving

credence to accuracy of the numerical solutions. It is seen that even for

H¼1, the agreement is still acceptable. For H¼100, however, a significant

deviation is observed (not shown), which is expected as this limit is beyond

the valid range of Eq. (5.29).

The solid lines in Fig. 5.6 also represent the analytical result of Eq. (5.29).

It is seen that the analytical and the numerical data points almost coincide for

H¼0.01 and 1. The agreement between the numerical result and the ana-

lytical expression is beyond the expected range of H	1 and reaches up to

H�1, as pointed out by Stone and Ajdari [28]. Hence Eq. (5.29) is useful in

analyzing the experimental data in many situations.

When the critical temperature Tc is approached from above, the corre-

lation length diverges according to x� jT �Tcj��n, where �n is the critical
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exponent. WhenTc is approached from below, on the other hand, the order

parameter given by the difference in lipid compositions vanishes as

dc� Tc�Tð Þ�b. From the experiments on model multicomponent vesicles,

these critical exponents were found to have values close to �b¼ 1=8 and �n¼ 1,

respectively [13]. Furthermore, the experiment on giant plasma membrane

vesicles measured the critical exponent�g¼ 7=4 which characterizes the critical
behavior of the osmotic compressibility [15]. These static exponents seem to

coincide with the exact results of the 2D Ising model [14]. The description

presented in this section uses a mean-field approach, and therefore, the

corresponding exponents are �b¼ 1=2, �n¼ 1=2, and �g¼ 1, respectively. The

discrepancies between these values are still under discussion.
3.3. Membrane as a 2D microemulsion
The role of surfactant molecules in 3D microemulsions is to reduce the sur-

face tension at the interface between oil and water. In an analogy to 3D

microemulsions, hybrid lipids (one chain unsaturated and the other saturated)

act as lineactant molecules which stabilize finite-sized domains in 2D. In other

words, hybrid lipids play a similar role to surfactant molecules at the interface

between Lo and Ld domains. It should be also noticed that hybrid lipids form a

major percentageof all naturally existing lipids [41]. Basedon a simplemodel of

hybrid lipids, Brewster et al. showed that finite-sized domains can be formed in

equilibrium [34,35]. A subsequent model predicted that domains are even

more stabilized in a system of saturated/hybrid/cholesterol lipid membranes

[36,37]. Being motivated by this idea, we calculate the decay rate of

concentration fluctuations when the free energy of the multicomponent

membrane has the form of a 2D microemulsion.

The free-energy functional for a microemulsion includes a higher order

derivative term and is expressed in terms of dc as [16]

