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Phase separated structure of ternary blends ahd B homopolymers and symmetr&B diblock
copolymer is investigated using a lattigeal-spacgself-consistent field theory. This paper includes
the detailed description of our published res{i¢edama, Komura, and Tamura, Europhys. LB,

46 (2001 ] as well as more extended calculations. We consider the symmetric case, nanbelih

A and B homopolymers have the same degree of polymerizahigrs=Ng; (i) AB diblock
copolymer of lengtiN o is symmetric{iii ) average volume fractions &f andB homopolymers are
equal. We looked into the influence of relative chain lengttisN,/Nag On the phase separated
structure. Our numerical simulations are performed in the real spiiceutassuming the symmetry
of the structurea priori. For the fixed copolymer length ane<1, the typical length scale of the
microphase separated structure become smaller for relatively shorter homopolymersinaihs).

In other words, the homopolymers becomes more efficient to swell the microphase separated
structure for longer homopolymer chaifiarge ). Detailed free-energy analysis revealed that the
stability of the lamellar phase is marginal for small block copolymer volume fractionaBat, on

the other hand, three-phase coexistence either between the digonder, andB-rich phases or
between the lamellaA-rich andB-rich phases is observed. @002 American Institute of Physics.
[DOI: 10.1063/1.1517038

I. INTRODUCTION into account the microphase separation of the ternary blends
including block copolymer8? For the symmetric ternary
case, the line of macrophase separation iAtoich and
Traditional microemulsions being mixtures of Oil, Water, B-rich phases is connected to the line of microphase separa-

and surfactant, are known to exhibit various interesting mi+jon to the lamellar phase at the isotropic Lifshitz paisee
crostructures depending on the temperature or th&ec, |).8°

compositiont? When the concentration of surfactant is rela- On the basis of self-consistent field theof@CFT),
tively large, they show a rich variety of regularly ordered Noolandi and Hong showed that the copolymer chains lower
structures such as the cublgyroid) phase, the hexagonal the interfacial tensiof®** They showed that the reduction in
phase, or the lamellar phase. By lowering the concentratiofhterfacial tension increases with copolymer molecular
of surfactant and if hydrophilic and lipophilic natures of the weight and concentration. Their theory was extended by
surfactant are balanced, microemulsions form a bicontinuoughull and his co-workers to investigate the interfacial prop-
structure where a randomly oriented monolayer of surfacerties of ternary blends by performing the numerical treat-
tants separates oil-rich and water-rich subvolumes. A direghent of the SCFF214 Banaszak and Whitmore calculated
observation of the randomly intertwined structure by usingphase diagrams of ternary blends which undergo both mi-
the freeze-fracture microscopy has been repotted. crophase and macrophase separation on the basis of a fourth-
It has been widely recognized that mixtures of high mo-order expansiof® Israels et al. examined the effect of
lecular weight homopolymers and diblock copolymers arediblock size relative to the homopolymers on the compatibi-
analogous to traditional microemulsiohs.Similar to the Jization of homopolymer blend€. They showed that interfa-
low molecular weight surfactant moleculesB diblock co-  cial tension can be reduced to zero if the blocks in the
polymers tend to locate at the interface between the tweliblock are longer than the corresponding homopolymer. The
phases rich irA andB homopolymers. The emulsifying ef- Fourier-space SCFT calculations of ternary blends have been
fect of copolymer added to blends of homopolymer was conperformed by Janert and Schitk!® They investigated the
sidered using Flory—Huggins theory and random phase apnfluence of relative chain length on the phase behavior of
proximation(RPA) by Leibler®’ His theory was used to take the systent’ The calculated phase diagrams include disor-
dered, lamellar, hexagonal, and cubic phases, as well as two-
3Electronic mail address: komura@comp.metro-u.ac.jp and three-phase coexistence region. In their later paper, the
PElectronic mail address: kodama@rc.m-kagaku.co.jp unbinding nature of the system was discus$edpon dilu-

A. Polymeric ternary systems
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a singular cusp in the phase transition temperature is as-
sumed a9 is varied about, , and the region of the disor-
dered phase is considered to extend to very low temperatures
within this cusp.

Various theoretical approaches for PME have been ad-
dressed. Kielhorn and Muthukumar extended the mean-field
theory by including composition fluctuations, and concluded
that the Lifshitz point is destroyed due to the fluctuati&hs.
Later, Kielhorn and Muthukumar derived a mean-field time-
dependent Ginzburg—Landau equation to model the spinodal
decomposition of polymeric ternary systefidViatsen cal-
culated the elastic properties of a diblock copolymer mono-
layer within SCFT” and showed that the calculated bending
modulus and saddle-splay modulus satisfy the conditions re-
quired to melt the lamellar phase. Using SCFT and strong-
segregation theory, Thompson and Matsen have calculated
the effective interactions between the copolymer
monolayer£® From the condition that the attraction becomes
sufficiently small, they concluded that the optimum size of
the homopolymer molecules is about 80% that of the copoly-
mer molecule. In a more recent paper, Thompson and Matsen
predicted that copolymer polydispersity can improve PME
by forming flexible and nonattractive monolayé?s.

C. The present work

FIG. 1. The phase prism for a ternary blend of two homopolymers and a  In this paper, using a latticeeal-space SCFT method,
block copolymer.¢, and ¢ are homopolymer volume fractions, afds ~ we investigate the phase separated structure of the symmetric
Fhe copolymer volume fraction. The vertical coordinatg is the inc'ompatibil—mixtures ofA andB homopolymers pIuAB diblock copoly—
ity degreexN, . The shaded plane cut through the prismpat= ¢5 is the . .
isopleth. mers. Our purpose is to study the morphological change of
the microphase separated structure when the total copolymer
volume fraction or the relative chain lengths between the
tion by the homopolymers, the symmetric lamellar phasdiomopolymers and the diblock copolymer is varied system-
does not unbind, whereas it always becomes unstable to ti@dically. We numerically solve the SCFT equations in a real
asymmetric lamellar phases which do unbind. spacewithoutassuming the symmetry of the structareri-
ori according to the method proposed by Hasegweppli-
cation of this method for the polymeric ternary system and
some of the preliminary results have been reported in our
One of the most interesting experimental findings byprevious works'~33 This paper provides the detailed de-
Bateset al.in a polymeric ternary system is the existence ofscription of our results as well as more extended calcula-
a bicontinuous structure without any long-range ordertions. Independently, the real-space SCFT method has been
(LRO).2*?°The investigated system consists of nearly equalised by other authors such as for lindsBCA tetrablock
size polyethyleng (PE) and polyethylene propylenePEP  copolymers*3® or star and linear ABC triblock
homopolymers and a symmetric PE—PEP diblock copolymercopolymers® In general, this method proved to be a power-
They focused on the symmetric case in which the volumdul tool in finding new mesophases either with or without
fractions of the two homopolymers are eq(sée Fig. L By LRO2’
changing the average volume fraction of the copolyrier Starting with randomly generated initial potential fields,
transmission electron microsco@ifEM) images revealed we demonstrate that a bicontinuous structure similar to PME
that a lamellar structure is observed fér 6, and a two- results from the microphase separation for relatively longer
phase structure appears fé« 6, , where g, is the Lifshitz ~ copolymer chain. For the fixed copolymer length, we find
volume fraction. Images obtained from the specimens closthat the typical length scale of the microphase separated
to 6, bear a striking resemblance to bicontinuous micro-structure becomes smaller for relatively smaller homopoly-
emulsions in mixtures of oil, water, and surfactant. Such aner chains. For relatively longer homopolymer chains, we
new phase has been termed as “polymeric microemulsionsbbserved the three-phase coexistence either between the dis-
(PME). For different types of ternary systems, it is demon-order, A-rich and B-rich phases or between the lamellar,
strated that there is a common region in phase space ovérrich andB-rich phases depending on the strength of the
which bicontinuous PME is stable and the general phase bénteraction parameter.
havior is rather universat—2In their works, the bicontinu- Since the obtained bicontinuous structure may corre-
ous PME has been regarded as a disordered phase whichsigond to metastable equilibrium, we have also performed the
driven by fluctuations of lamellar pha$®?! To explain this, same calculation starting from the initial potential fields with