FME dcf g¼
ð
dr

a

2
dcð Þ2þ c

2
rdcð Þ2þ g

2
r2dc
� �2h i

, ð5:32Þ

with a, g>0 and c<0. The negative value of c creates 2D interfaces, while

the term with positive g is a stabilizing term. This form of the free energy has

been used previously to study coupled modulated bilayers [42,43]. As in the

previous section, the decay rate of the correlation function can be split into

two parts. First, the van Hove part now becomes

G 1ð Þ
ME k½ � ¼LkBTk2w�1

ME k½ �, ð5:33Þ



144 Shigeyuki Komura et al.
where the static correlation function wME k½ � is [44]
wME k½ � ¼ kBT

gk4þ ck2þ a
: ð5:34Þ

By defining

k20¼� c

2g
, ð5:35Þ

s4¼ a

g
� c

2g

� �2

, ð5:36Þ

we can write the static correlation function as

wME k½ � ¼ kBT

g k2�k20ð Þ2þs4
h i : ð5:37Þ

On plotting wME as a function of k, a peak appears at k¼k0 followed by

a 1/k4 decay. The width of the peak is given by s. A lamellar phase appears

when s¼0. Notice that c¼0 is called the Lifshitz point at which the peak

occurs for k¼0. Using the form of Eq. (5.37), we can write Eq. (5.33) as

G 1ð Þ
ME k½ � ¼Lgk2 k2�k20

� �2þs4
h i

: ð5:38Þ

Similar to the previous section, we next write the hydrodynamic part of

the decay rate in terms of the effective diffusion coefficient DME k½ � as

G 2ð Þ
ME k½ � ¼ k2DME k½ �: ð5:39Þ

Using the mobility tensor given by Eq. (5.9), we can write DME as

DME K ;K0,S,H½ � ¼ kBT

4p2�
K2�K2

0

� �2þS4
h i



ð1
0

dQ

ð2p
0

dy
Q3 sin2y

Q2�K2
0ð Þ2þS4

h i
G2þG3=2 coth

ffiffiffiffi
G

p
H

� �� � , ð5:40Þ

where K¼q/n,K0¼q0/n,Q¼q/n,S¼s/n,H¼hn, and G¼K2þQ2�2

KQ cos y.
In Fig. 5.8, we plotDME as a function ofK for different values ofHwhen

K0¼S¼1 are fixed. When K	1, D shows a constant value. We also

observe the 2D characteristic of logarithmic behavior of D for K�1.
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Figure 5.8 Scaled effective diffusion coefficient DME as a function of K for H¼0.01, 1,
and 100 when K0¼S¼1.
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ForK	1, the effect of the outer environment is felt with the suppression of

the diffusion coefficient with smaller H. The curves almost overlap when

K�1, indicating the negligible effect of the outer environment at large

wave numbers. An interesting feature of DME is the dip occurring at

K�K0 which does not exist for binary critical fluids. This can be attributed

to the peak at k¼k0 in wME k½ � [39,44]. We also note that, for 3D

microemulsions, the effective diffusion coefficient varies linearly with the

wave number when it is large enough [39], which is in contrast to the

present 2D microemulsions.
3.4. Related works
In addition to the present theory, there are some other theoretical works

on concentration fluctuations in multicomponent membranes. Using

renormalization group techniques, Tserkovnyak and Nelson calculated pro-

tein diffusion in a multicomponent membrane close to a rigid substrate [45].

They pointed out that, in the vicinity of the critical point, the effective

protein diffusion coefficient acquires a power-law behavior. Inaura and

Fujitani first discussed concentration fluctuations in free membranes sur-

rounded by a 3D solvent [46]. They used the mobility tensor Gab
free in

Eq. (5.10) and calculated numerically the effective diffusion coefficient.
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Hence their calculation corresponds to the special case of the present theory.

Haataja also discussed critical dynamics in multicomponent lipid membranes

and showed that the effective diffusion coefficient exhibits a crossover from a

logarithmic behavior to an algebraic dependence (inversely proportional to

the correlation length) for larger length scales [47]. However, since an ap-

proximate empirical relation for the diffusion coefficient of a moving object

was employed [48], his theory should be distinguished from ours. Concen-

tration fluctuations in membranes in the absence of hydrodynamic effect was

recently discussed by McConnell [49].

4. PHASE SEPARATION DYNAMICS

4.1. Domain coarsening

Although biomembranes can be regarded as 2D viscous fluids, they are not iso-

lated pure 2D systems since lipids are coupled to the adjacent solvent.Hence it is

of great interest to investigate the phase separation dynamics in such a quasi-2D

liquid membrane in the presence of hydrodynamic interaction. (We use the

word “quasi-2D” whenever the membrane is coupled to the bulk fluid.) To

address this problem, we consider a 2D binary viscous membrane in contact

with a bulk solvent.We employ a simplemodel inwhich themembrane is con-

fined to a plane with the bulk fluid particles added above and below. In our

model using DPD simulation technique, the exchange of momentum between

the membrane and the bulk solvent is naturally taken into account. We partic-

ularly focus on the effect of bulk solvent on the quasi-2D phase separation.

Before explaining our simulation, let us briefly review here the general

knowledge about phase separation of binary fluids following a quench [50].

The dynamic scaling hypothesis assumes that there exists a scaling regime

characterized by the average domain size R that grows with time t as R� ta

with an universal exponent a. For 3D off-critical binary fluids, there is an

initial growth by the BC process [51], followed by the Lifshitz–Slyozov

(LS) evaporation–condensation process [52]; both mechanisms show a

growth exponent a¼1/3. For critical mixtures, there is an intermediate

a¼1 regime owing to hydrodynamic flow effect [53]. This is followed by

a late time inertial regime of a¼2/3 [54]. The scenario is slightly different

for pure 2D systems [55]. For an off-critical mixture, it was predicted that

after the initial formation of domains, they grow by the BCmechanism with

a different exponent a¼1/2 (as will be explained later), followed by a cross-

over to the LS mechanism which gives a¼1/3 even in 2D. For critical mix-

tures, on the other hand, the initial quench produces an interconnected
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structure which coarsens and then breaks up due to the interface diffusion

with an exponent a¼1/2. After the breakup processes, coarsening takes

place through BC that is again characterized by the a¼1/2 scaling [51].