B. Polymeric microemulsions
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an imposed lamellar symmetry. By calculating the freeen- . _ 1-—9¢
ergy of the lamellar phase as a function of the average vol- ~ $a=¢$s=—75— (2.9
ume fraction of the copolymer, we discuss the effective in-
teractions between the copolymer monolayers. We find thaf? other words, we consider the isopletshaded plane in
there is a region where the stability of the lamellar phase i§9- 1) in the phase prism.
marginal.
This paper is constructed as follows. In the next section,
the mean-field phase diagrams of the polymeric ternary sy$3: Correlation function
tem are eXpIained within the RPA for various relative chain Here, we discuss the phase behavior Of po'ymeric ter-

lengths. In Sec. Ill, we summarize the general formulation Ofnary systems within the random phase approximatiiRA)

the real-space SCFT for a system including copolymers, angbr various values ofx. Mean-field phase diagram on the
describe the numerical procedure based on the lattice versiqgometh fora=1 was considered by Leibl&r, and later cal-

of SCFT. Section IV gives the analysis of our simulation cylated fora# 1 by Broseta and FredricksGriThe essential
results. Summary and conclusion are provided in Sec. V. Depart of the phase diagram can be obtained by looking at the
tails of the genel’al formulation and some technical remark%onomer concentration correlation functiwructure fac-

are given in Appendix A. Appendix B describes the iterationtoy), Within the RPA, Leibler calculated the correlation func-

scheme to solve the set of self-consistent equations. tion for ® a<d
2Sa(X){1— X[ Saa(X) — Sas(X) 1}
Sea(0= Tore S XS 27)
Il. RANDOM PHASE APPROXIMATION X[ Sa(X) + Saa(X) = Sap(x) ]
A. Notations Here, x=(qR)2=0?N,b%6, whereq=|q| is the absolute

. value of the wave vectar, R is the radius of gyration, anil

In general, we consider a ternary blendd&ndB ho- s the statistical segment length. In the aboSg(x) is the

mopolymer of polymerization indicell, and Ng, respec-  correlation function of independet homopolymerSy(x)
tively, and AB diblock copolymer of polymerization index angs,,(x) are A—A and A—B monomers correlation func-

Nag of which a fractionf consists ofA monomer. Then, we  tions of independent copolymer chains. These are given by
introduce two dimensionless parameters defined by

1-6
o Na o Ns o1 SA(X)= "5 Nag(1x), 29
NAB NAB
. . ONp (1 X

respectively. The volume fractions @& and B homopoly- Spa(X) = —g(—,—), (2.9
mers are denoted by, (r) and ¢g(r), respectively, and the @ 2'a
volume fraction ofAB block copolymer bygag(r). In ad- ONA[1 X 1 X
dition, ¢,(r) and ¢p(r) represent the volume fractions Af Sas(X)=—= 59(1; -9 E’Z) , (2.10
andB blocks in theAB block copolymer, respectively. The
average volume fraction of each component is indicated withvhereg(h,x) is the Debye function defined by
a bar, such asp,, ¢g, or pag=60. We assume that the 2
system is incompressible, i.e., g(h.x)= Sz (hx+ e ™-1). (211

bat bt dat Pp=1. (2.2) The limit of stability of the disordered phase occurs for
Due to this constraint, we define the following three quanti-the smallest value oj(x) (highest temperatuyeat which
ties as independent order parameters: (2.7) diverges. From2.7) to (2.11), this condition is written

®= =g, 23 % )

— — —X

V= — dp, (2.9 X(X)NA_XZ[ 1+x+e

A=gppt+da—dp—dp. (2.9 +0{1_e—x+a(_3+4efx/2a_efx/a)}]_
The last order parameter represents the difference in the vol- (2.1

ume fractions of alA andB monomers. The Flory—Huggins
interaction parameter betwednandB segments is denoted When a=1, this equation reduces to E(B.2) in Ref. 9.
by xag=X- Minimizing x(x) with respect tox, we see that for &6

The phase behavior of a polymeric ternary blend can be<2a/(1+2a?), the minimum occurs at=0 and the cor-
represented in the form of a phase prism shown in Fig. 1responding value is
Within the large parameter space, we focus on the symmetric 1-0
case, namelyi) both A andB homopolymers have the same —_—= (2.13
length No=Ng and hencex,= ag=«); (ii) the AB block XNa 2
copolymer containg andB monomers in equal proportions This is called the “Scott line"(consolute ling along which
(f=1/2); and(iii) the average volume fractions 8fandB  the disordered phase makes a continuous transition to coex-
homopolymers are equal and determined by isting uniform (@=0) phases. The system exhibits the mac-
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rophase separation betwedéarich and B-rich phases. For homopolymers. The disorder line can be calculated from

2a2/(1+2a?)<6<1, the instability occurs at a nonzero (2.12) and(2.14 by settingx=—y, wherey ranges over all

value ofx. This case corresponds to the microphase separgositive real numbersy(>0). On the other hand, the Lifshitz

tion to a lamellar phase. When the transition to the lamellatine is the locus of points at which the oscillations are suffi-

phase #0) occurs, the density of the copolymer is given cient to produce the dominant peak in the associated struc-

by ture function at nonzero wave vector. The Lifshitz line for
. x x the ®—& structure functionS;4 [see(2.7)] is obtained by

0 =[=2+x+ (x+2)e"]/[6a—2+(x+2)e settingg=0 in (2.18), and one obtains
+(x+2a)e X*—2(x+4a)e 2], (2.19

1 [(1-6)0]*
and the t'rapsition line is located according @12 with XNA_ 82
(2.14. It is important to note that2.14) holds only for 0 - o )
<x=<3.785? The point which connects the macrophase andiowever, another situation occurs @s increased. The Lif-
microphase transition lines is known as an isotropic ( shitz line is connected to the “equimaxima line” at which the
—d, wherem is the number of dimensions in which wave W0 peaksione atq=0, and the other aj#0) in the struc-
vector instability occurs, and is the space dimensipnif-  ture function become of equal height.