These predictions were confirmed by molecular dynamics simulations in

2D [56]. The exponent a¼1/2 was also observed in 2D lattice-Boltzmann

simulations in the presence of thermal noise for a critical mixture [57].

4.2. Model and simulation technique
We use a structureless model of the 2D fluid membrane within the DPD

framework [58,59]. As shown in Fig. 5.9, the 2D membrane is represented

by a single layer of particles confined to a plane. In order to study phase

separation, we introduce two species of particles, A and B. The bulk fluid

which we call as “solvent” (S) is also represented by single particles of same

size as that of the membrane particles. All particles have the same mass m.

In DPD, the interaction between any two particles, within a range r0, is

linearly repulsive. The pairwise interaction leads to full momentum conser-

vation, which in turn brings out the correct fluid hydrodynamics. The force

on a particle i is given by

m
dvi

dt
¼
X
j 6¼i

FC
ij rij
� �þFD

ij rij,vij
� �þFR

ij rij
� �h i

, ð5:41Þ

where rij ¼ ri� rj and vij ¼ vi�vj. Of the three types of forces acting on the

particles, the conservative force on particle i due to j is FC
ij ¼ aijo rij

� �
r̂ij,
Figure 5.9 Image of the fluid membrane with the bulk fluid called solvent. The yellow
(A) and red (B) particles represent the two components constituting the membrane,
while blue ones (S) represent the solvent. For clarity, only a fraction of the solvent par-
ticles are shown.



148 Shigeyuki Komura et al.
where aij is an interaction strength and r̂ij ¼ rij=rij with rij ¼ jrijj. The second
type of force is the dissipative force FD

ij ¼�Gijo2 rij
� �

r̂ij�vij
� �

r̂ij, where Gij is

the dissipative strength for the pair (i, j). The last is the random force

FR
ij ¼ sij Dtð Þ�1=2o rij

� �
zij r̂ij, where sij is the amplitude of the random noise

for the pair (i, j), and zij is a random variable with zero mean and unit var-

iance which is uncorrelated for different pairs of particles and different time

steps. The dissipative and random forces act as a thermostat, provided the

fluctuation–dissipation theorem sij
2¼2GijkBT is satisfied. The weight factor

is chosen as o(rij)¼1� rij/r0 up to the cutoff radius r0 and zero thereafter.

The particle trajectories are obtained by solving Eq. (5.41) using the veloc-

ity-Verlet integrator. In the simulation, r0 and m set the scales for length and

mass, respectively, while kBT sets the energy scale. The time is measured

in units of t¼ (mr0
2/kBT)

1/2. The numerical value of the amplitude of

the random force is assumed to be the same for all pairs such that sij¼3.0

[(kBT)
3m/r0

2]1/4, and the fluid density is set as r¼3.0. We set kBT¼1 and

the integration time step is chosen to be Dt¼0.01t.
The membrane is constructed by placing particles in the xy-plane in the

middle of the simulation box (see Fig. 5.9). Owing to the structureless rep-

resentation of the constituent particles, we apply an external potential so as

to maintain the membrane integrity. This is done by fixing the z-coordinates

of all the membrane particles. The work involves the systematic variation of

the height of the simulation box starting from the pure 2D case. In the absence

of solvent, we work with a 2D-box of dimensions Lx
Ly¼80
80 with

19,200 particles constituting the membrane. For the quasi-2D studies, we

add solvent particles S above and below themembrane and increase the height

of the box as Lz¼5,20 and 40. For all the cases, there are 19,200 membrane

particles. The largest box size (Lz¼40) has 748,800 solvent particles. The box

with height Lz¼40 is found to be sufficiently large enough to prevent the

finite-size effect which affects the membrane–solvent interaction. The system

is then subject to periodic boundary conditions in all the three directions. For

phase separation simulations, we introduce two species of membrane particles

A and B. The interaction parameter between various particles are given by

aAA¼aBB¼aSS¼aAS¼aBS¼25 and aAB¼50. In order to do a quench, the

membrane is first equilibrated with a single component, following which a

fraction of the particles are instantaneously changed to the B type.

4.3. Domain growth dynamics
First, we describe the results of the phase separation dynamics. The snapshots

for A:B composition set to 70:30 (off-critical mixture) are shown in Fig. 5.10

for both pure 2D case (A) and quasi-2D case with Lz¼40 (B). Qualitatively,



Figure 5.10 The snapshots of a 70:30 (off-critical) mixture undergoing phase separation
at t¼0, 150, and 1000 (top to bottom) for a pure 2D (A) and quasi-2D systemwith Lz¼40
(B). The same sequences of a 50:50 (critical) mixture for a pure 2D (C) and quasi-2D sys-
tem (D).
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it is seen that the domains for the quasi-2D case are smaller in size when

compared at the same time step. We also monitor the average domain size

R(t) which can be obtained from the total interface length L(t) between the

two components. This is because R(t) and L(t) are related by L(t)¼2pN(t)

R(t), where N(t) is the number of domains. The area occupied by the

B-component is given by A¼ pN tð ÞR2 tð Þ which is a conserved quantity.

Then we have

R tð Þ¼ 2A=L tð Þ: ð5:42Þ
When the domain size grows as R� ta, one has L� t� a and N� t�2a. The

domain size R(t) for 70:30 mixture is shown in Fig. 5.11. In this plot, an

average over 10 independent trials has been taken. It can be seen that the

pure 2D case has a growth exponent a¼1/2. Upon the addition of solvent,

we observe that the exponent shifts to a lower value of a¼1/3. This expo-

nent is reminiscent of the phase separation dynamics of an off-critical mix-

ture in 3D. By systematically increasing the amount of solvent in the system

by changing the height Lz, we can see a clear deviation from the pure 2D
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Figure 5.11 The average domain size R as a function of time t for a 70:30 off-critical
mixture. The upper curve is the pure 2D case showing an a¼1/2 scaling, and the lower
curve is the quasi-2D case when Lz¼40 showing a distinct a¼1/3 scaling.
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Figure 5.12 The average domain size R as a function of time t for a 50:50 critical mixture.
The upper curve is the pure 2D case showing an a¼1/2 scaling, and the lower curve is
the quasi-2D case when Lz¼40 showing a distinct a¼1/3 scaling.
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behavior (not shown). There is no further change if Lz is increased beyond

40. A larger system size Lx
Ly¼200
200 also produced the same scaling

for the pure 2D case, which demonstrates that finite-size effects are small.

In Fig. 5.12, we show the result for a component ratio of 50:50 (critical

mixture), whereas the corresponding patterns are given in Fig. 5.10C and D

for 2D and quasi-2D cases, respectively. In this case, the growth exponent
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for the pure 2D case is less obvious owing to rapid coarsening of the

domains. However, by simulating a bigger system 200
200 with the same

areal density, an a¼1/2 exponent is indeed obtained. Similar to the off-

critical case, the growth of the domains is slowed down by the addition

of solvent and the exponent is reduced to a¼1/3. These results indicate that

solvent is responsible for slowing down the growth dynamics.

The observed exponent a¼1/2 in pure 2D systems can be explained in

terms of the BCmechanism [55]. From dimensional analysis, the 2D diffusion

coefficient of the domain is given by D2�kBT/�, where � is the membrane

2D viscosity. Using the relation

R2�D2t� kBT

�

� �
t, ð5:43Þ

we findR� t1/2. For 3D systems, on the other hand, the diffusion coefficient

of the droplet is inversely proportional to its size, D3�1/R, a well-known

Stokes–Einstein relation. Hence the BC mechanism in 3D gives rise to an

exponent a¼1/3. (In general, the exponent is a¼1/d, where d is the space

dimension.) The change in the exponent from a¼1/2 to 1/3 due to the

addition of solvent implies the crossover from 2D to 3D behaviors of

the phase separation dynamics even though the lateral coarsening takes place

only within the 2D geometry. Notice that the LS mechanism shows an

exponent of a¼1/3 in both 2D and 3D. We thus conclude that our

simulations are still in the early time of the coarsening dynamics.