(2.20)

shitz poinf=8 ' Phase diagram; on thg isopleth tor 0.25, 05 and 1
pa? including several different lines are shown in Fig. 2. Notice
_ @ _ that Fig. Zc) is the same as Fig. 3 in Ref. 9. The Scott lines
= Na)L=2(1+2a?). 2.1
O=T7742 (XNAL=2(1+209 219 start from 0, xNa)=(0,2) (point O, whereas the lines of

microphase separation end af#, {Np)=(1,10.5) (point

free energy from the obtained correlation function. By ex-G)' Disorder lines start fron{0,0) (point D) except fora

pandings(;é, in (2.7) for smallqg, we obtain the free energy =1. The trapsmon Ime.betvlveen the lamellar and the_ tWQ'
F[®] as phase coexistence region is drawn only near the Lifshitz

point where the GL expansion is valid. According to Fig.
2(c) (a=1), Holyst and Schick concluded that the copoly-
mer is inefficient in the organization of homopolymers since
(2.16 the Lifshitz line (line LE) is far from the disorder linéline
LD). However, this tendency changesas decreased from
1. We see that the Lifshitz line appears even in the small

It is instructive to derive the Ginzburg—LanddGL)

Fol®]~ ZP_I\(I)A dr[c(V2d)2+g(Vd)2+td?],

wherep, is the monomer density and the coefficients are

o 1p1 N 9(xNa)26 B (xNa)®6? R4 (2.17 copolymer volume fraction region such as in Figa)2In the

-~ 36/1-6 16a° 8a* : : experiment by Batest al, the parameterr was chosen as

) a~0.2 in order to ensure that both the points C and G in the

_ E 1 _ (XNa®0| _, phase diagram can be explored over the similar temperature

g IR (2.18
3|/1-90 8a ’ window19:21.22
1 XNa

t= m - T (2.19)

. i ) C. Multiphase coexistence
Throughout this paper, all the energies are expressed in units

of kgT, wherekg and T represent the Boltzmann constant It is important to notice that the above discussion is valid
and the temperature, respectively. Notice that the Scott lin€nly for a<1. Fora>1, the Lifshitz point is preempted by
(2.13 is determined from the condition=0. On the other & tricritical poinf

hand, the phase boundary between the lamellar and the two-
phase coexisting region is determined from the reldfion

2(2- \/E)azgzlc, (2.20 Notice that ((Na)tcp<(xNa). for @>1. The special case of
within the GL expansion. It important to note that this rela- =1 corresponds to a “Lifshitz tricritical point,” as has
tion holds only close to the critical point where the expan-been pointed out in Refs. 8 and 9. The tricritical point indi-
sion is justified. We comment here that whep>0 andg cates a continuous segregation into three phases; two
<0, (2.16 is the free energy of traditional microemulsions homopolymer-rich phases and a copolymer-rich lamellar
proposed by Teubner and Styin this case®(r) is de-  phase.
fined as an order parameter which measures the local differ- A typical phase diagram far=2 is calculated in Fig. 3.
ence in volume fractions between oil and water. For small 9, the disordered phase undergoes a continuous

In addition to these phase boundaries, one can locate theansition toA- and B-rich uniform phases at the Scott line
“disorder line” and the “Lifshitz line” in the disordered re- (2.13. This line ends at a tricritical poin{2.22, beyond
gion of the phase diagrafiThe disorder line is the locus of which is a line(triple line) of three-phase coexistence be-
points at which the asymptotic behavior of the correlationtween A-rich, B-rich, and disordered block copolymer
function changes from a monotonic exponential decay to aphases. The region of three-phase coexistence can be calcu-
exponentially damped oscillatory decay. This oscillatory bedated within the Flory—Huggins approximation where the re-
havior reflects the tendency of the copolymer to order theluced free energy is given by

GTCPZM: (XNp)tcp=2(1+2a). (2.22
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0 )

FIG. 3. Phase diagram of the symmetric ternary mixturederN,/Nag

=2. In addition to the notations given in Fig. 2, the region labeled 3P is the
region of three-phase coexistence betwéerich, B-rich, and disordered
block copolymer phases. T is the tricritical point.

1— 6+ ®
— ——log(1— 0+ ®)

f(®,0)=—>
—0—@ XNAP?
+ ———log(1— 6— D)+ afblog§— ——
2 4
(2.23

The compositionsb and 6 of the three coexisting phases are
obtained by equating the chemical potentials of each species

) _——f 2.24)

@ oD’ .

L ———f 225)
0 a0’ ( ’

and the osmotic pressure

H=f—pep—py. (2.26

The triple line terminates at a four-phase point at which
the lamellar phase coexists with the other three ph¥ses.
Beyond this point, there is a direct transition line between the
disordered phase and the lamellar phase. These regions are
not shown in Fig. 3.

DIS | (c)
"ID Il. LATTICE SELF-CONSISTENT FIELD THEORY

06 07 08 09 1 A. Self-consistent field theory

Self-consistent field theorySCFT) in polymer science

originates from the early works by Edwaf8sr by Helfand
FIG. 2. Phase diagrams of the symmetric ternary mixture (@r o and Tagamf_3 The basic idea of SCFT is as follows: poly-
=Na/Nag=0.25; (b) @=0.5; and(c) a=1 as obtained from the random 0 ¢ a1 represented as random walks in a positional depen-
phase approximatiord is the total volume fraction of the copolymer. The . . . .
regions labeled LAM, DIS, and 2P are, respectively, regions of lamellar,d€nt Segmen.t p.otermal, which depends in a Se”'cor‘S'St?nt
disordered, and two-phase coexisting phases. L is the Lifshitz point. The lingvay on the distribution of segments. SCFT has been applied
CL is that of continuous transition from the disordered phase to coexistingg various problems and its recent achievements are summa-
A-rich andB-rich phases, LG is the line of continuous transitions from the . ; ;
disordered phase to the lamellar phase, LD is the disorder line, and LE an'(]zec! such as,m Refs' 37 and 44. In fa,Ct’ the RPA use,d in the
EG are the Lifshitz and equimaxima lines for te-® structure function, ~ Pre€Vious section is one of the approximated formulations of

respectively. SCFT.
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There are, basically, two possible ways to formulate the  G;(n,1)=ex{ — Ut (M1, (3.3
SCFT: Fourier-space and real space representations. Re- '
cently, the Fourier-space SCFT method proved to be quite  Gf(n N;)=exq — Uy (M. (3.4)
iV

useful to predict the phase diagram of block copolymer

melts*>*°In this method the set of self-consistent equations-ere, f,(N') is the “type function” representing the type of
is solved by using a restricted Fourier basis appropriate fofhe segmenN’ in theith chain, and(---)) denotes a neigh-

an assumed mesophase symmetry. Later, various periodiforhood average defined later 8.9). The segment poten-
structures with LRO were successfully explained within theja s given by