4.4. Correlated diffusion
In order to justify our argument, it is necessary to examine the size depen-

dence of the domain diffusion coefficient in quasi-2D systems. This can be

calculated by tracking the mean-squared displacement of domains of various

radii. The equivalent information can be more efficiently obtained by

calculating the two-particle longitudinal coupling diffusion coefficient in

a single component membrane rather than in a binary system.

Consider a pair of particles separated by a 2D vector r, undergoing dif-

fusion in the fluid membrane. The two-particle mean-squared displacement

is given by [25,26]

DrkaDr
l
b

D E
¼ 2Dkl

ab rð Þt, ð5:44Þ

whereDra
k is the displacement of the particle k(¼1,2) along the axis a(¼x,y),

and Dab
kl is the diffusion tensor giving self-diffusion when k¼ l and the
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coupling between them when k 6¼ l. The x-axis is defined along the line con-

necting a pair of particles 1 and 2, that is, r¼ r x̂. Hence, we haveDxy
12¼0 by

symmetry. The longitudinal coupling diffusion coefficient, DL rð Þ¼D12
xx rx̂ð Þ,

gives the coupled diffusion along the line of centers of the particles.

We first describe the analytical expression ofDL(r) for the free membrane

case, which can be essentially obtained from Eq. (5.11) (see Ref. [17] for

details). Using the Einstein relation for over-damped dynamics, we obtain

Dfree
L rð Þ¼ kBT

4p�
� 2

n2r2
þpH1 nrð Þ

nr
�pY1 nrð Þ

nr

� �
: ð5:45Þ

At short distances r	n�1, the asymptotic form of the above expression

becomes

Dfree
L rð Þ� kBT

4p�
ln

2

nr

� �
� gþ1

2

� �
, ð5:46Þ

where g¼0.5772 . . . is Euler’s constant. At large inter-particle separations

r�n�1, on the other hand, Eq. (5.45) reduces to

Dfree
L rð Þ� kBT

2p�nr
¼ kBT

4p�sr
, ð5:47Þ

showing the asymptotic 1/r decay which reflects the 3D nature of this limit.

Notice that Eq. (5.47) depends only on the solvent viscosity �s but not on the
membrane viscosity � any more.

In Fig. 5.13, we plot the measured longitudinal coupling diffusion coef-

ficientDL as a function of 2D distance r. In these simulations, we have worked

with only single component membranes with the same system sizes and num-

ber of particles as those used for the phase separation simulations.We have also

taken average over 20 independent trials. In the pure 2D case without any

solvent, DL shows a logarithmic dependence on r. This is consistent with

Eq. (5.46) obtained when the coupling between the membrane and solvent

is veryweak so that themembrane can be regarded almost as a pure 2D system.

Using Eq. (5.46) as an approximate expression, we get from the fitting as

kBT/4p��0.89
10�2 and n�1�20. In an ideal case, the SD screening

length should diverge due to the absence of solvent. The obtained finite value

for n�1 is roughly set by the half of the system size in the simulation.

When we add solvent (Lz¼40), the DL is decreased and no longer

behaves logarithmically. In this case, we use the full expression Eq. (5.45)

for the fitting and obtained kBT/4p��1.35
10�2 and n�1�1. In the above
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Figure 5.13 Longitudinal coupling diffusionDL as a function of particle separation r. The
upper circles are data for the pure 2D case. The lower squares correspond to the case
with solvent when Lz¼40. The upper solid line is the fit by Eq. (5.46), and the lower solid
line is the fit by Eq. (5.45). The dashed line shows the 1/r dependence.
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two fits, we have neglected the first two points as they lie outside the range of

validity, r�1, of Eq. (5.45). Since n�1�1 when the solvent is present, the

data shown in Fig. 5.13 are in the crossover region, r≳n�1, showing an ap-

proach toward the asymptotic 1/r dependence as in Eq. (5.47). Hence we con-

clude that the solvent brings in the 3D hydrodynamic property to the diffusion

in membranes. This is the reason for the exponent a¼1/3 in the phase sep-

aration dynamics and justifies that it is mainly driven by BC mechanism.

In our simulations, the membrane and the solvent have very similar vis-

cosities. This sets the SD length scale to be of the order of unity (in units of

particle size), which is consistent with the value n�1�1 obtained from the

fitting. As explained above, the fit also provides the 2D membrane viscosity

as ��6, and hence we obtain as �s�3. In real biomembranes sandwiched by

water, the value of the SD length is much larger than the lipid size and is in

the order of submicron scale [23]. Hence the 3D nature of hydrodynamics

should be observed for large enough domains [60].