SCFT for polymeric ternary systenis!’'8In these works,
the free energies of several periodic structures were calcu-
lated by assuming their mesophase symmatpyiori. UJ(n)=u(n)+; Xak{bk(m), (3.9

On the other hand, the set of self-consistent equations
(see the next subsectipnan be solved also in a real space. whereyy is the Flory—Huggins parameter betwekandK
This real-space method was initiated by Scheutjens and Flesegments. Physically(n) represents an entropic hard-core
as a lattice version of SCFf,and has been further devel- potential which is independent of the segment type, whereas
oped for surface problems with specific boundarythe second term is the interaction part. The segment distribu-
conditions?®*° More recent works using the real-spabeth tion function in(3.5) is expressed as
lattice and off-lattice SCFT are given in Ref. 50.

Furthermore, it is advantageous in the real-space method o ,
that one need not assume the symmetry of structares ¢J(n)=2 2 Ol fi(N Nin(n),

(3.6
i r_
priori.>1=37In order not to bias the symmetry of patterns that N
emerges, one numerically solves the self-consistent equavith
tions by starting with random potential fields. Although this o ,
method may generate the structures corresponding to either niGi(n,N")G;(n,N") @7

stable or metastable equilibrium, it has proved to be a pow- i (n)= exd —Ur, v (NI Gi(n',N)

erful tool in finding new mesophases. A similar approach

was taken in Ref. 16, in which they observed droplet micro-whered[J,f;(N’)] is a Kronecker delta with value 1 if seg-

emulsions. In the present paper, we employ the real-spaageentf;(N’) is of typeJ, and O otherwise. Equatid3.7) is

lattice SCFT with a slight extension of the previous method.called the “composition law.” Finally, the incompressibility
condition requires that

B. Self-consistent equations in the lattice formulation

Here, we give the set of self-consistent equations in the E di(n)=1, (3.8
lattice formulation of SCFT which is essentially based on J
Refs. 48 and 49. While Ref. 48 treats only surface adsorptiopqs at any site. Froni3.1) to (3.8) forms a set of self-

p_roblems, we apply the lattice SCF_T t(_) higher space dim?”c‘:onsistent equations to be solved faf,(n)} and{U,(n)}.
sions. Although there are many derivations of SCFT, we give Up to now, the formulation is rather general and stan-

the details of the lattice formulation in Appendix A for the garq |n order to avoid the geometric constraints associated

completeness of our paper. Notice that the present latticg;i 5 lattice, the neighborhood average-) in (3.1), (3.2,
formulation is not a simple discretization of the continuum . (3.5 is taken according

model.
The space coordinate of each segment composing the
polymers is specified by a lattice point=(n,,n,,n,) in an ((X(n)»:Z
LyXLyXL,(=Q) cubic lattice box with a lattice constaat "
We denote the type of molecule lby and the type of seg- 1 o
ment byJ andK. (In the present casé=A,B for A andB + %5“”_” %3]
homopolymers, and=AB for AB copolymer, wheread or
K points to eitheiA or B segmen). Segments in a chain are This type of neighborhood average has the desirable property
indexed byN’=1,2,..,N;, whereN; is the polymerization of being more generally isotropic, and is a natural extension
index of theith molecule. The molecules of tygeare in-  of the standard nearest-neighbor average givefAy. See
dexed byp=1,2,..,n;, wheren; is the total number ofth  also the corresponding ideal HamiltonidA29). On the
molecule. other hand,(3.9) has been successfully used in the cell-
We introduce two Green's function§;(n,N’) and dynamical simulations® A related discussion is provided in
GiT(n,N’) for walks starting alN’=1 andN;, respectively. Ref. 52 in which the coefficients i(8.9) are carefully deter-
These functions obey the following recursive relations: mined in order to be consistent with the Gaussian chain

" _ — model in a continuum treatment.
Gi(nN)=exid = Uy qup(MI(Gi(n".N'= 1)), 3. After solving these equations, we calculate the mixing

GiT(n,N’)zexp:—Uf,(N,)(n)]«GiT(n’,N’+1))>, (3.2 free energyF,, with respect to_the unmlxed pure r_eference
' system where the segment interactions are switched off.
together with the initial conditions Then, we have

° 21+ g '1%.2
goolin=n'12.1]+ gg ol In—n'|?.2]

X(n'). (3.9
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TABLE |. Characterization of the symmetric polymeric ternary systems for the fixed copolymer length case

(a<1).
System Na=Ng Nag a X XNa=xNg XNag (6L, (XNa)L)
system 1(S1) 2 8 0.25 2 4 16 (1/9, 9/4
system 2(S2 4 8 0.5 2 8 16 (13,3
system 3 (S3-S6) 8 8 1 2 16 16 (213, 6
niN; a well-defined periodicity. We chose different parameters for
Frl ¢J1UJ]=Ei n; |Ogm 1D and 2D calculations in order to maximize the computa-
e tional efficiency for large 2D systems.
1
+ = n n
22 JEK XaxdaM{d(m) IV. RESULTS AND DISCUSSION
In this section, we present our results of simulations de-
_; g U,(n) ¢y(n). (3.10 scribed previously. We focus here on the symmetric case as
in Sec. I, and examine the influence of the relative chain
C. Numerical procedure length between homopolymers and copolymer. We did it in

jwo ways; one by fixing the copolymer length and changing
the homopolymer length, and the other by fixing the ho-
mopolymer length and changing the copolymer length. Some
greliminary results fora>1 case and 3D system are also
reported. All the results from Sec. IVAto IV D are obtained
t@tarting with randomly generated potential fields without as-
suming any symmetry, whereas Sec. IVE treats the case
starting from 1D periodic initial conditions.