For confined membranes, on the other hand, the appropriate mobility

tensor is Gab
con given by Eq. (5.12). In this case, the longitudinal coupling

diffusion coefficient can be obtained as [17]

Dcon
L rð Þ¼ kBT

2p�
1

k2r2
�K1 krð Þ

kr

� �
, ð5:48Þ
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whereK1(z) is modified Bessel function of the second kind (see also Eq. 13).

At short distances r	k�1, we have

Dcon
L rð Þ� kBT

4p�
ln

2

kr

� �
�gþ1

2

� �
, ð5:49Þ

which is almost identical to Eq. (5.46) except v is replaced now by k. At long
distances r�k�1, on the other hand, we get

Dcon
L rð Þ� kBT

2p�k2r2
¼ kBTh

4p�sr2
, ð5:50Þ

which exhibits a 1/r2 dependence. This is in contrast to Eq. (5.47). Repeat-

ing the similar scaling argument, we predict that, in the presence of walls, the

domain growth exponent should be a¼1/4 within the BC mechanism. A

similar simulation with two confining hard walls is required as a next step. In

biological systems, the above situation with solid walls can be relevant be-

cause the cell membranes are strongly anchored to the underlying cytoskel-

eton or are tightly adhered to other cells.

4.5. Related works
We mention here several related works on the phase separation dynamics

below the transition temperature. Veatch and Keller observed the kinetics

of domain growth on ternary vesicles as presented in Fig. 5.14 [9]. For a
A
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Figure 5.14 Phase separation dynamics on ternary giant vesicles. (A) Brownian coagu-
lation observed for 1:1 DOPC/DPPCþ25% Chol., (B) spinodal decomposition observed
for 1:1 DOPC/DPPCþ35% Chol., (C) viscous fingering observed for 1:9 DOPC/
DPPCþ25% Chol. (left series) and 1:1 DOPC/DMPCþ25% Chol. (right series). Adapted
from Ref. [9].
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vesicle with an off-critical composition, dark circular domains grow by

colliding and coalescing with each other rather than through the LS

evaporation–condensation process (Fig. 5.14A). When the composition is

nearly critical, spinodal decomposition takes place when the temperature

is decreased through transition point (Fig. 5.14B). For a highly asymmetric

composition as in Fig. 5.14C, striped domains are observed when the

temperature is raised; possibly viscous fingering.

The domain growth exponent a was first measured by Saeki et al. for ter-

nary vesicles composed of DOPC, DPPC, and cholesterol [61]. They indeed

observed a power-law behavior and reported a rather small value a¼0.15.

The reason for this slow dynamics was partially attributed to the curvature

of the domain portion. Subsequently, Yanagisawa and some of the present

authors found that the domain coarsening processes are classified into two

types, that is,normalcoarseningand trappedcoarsening [62]. In the formercase,

the domains having flat circular shape grow through BC process, although the

growth exponent was found to be a¼2/3. For the trapped coarsening, on the

other hand, the domain growth is suppressed at a certain domain size because

the repulsive inter-domain interactions obstruct the coalescence of domains.

A two-color imaging technique of the trapped domains revealed that this

repulsive interactions are induced by the budding of domains. By observing

the motion of domains, they also found that each domain is attracted toward

the largest one following the flow around it. This is a strong indication of

the hydrodynamic interactions acting between the domains.

As for computer simulations, Laradji and Kumar performed a DPD study

on phase separation dynamics in both two-component vesicles and open

membranes using a coarse-grained model for the membrane lipids

[63–65]. In their model, the self-assembly of a bilayer in the presence of

solvent is naturally taken into account. For off-critical case, they obtained

an exponent a�0.3 which is in good agreement with our simulation

result, a�1/3. Similar to our observation, they also reported that the BC

process takes place rather than the LS evaporation–condensation process.

However, when the excess area of a vesicle is large enough, domains are

no more flat and reshape into caps. In such a case, Eq. (5.42) is not valid

and it is more convenient to measure the interface length L(t). According

to their simulation, it scales as L(t)� t�0.4, indicating that the interfacial

length decreases faster as compared to the case of small excess area. For

membranes with critical composition, the growth exponent was found to

be a�0.5 for both vesicles and open membranes. This value is in

contrast to our result a�1/3 as shown in Fig. 5.12. In Fig. 5.15, we



Figure 5.15 The snapshots for a 50:50 critical mixture undergoing phase separation for
open membranes with different projected areas (I and II). Adapted from Ref. [64].
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present a sequence of spinodal decomposition for open membranes obtained

from their simulation. One of the differences between their simulation and

ours is that themembrane is not allowed to exhibit out-of-plane fluctuations in

our case. In their subsequent work, the effect of asymmetry in the bilayer lipid

compositionwas studied [66].Notice that flip-flop events are extremely rare in

their simulation. This asymmetry sets a spontaneous curvature for domains

which are capped. Interestingly, they found that the coupling between the

spontaneous curvature and composition effectively leads to micro-phase

separation. The observed scaling behavior was L(t)� t�0.13, indicative of a
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logarithmic growth.Obviously, such a bilayer nature of fluidmembranes is not

taken into account in our simulation.

Camley et al. [67,68] and Fan et al. [69] performed numerical simulations

of 2D version of model H using the mobility tensor of Eq. (5.10) for free

membranes. The basic formulation of this model is given by that

described in Section 3.1 except that the free-energy functional in

Eq. (5.14) is replaced with

F cf g¼
ð
dr

a

2
c2þ1

4
c4þ c

2
rcð Þ2

� �
, ð5:51Þ

where a<0 is now negative in order to study the domain growth below the

transition temperature. In the dynamical equations, Camley et al. included

Gaussian white thermal noise terms which are distributed with variances set

by the fluctuation–dissipation theorem [67,68]. By using reasonable

parameter values, they were almost successful in reproducing the

experimentally observed pattern evolution given in Fig. 5.14B. For the

domain growth law, it was pointed out that the scaling behavior R� ta

would hold only when R	n�1 or R�n�1 because it requires the fact

that R is the only relevant length scale.

For off-critical mixtures, there are at least two coarsening mechanism in

this model: BC process and LS evaporation–condensation process, as men-

tioned before. The LS mechanism is essentially driven by the line tension l
between coexisting phases, and the corresponding growth law is given by [50]

R� Lltð Þ1=3, ð5:52Þ
where L is the kinetic coefficient given in Eq. (5.15). Notice that this ex-

ponent a¼1/3 does not depend on the dimensionality of the system. (In

3D, for example, the line tension l is replaced with a surface tension.)

On the other hand, the BC mechanism leads to a¼1/2 for R	n�1 and

a¼1/3 forR�n�1, as we have discussed in detail. All these different scaling

regimes have been confirmed by their numerical simulation [68], in agree-

ment with our DPD simulation.

For critical mixtures, however, the results are rather complex.

Figure 5.16 shows the time evolution of the phase-separated patterns for

a mixture of critical composition [69]. Comparing Fig. 5.16E and F, for ex-

ample, we notice that the morphologies and sizes of the elongated domains

have changed considerably, whereas more isotropic ones remain almost the

same. As a result, isolated circular domains coarsen slower than elongated



Figure 5.16 Time sequences of concentration maps during spinodal decomposition
for different combinations of membrane and solvent viscosities (A–C and D–F). Time
increases from left to right. Adapted from Ref. [69].
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ones. From this observation together with quantitative analysis, they con-

cluded that dynamical scaling breaks down since a single length scale cannot

represent the domain distribution for different times [68,69]. Such a

violation of the scaling behavior was reported before for pure 2D binary

fluids [70,71]. Nevertheless, Camley et al. also found a region of apparent

scaling where a¼1/2 holds [68]. Although this may not be a universal

feature, the power-law behavior seems to appear due to the competition

between thermal and hydrodynamic effects. Furthermore, even a value

close to a¼1/3 was observed when the kinetic coefficient L is large

[68]. This is what they call the “Cahn-Hilliard” regime in which bulk

diffusion described by L is dominant. As a whole, the domain coarsening

in critical mixtures seems to be far from universal and may dependent on

the membrane viscosity.