The above set of self-consistent equations is solved i
the following way>**®4°We first give an initial guess for
{U;(n)} which can be either random or periodic in space. In
general, we do not need to assume any symmetry of th
structurea priori, which differs from the Fourier-space treat-
ment of SCFT such as in Refs. 45 and 46. Then, we compu
the single chain statistical weigh@;(n,N’) and GiT(n,N’)
from (3.1) and(3.2), respectively. Using these quantities, we
obtain the distributiod ¢; y/(n)} from (3.7). Then,¢;(n) is  A. Fixed copolymer length  (a<1)
calculated by(3.6). At this point, we examine whether the

incompressibility conditior3.8) is satisfied, and whether the copolymer is fixed toA4B4 (N,g=8), whereas lengths of

segment potential gives the saruén) for each segment both A and B homopolymers are changed. Three different

type. If these constraints are satisfied, the initial estimat% : :
S . : omopolymer lengths are considered, which we refer to as
corresponds to equilibrium. Otherwise, new estimates for

{U;(n)} are made until the conditions are met. Notice thatf]yStemsll’ 2 fsor Sﬁ’ ?12’ Spas I|sted| in Table I For er?ch
the present algorithm is not intended to mimic real polymer omopo ymer_engt. : ¢ g average volume fraction O_ft € co-
dynamics, but is an efficient artifice to evolve a system a$ClYmer é (= ¢ag) is varied between 0 and 1. The interac-
fast as possible to a free-energy minimum which can be eillon parameter betweeA and B monomers is fixed toy
ther stable or metastable. The details of the Picard-type itera- 2: Hence, the degree of incompatibility is fixed idag
tion scheme used is presented in Appendix B. =16, which corre_sponds to the temperature below the mi-
First, we numerically solve the set of SCFT equationsC/ORNase separation temperaturgNg)ysr=~10.5 for ¢
starting with randomly generated potential fields. This simu-— 1~ The typical patterns obtained from 2D simulations are
lation is performed in 2D I(,=L,=256, L,=1) and 3D depicted in Figs. 4 and 5 for S1 and S3, respectively. The

(Ly=L,=L,=64) systems. In 2D cases, we neglect any gravolume fractionspa, ¢g, ¢a, and ¢, as defined in Sec. Il

We first discuss the case where the lengthA& block

dients in thez-direction and p&t are Qrawn in gray scale for five different copolymer volume
fractions 6=0.1, 0.3, 0.5, 0.7, and 0.9. Here, the values 0
X(ny,ny,n;—1)=X(ny,ny,n,+1)=X(ny,ny,n,). and 1 correspond to white and black, respectively. In Fig. 6,

we plotted the part of cross-section profilesdofandW [see
Furthermore, the periodic boundary condition is imposed. A¢2.3 and(2.4)] for #=0.1, 0.5, and 0.9 obtained from S3.

in Sec. Il, we only consider the interaction between e For small 6, there are large regions & and B ho-
and B segments mopolymer rich domains. As can be clearly seen from Fig.
6(a), the profile of® changes sharply from-1 to 1 at the
XABTXBATX: (312 interface between thé-rich andB-rich domains. Most of

Notice that although the present method may not be suitthe copolymers are located at the interface, and form satu-
able for determining the fully equilibrated structures, it en-rated monolayers without any LRO. A&is increased, the
ables us to generate a structure which does not possess amiymain size becomes smaller and the amount of the interface
LRO such as PME as a metastable structure. Since the obacreases, although the LRO still does not exist. Moreover,
tained patterns may depend on the initially prepared potentiahe difference between the maximum and the minimum val-
fields, we also study 1D systems starting with 1D periodicues of & becomes smaller. This is due to the fact that the
potential fields. The latter case yields lamellar structures witthhomopolymers are excluded by the copolymer brushes which
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FIG. 4. Final patterns of system 1 in Table | for different valueg ofawn  FIG. 5. Final patterns of system 3 in Table I. Notations are the same as those
in gray scale. The values 0 and 1 correspond to white and black, respegiven in Fig. 4.

tively. ¢o and ¢pg are volume fractions oA andB homopolymers, and,

and ¢, are the volume fractions oA and B blocks in the copolymer,

respectively. we pay attention to the behavior Afgiven in(2.5). First, we

define a discrete Fourier transform &{n) by
start to overlap. When is relatively large, the system exhib-

its a lamellar structuréwith many defectswhich is swollen A[k]=2 A(n)exp(ik-n), 4.1)
by the small fraction of homopolymer chains. The lamellar "
structure can also be clearly seen in Fi¢c)6 with k=27m/L, me{0,1,..,.L—1}?, andL is the system

Both in Figs. 4 and 5, bicontinuous structures withoutsize. Then, the structure factor is given by
any LRO appear below the transition temperature. Notice _ _
that in the present simulation, the effect of fluctuation is not S(K)=(ALKIAL=K]), “.2
included except for the initial random distribution of seg- where the average is over the ensemble of systems. Figure 7
ment potential. We remark that there is a resemblance bghows the circularly averaged structure factsfk) (k
tween the sequence of patterns shown here and those of PMeE|k|) of S3 for several values afranging fromg=0.2 to 1.
obtained from the TEM micrographsas@is varied. In order ~ Structure factors fo=0 and 0.1 are not shown here be-
to discuss the stability of PME, one needs to know, for ex-cause their peak heights are much larger than those plotted in
ample, the entropic contribution due to the random configuthe graph. The peak height decreaseg iasncreased at least
ration of interfaces, which is balanced with their bendingup to #=0.5. This reflects the fact that the contrast between
energy?’ Of course, this is beyond the scope of the presengverall A and B segments becomes smaller. Above this
mean-field approach. However, our result with random initialvalue, the peak height gradually increases upg+ol.
conditions shows, at least in the static sense, that PME with By increasingé from 0 to 1, the peak position shifts
random configuration of interfaces results from microphaséystematically to higher values of the wave vector. The peak
separation as metastable equilibrium. Notice that even thposition characterizes the typical length scale of each pattern.
experimentally obtained PME may not necessarily be fullyTo see this in more detail, we calculate tieversg charac-
equilibrated structure. Interestingly, many holes observed ifieristic length scale defined Dy

the A-rich andB-rich domains in the experimeffEig. 3(d) in Sz okl 1S(K)

Ref. 19 are also reproduced such asér0.1 in Fig. 4 or (k)= S, k2S00 4.3
0=0.3 in Fig. 5. These holes should be due to the emulsifi- k2ol k| ~*S(k)

cation of homopolymers by block copolymers. In Fig. 8,(k) is plotted as a function of for S1, S2, and S3

In order to analyze the obtained patterns quantitativelysimultaneously. Although the homopolymer lengths are dif-
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FIG. 6. Part of the cross-section profilesd®fand ¥ for (a) #=0.1; (b) 6
=0.5; (c) #=0.9 of system 3 in Table I.

ferent for these three systems, the valueglofat 6=0 are
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250 T T

Stk)

FIG. 7. Circularly averaged structure factor for different valuesgobf
system 3 in Table 16=0.2, 0.3,..,1.0from left to right peaks.

cient to swell the microphase separated structure by choosing
larger a. In other words, the homopolymer chains penetrate
into the copolymer brushes for small** However, it should
be noted that this tendency is true as long as the system is not
too close to the unbinding transition point at which the
lamellar spacing diverges upon dilution by homopolymers.
Since we do not know of a systematic experimental
study on the polymeric ternary system, we compare our re-
sults with the experiment on the traditional microemulsions.
The structure of one-phase AOT/O/decane microemul-
sions containing equal volumes of water and oil and a vari-
able concentration of surfactant was investigated by Kotlar-
chyk et al. using SANS>® They found that as the volume
fraction of AOT is increased from 0.18 to 0.42, the peak
position exhibits an approximately linear shift to larger val-
ues of wave vector, while the peak height rapidly diminishes.

<k>a

0 . .

the same(In principle, macrophase separation takes place 0 02 04 0.6 0.8 1

for (k)=0. Finite value of(k) for =0 in our simulation is
due to the finite system size effecfor 0<6<1, (k) is
larger for relatively longer copolymer chaismallera). This

0

FIG. 8. The inverse characteristic length as a function fufr systems 1, 2,
and 3 in Table | which have the same copolymer length but different ho-

result indicates that the homopolymers becomes more effimopolymer length.
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TABLE II. Characterization of the symmetric polymeric ternary systems for the fixed homopolymer length case

(a<1).
System Na=Ng Nag a X XNa=xNg XNag (6L, (XNp)L)
system 4(S4) 8 32 0.25 2 16 64 (1/9, 9/14
system 5(S5 8 16 0.5 2 16 32 (273, 3
system 6 (S& S3) 8 8 1 2 16 16 (213, 6

The latter observation is in accord with our results in Fig. 7we have not observed this three-phase coexistencexfor

for #<0.5. However, the behavior gk) depends onxin =1 in our simulation. This is because the energy difference

the polymeric systemé&ee Fig. 8. between the homogeneous lamellar phase and the three-
phase coexisting state is too small to detect within our nu-

B. Fixed homopolymer length  (a<1) merical accuracy.

Next, we fix both of the homopolymer lengths by C a>1
=Ng=_8, and change the copolymer lendihz. Three dif-
ferent copolymer lengths are considered as in Table I, which ~We now show some results for the caseof1. As
we refer to as systems 4, 5(6r S4, S5, Sp Notice that S6  described in Sec. Il, the Lifshitz point is preempted by the
is identical to S3. The interaction parameter is fixedyto tricritical point beyond which there is a region of three-phase
=2, i.e., the degree of incompatibility is set tiN,= 16. coexistence betweeA-rich, B-rich, and disordered phages
The sequences of patterns of S4, S5, and®81) asa (see Fig. 3 The typical obtained patterns for systentS7)
function of @ are essentially similar to those of S1, S2, or S3.and system 8S8) are depicted in Figs. 10 and 11, respec-
However, the lamellar phase contains many defects fofively. Also see Table Ill. The difference between these two
longer copolymer chains. According to the SANS systems is the value of Flory—Huggins interaction parameter
experiments® the intermediate-segregation regime wasx. Compared to the case ef<1, the patterns in these cases
identified asyNag~5-29. Hence, S4 and S5 belong to the €xhibit completely different sequences and the microphase
strong-segregation regime, whereas S&@) belongs to the Separated bicontinuous structure does not appear. For inter-
intermediate-segregation regime. In the strong-segregatiomediated (6=0.3, 0.5, and 0.7 in Fig. 10the system is
regime, the defects are hardly eliminated once they are cre-
ated. The(inverse characteristic lengtkik) is plotted as a
function of @ for S4, S5, and S6 in Fig. 9 as before. The 0 0 % %

typical length scale is smaller for systems containing shorter r‘ o s SANGE il
copolymer chains. This means that the copolymer length

dominates the overall structure. I O
For «=1, Janert and Schick predicted a three-phase re- -

gion at which the symmetric lamellar phase coexists with the e=0.1
A- and B-rich phases for large values giN, .8 However, ' ‘ :’r 1‘:

1

0=0.3
L
0.8
0.6 A
0=0.5

<k>a

0.4

» o4 s W
® » .'
* 00 '
e
a a
0=0.7
FIG. 9. The inverse characteristic length as a function fufr systems 4, 5,

and 6 in Table Il which have the same homopolymer length but differentFIG. 10. Final patterns of system 7 in Table Ill. Notations are the same as
copolymer length. those given in Fig. 4.

0.2

6=0.9
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from S2 for differentd. Shown is configuration oA in gray
scale where values 1 and 1 correspond to white and black,
respectively.

To characterize the geometrical properties of the sur-
faces, we measured various area averaged curvatures. So far,
several methods have been proposed for the curvature deter-
mination of the bicontinuous structut&.>® For the surface
defined implicitly by

3(x,y,2)=0, (4.9

we use here convenient expressions for the mean and Gauss-
ian curvature®

1
H:ﬁ[zxx(zs"_zg)_zzxzyzxy'i_ perm], (4.9

1
K= W[Exxzyy2§_2§y2§+ szzzx(zyzyz_ Ezzyy)

+ perm). (4.6)
Here
Y=|VZ], 4.7

and X;=9%/dr;, wherer=(x,y,z), and “perm” indicates
that two additional permutations of each term should be con-
sidered, i.e., one wherex{y,z)—(z,x,y) and another with
(x.y,2)=(y,z,%).

The results for the average mean curvature squared
FIG. 11. Final patterns of system 8 in Table Ill. Notations are the same a§H?), and for the average Gaussian curvatit for S1, S2,
those given in Fig. 4. and S3 in Table | are shown as a functionéin Fig. 13.
Average over four different equilibrium configurations has
been taken for each data point. The average mean curvature

now in three-phase coexistence betweéerich, B-rich, and  (H) vanishes due to the symmetry of the system. We see that
block copolymer rich phases, although the copolymer regioh€ Gaussian curvature is negative, corresponding to a sur-
is not microphase separated. For lafy9=0.9 in Fig. 10,  face which is dominated by saddle-shaped configurations.
the homogeneous disordered phase is obtained. Notice thEer small6, both(H?) and(K) are small, corresponding to
¥Npg=8 in S7 is smaller thanyNg)ust~10.5. These be- the macrophase separated structure in the symmetric system.
haviors are consistent with the predicted phase diagrarfior larged, on the other hand, the system is dominated by
given in Fig. 3. the lamellar structure, and both curvatures take small values.
By increasingy, the disorderedAB copolymer region It is interesting to note that there exist maximum and mini-
starts to microphase separate, and the system is in anoth@um of(H?) and(K), respectively. Although it was difficult
three-phase coexistence betweerich, B-rich, and lamellar ~ to distinguish between the three systems clearly in this analy-
phases. This situation can be observed for the intermediateSiS, We can at least say that the valuegofvhich gives the
in Fig. 11. It is interesting to note that the lamellar structuremaximum of (H?) or the minimum of(K) is smaller for
aligns parallel to the interface between other homogeneougmallere as in S1.
phases, and the shape of domain is polygonal.