In some other models, membranes undergoing simultaneously a phase

separation and permanent exchange of lipids with the surrounding medium

were considered [72,73]. For example, Foret proposed the following

dynamical equation in the absence of flow [74]

@c
@t

¼Lr2dF
dc

� g c� �c
� �

, ð5:53Þ
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where g is the typical exchange rate, �c is the average value of c, and F is

given by Eq. (5.51). This equation should be contrasted with Eq. (5.15). It is

interesting to note that the above equation also describes the dynamics of

block copolymer systems which undergo micro-phase separation [75]. It

is well known for block copolymers that the domain growth will eventually

stop, and the domain size reaches a stationary value. Hence Eq. (5.53) gives

rise to finite-sized raft domains in equilibrium. We point out here that 2D

microemulsion discussed in Section 3.3 also exhibits a micro-phase separa-

tion below the transition temperature. Gómez et al. proposed a similar

model in which only cholesterol is recycled [76,77]. As a generalization

of these models, Fan et al. discussed the influence of nonequilibrium lipid

transport, membrane compartmentalization, and membrane proteins on

the phase separation dynamics [78–80]. Recently, micro-phase separation

in nonequilibrium membrane was discussed in Ref. [81]. It should be

noted, however, that the hydrodynamic effect is not taken into account

in these models.

5. CONCLUSION AND OUTLOOK

In this chapter, we have discussed the dynamics of heterogeneity in
multicomponent fluid membranes particularly focusing on hydrodynamic

effects. For membranes above the transition temperature, we have

investigated the kinetics of critical concentration fluctuations in two-

component mixtures. Based on the time-dependent Ginzburg–Landau

approach with full hydrodynamics, the wave number dependence of the

effective diffusion coefficient was calculated as a function of the temper-

ature and/or the thickness of the bulk fluid. For membranes below the

transition temperature, we have discussed the effects of an embedding bulk

solvent on the phase separation dynamics using DPD simulations. We have

shown that the presence of a bulk fluid alters the domain growth exponent

from that of 2D to 3D, indicating the significant role played by the

membrane–solvent coupling. We further demonstrated that quasi-2D

phase separation proceeds by the BC mechanism which reflects the 3D

nature of the bulk solvent.

Even though the models presented in this chapter capture the essential

physics, they are simplistic in several respects. The bending stiffness of typical

membranes is of the order of 10kBT which may be not always large enough

to neglect the out-of-plane displacements of the membrane. The dynamics
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of out-of-plane fluctuations of a homogeneous membrane was previously

studied by Levine and MacKintosh [82]. It is worthwhile to comment that

the presence of a substrate or the second membrane would suppress out-of-

plane membrane fluctuations [83,84]. In our treatment, we have also

neglected the effects of membrane curvature which can be significant

when the radius of curvature becomes close to the hydrodynamic

screening length. Henle et al. considered the diffusion of a point object

on a spherically closed membrane [85,86]. The extension of this work to

finite-sized objects is an interesting but difficult proposition.

In some theories, viscoelasticity of an infinitely large flat membrane has

been considered [87,88]. Although it turned out that membranes are

purely viscous in the latest report [89], their experimental technique

using particle tracking microrheology provides us with a new clue to

investigate the dynamical responses of lipid bilayers coupled to the

surrounding environments. Recently, viscoelasticity of phospholipid

Langmuir monolayers in a liquid-condensed phase was measured using

active microrheology technique [90]. From our point of view, however,

the viscoelasticity of the surrounding media is more important for large-

scale dynamics in membranes. This is indeed the case according to the

recent work by Granek who calculated the frequency-dependent

transverse fluctuations of a membrane surrounded by viscoelastic media

[91]. Currently, we are investigating the lateral dynamics in a purely

viscous lipid membrane surrounded by viscoelastic media whose viscosity

is a frequency-dependent one �s[o] [92]. For example, the frequency-

dependent membrane mobility tensor is obtained as

Gab k,o½ � ¼ 1

�k2þ2�s o½ �k0 coth k0hð Þþ ior
dab�kakb

k2

� �
, ð5:54Þ

where

k0 ¼ k 1þ iors
�s o½ �k2

� �1=2

: ð5:55Þ

In the above, r and rs are the densities of the membrane and solvent, respec-

tively. In the limit of o!0, these expressions reduce to Eq. (5.9). Using

Eq. (5.54), we can show that the mean square displacement of a disk embed-

ded in the membrane exhibits an anomalous diffusion [92]. An useful

relation which connects the mean square displacement and the solvent

modulus is obtained.
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