06=0.9

E. Periodic initial conditions

Since it is probable that the patterns obtained so far may
correspond to metastable equilibrium, one should also pay
Here, we present some preliminary results from 3Dattention to the existence of equilibrium phases with LRO.
simulations. Figure 12 shows typical configurations obtainedro check this point, we performed the same numerical cal-

D. 3D case (a<1)

TABLE Ill. Characterization of the symmetric polymeric ternary systems for the sgNyeand a case @

>1).
System Na=Ng Nag @ X XNa=xNg XNag (0rcpy (XNa)tcp)
system 7(S7) 8 4 2 2 16 8 (4/5, 10
system 8(S8 8 4 2 4 32 16 (4/5, 10
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(b)

(c)

FIG. 12. Typical 3D final configuration fofa) #=0.1; (b) 6=0.6; (c) 6
=0.9 of system 2. Shown is configuration &fin gray scale where values

—1 and 1 correspond to white and black, respectively.
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FIG. 13. (a) Average mean curvature squar(ddlz) and(b) average Gauss-
ian curvature square) for systems 1, 2, and 3 in Table | which have the
same copolymer length but different homopolymer length.

tem 12(S12. Notice thata>1 in S12. We then obtained the
fully equilibrated lamellar phase by minimizing the free en-
ergy F,, in (3.10 with respect to the lamellar spacifit®?
The resulting free energly,, is shown as a function of in

Fig. 14@). In Fig. 14b), we plotted the deviation of the free
energy from the tangent &= 0.05 for each curve in order to
magnify its curvature. By carefully examining Fig. (b4, we

find that there are three distinct regions for each curve; re-
gion 1(R1) where the profile is flat, region ®2) where the
curvature of the profileg®F /962, is negative, and region 3
(R3) where the curvature is positive. These different regions
are indicated in Fig. 14) for S12. One should note that only
R3 is locally stable.

Physically speaking, the loss of configurational entropy
of the homopolymer confined between the monolayers
causes an attraction, while its translational entropy produces
a repulsion. From the curvature of the free energy, we can
discuss the effective interactions between the copolymer

culations starting with the assumed 1D periodic potentiainonolayers. The flat part of the free energy in R1 indicates
fields and generated artificial lamellar structures. The paranthat the local stability of the lamellar phase is marginal. In
eters used in this case are listed in Table IV. Four differenthis region, arbitrary number of phases with differéntan

systems are considered as given from syste(89 to sys-

coexist without any free-energy cost. This means that the
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TABLE IV. Characterization of the symmetric polymeric ternary systems starting with 1D periodic initial

conditions.* is the value for the tricritical point.

System NaA=Ng Nag a X XNa= xNg XNap (6L, (XNp)L)
system %S9 20 80 0.25 0.2 4 16 (219, 9/4
system 10(S10 40 80 0.5 0.2 8 16 113, 3
system 11(S11) 80 80 1 0.2 16 16 (213, 6
system 12(S12 160 80 2 0.2 32 16 (4/5,10)

0.05

copolymer monolayers do not interact with each other, and
any separation distance between the monolayers within the
corresponding range is allowed. Similar behavior has been
predicted for a highly swollen lamellar phase in binary
blends®3¢4

For a certain region of sma#l, we also find thatag in
the bulk region is independent &f (~0.01 for all the sys- S
tems in Table IV in R1. This value of¢,g should coincide
with the value of6 at which the lamellar periodicity diverges
(unbinding transitiojt”*® and the free-energy curve is
smoothly connected to that of two-phase state. Since we are
considering the intermediate-segregation regimeN /g
=16), 6~0.01 is much smaller than the Lifshitz volume
fraction 6, . We also point out that R1 is larger for relatively
shorter copolymer chain. This is consistent with the result in
Fig. 8, where the typical length scale increases for latger

Negative curvature in R2 results from the attractive in-
teractions between the monolay&#$? In this region, the
lamellar phases in R1, R2 and a part of R3 are thermody-
namically unstable, and macrophase separation into the
lamellar,A-rich andB-rich phasegdetermined by a common
tangent constructionshould take plac&l”8 This unstable
region hardly exists for S9 and S10, whereas it is remarkable—
for S12. This fact is consistent with the occurence of the <
three-phase coexistence shown in Fig. 11. Notice that the'g
attractive interaction between the monolayers is present in>
the patterns of Fig. 5.

Similar to our work, Thompson and Matsen calculated
the effective interactions between the monolayers by using
the Fourier-space SCE¥From the condition that the attrac-
tion becomes sufficiently small, they concluded that there is
an optimum value ofw~0.8 in order to emulsify the ho-
mopolymers. They further insist that emulsification effi-
ciency is enhanced by introducing the copolymer
polydispersity?®

Tree energy

de

V. SUMMARY AND CONCLUSION

In this paper, we have investigated the real-space struc-
ture of ternary blends oA and B homopolymers and sym-
metric AB diblock copolymer using an extended latticeal-
spacé¢ SCFT by means of numerical calculations. We
restricted ourselves to the symmetric case whgréoth A
and B homopolymers have the same length) the AB
block copolymer is symmetricjii ) the average volume frac-
tions of A andB homopolymers are equal. We performed a
systematic study to see how the copolymer fracti@and the
relative chain lengthse=N,/N,g affect the microphase

deviation of free energy
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FIG. 14. (a) The free energ¥ ,, as a function of for four different systems,

Separa_‘tEd_ StrUCt_U"e- S_tarting with r_andomly generated initiadng (p) its deviation from the tangent #@=0.05. (c) is the same plot with
potential fields, i.e., without assuming any symmetry of the(b) magnified in the vertical axis.
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mesophasa priori, we obtained various bicontinuous struc- for Scientific Research No. 13554001We thank T.

tures fora<1. For the fixed copolymer length, the typical Kawakatsu, D. Andelman, and H. Orland for useful discus-

length scale of the microphase separated structure becomsi®ns.

smaller for relatively shorter homopolymer chaissall ).

This means that the homopolymers becomes more efficient

to swell the mlprophase separated §trgcture for longer hOAPPENDIX A: EXTENDED LATTICE EORMULATION

mopolymer chainglarge «). Some preliminary results of 3D OF SCET

simulations indicate that the average Gaussian curvature is

negative corresponding to a surface which is dominated by In this Appendix, we give the detailed formulation of the

saddle-shaped configurations. The bicontinuous patterns olextended lattice SCFT for the completeness of the present

tained fora<1 resemble the TEM images of PME found paper. All of the self-consistent equations in Sec. IlIB are

experimentally by Batest al. Our result with random initial  derived here.

conditions shows, at least in the static sense, that PME with  Some of the notations are repeated first. We denote the

random configuration of interfaces results from microphaseype of molecule by, and the type of segment kyandK.

separation as metastable equilibrium. Segments in a chain are indexed Ky=1,2,..,N;, where
The situation is different for>1. In this case, the Lif- N; is the polymerization index of thih molecule. The mol-

shitz point is preempted by the tricritical point within the ecules of typé are indexed by=1,2,..,n;, wheren,; is the

mean-field theory, and the three-phase coexistence betweestal number ofith molecule.

either the disorder-rich andB-rich phases or between the We start to write the total Hamiltonian of the system as

lamellar, A-rich and B-rich phases occurs. Here, the block R R R

copolymer rich phase can either be disordered or micro H(I')=Hy(I')+W(I'), (A1)

phase separated into the lamellar structure depending on the (i) ) )
strength of the interaction parameter. where Fz{np’N,} represents the configuration space. The

Since the obtained bicontinuous structures may correlirst term is the ideal Hamiltonian describing independent
spond to metastable equilibrium, we have also performed thBOlymer chains represented as random walks, and is given by

same numerical calculation starting from the initial potential n N1

fields with an_|mposed lamellar symmetry. D_etalled free- eXF[—Ho(F)]:H ] 1T 5[|nS,)NI+1—nS,)N/I,1],
energy analysis revealed that there is a region where the Pop=lN/=1

stability of the lamellar phase is marginal. This means that (A2)

the copolymer monolayers do not interact each other in thghere the Kronecker delta function is defined in Sec. Il B.

corresponding region. . . oA .
We finally comment that the metastable irregular defectNe_Xt' the gerac;uon :ea:]n;ltlton|a:cﬁ\:](£?o|r]saTSSl:cr:1r;d :/%(tl?)be
ity uncti

structures obtained in 2D or 3D cases are due to the initiallyV" €N
prepared random potential fields. In order to avoid such ir=M{é;(n;I')}], where

regularities in real-space mean-field calculations, one can ap- nooN;

ply various 'Frlcks, such as t_)y_addlng noise, adding external <}>J(n;F)=2 2 2 5[n’ng)Nr]5[J,fi(Nl)] (A3)
fields, or using a more realistic dynamitsThese methods iop=1lN=1 '

will be included in our future calculations especially for 3D . . . . .
case is the microscopic representation of the segment density

Further developments of the present study, such a ield. The type_ function” f;(N ) |s_also introduced in Sec.
asymmetric ternary systeasymmetry ino, andag, asym- IIB. The functional form ofyV'is given by
metry in ¢, and ¢g, asymmetry in the block copolymer, 1
etc.),y hoonponm(gr/copX)Iymery binary systé?rﬁe‘ 3(/;0- W es(n)}]=5 > ;( Xk Pa(m{Pk(n)). (A4)
polymer/copolymer binary systeffi?® or different copoly- "o
mer structure (e.g., ABC triblock copolymef’) are in  Inthe abovey,y is the Flory—Huggins parameter betwekn
progress. and K segments, andX(n))) denotes the average f(n)

over the nearest-neighbor lattice sites
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1 - Ni
=H_n_.{2” exf —H(I)] byM=2 2 SN (), (A15)
[ i N/ =1
:f D[¢J(n)]J DU, ()] where the single segment distribution is

bin(n)=— Ea[nn(')]{ﬂ SInt) . —n ‘N'?,|1]]
Xexr{logZG[Ua]—W[%] "

N;
xexr{ = > S3f(NT)IUG), 1

J N"=1

+§ 2 Us(n)s(n)
(A16)

Xex;{—; u(n)(? ¢J(n)_1) : (A7) Up to now, the problem has been reduced to that of a
single chain statistics under the external potentig(n)

Here,u(n) is a Lagrange multiplier to incorporate the con- (A11) with the incompressibility conditiotA6). This prob-

straint of the incompressibility conditio6), andZJ{U;] is  lem should be solved in a self-consistent manner. Inithe

a partition function of the chains interacting with the externalchain, let us define the following two-point correlation func-

potential field{U,(n)}, i.e., tion for the positions of the segmer¥s =N, andN :

Qi(ng,Ng;ny,Nq)

ze[uJ]—Hn,E exil —Ho(D)-W' ()], (A8)
1 .
— - S ('), (') 1
with 0 7IN1=No ! [N'I:INO [|nN 1 | ]
1
W(T)= 2 }ll 21 2 S, Fi(N)IUn{\). (A9) ><exp[—2 > 83, F(N)IU(nG) l
N'=1 J N'=
From (A7) we obtain the mean-field free energy as % 5[no,n(ni2,] 5[n1,nﬂ)l]. (A17)
Flés,Us]=~log 2d Uy WM 6] Notice thatQzN~? is the partition function of a single ideal
chain of polymerization indek. We next define the forward
—; 2 U;(n) ¢y(n), (A10)  and backward end-segment statistical weights as
together with the saddle-point conditions Gi(n,N’)zﬂE Qi(ng,1;n,N"), (A18)
No
Us(m=u(m+ 3 xa{(d(m), (A1)  and
and G/(MN)=0> Qi(nN';ny Ny, (A19)
1
b ):_i 624 U,] (A12) respectively. The single segment distributi@n y.(n) in
J Zg 6Uy(n) - (A16) can be rewritten in terms of the end-segment statistical

Inserting(A2) and (A9) into (A8), we get weights as

~ mGi(n,N)G/(n,N")
20ua=11 <Z[uj]>' a3 T S U (I G Ny

It is straightforward to see that end-segment statistical
weights satisfy the following recursive relations:

(A20)

where Z;[U;] is the single chain partition function

N;-1 " _ (' ’r_
Z[U,]= 2 [ H 5“”5\;)'“ (|)| 1]} Gi(n,N")=exfd — U, (NI(Gi(n",N'=1))), (A21)
t G/ (N,N') =exi] — Uy (MG (' N +1)), (A22)
xex;{ 2 2 5[, 1, (N")]UJ(n('))ll together with the initial conditions
v Gi(n2)=exf — Uy 1y(n)], (A23)
(A1)
GI(n,Np)=exd — Uy ny(n)]. (A24)

with Fis(n(,\‘,é- . -nﬂ’l) representing the configuration space of
single ith molecule. By substitutingA13) and (A14) into By comparing from(A17) to (A19) with (Al4), we see that
(Al12), ¢,(n) can be expressed as the single chain partition function can be rewritten as
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APPENDIX B: ITERATION SCHEME
Z[Uy]=2N2 Gi(nN)=2"2 Gl(n1).  (A25) . o
n n Here, we describe the iteration scheme proposed by Ha-

segawa to solve the set of self-consistent equafidAsimi-

. The unmixed pure sys_tem s t_aken asa rt_aference Systeyg, Picard-type iteration scheme has been used by othéfts.
in which all the segment interactions are switched off. The The new estimates fofU,(n)} are calculated from the

free energy of such a reference system is previous ones according to the following rule:

Fo=—log Z,, (A26)
U B(n)=uPm)+c,

2 " (n)—1

with the partition function

(2" 4 o [P -~ Zwxu( e ()
z=11 1 (A27) 2 3.1
| -
Here, Q;=n;N; is the total number of lattice sites occupied _ ( U(T)(n)_E XJK<<¢(T)(n)>>> (B1)
by the pure system consisting of thtéh molecule. From J R K '

(A10) and (A26), we finally calculate the mixed free energy

. where c; and c, are positive constants anf=0,1, ... .
F with respect to the reference system as

This iteration scheme is continued until the quanttyle-

Foléy,U1=F[;,U;]—F, fined by
3 s 3|3 oo
+33  rdboh(m) I
=2 2 Us(mgy(n). (A28) —(US”(m—; XJK<<¢<K”<n>>>) 2 , (B2)

becomes less than 10. The time step required for the con-
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