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Real-space mean-field approach to polymeric ternary systems
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Phase separated structure of ternary blends ofA andB homopolymers and symmetricAB diblock
copolymer is investigated using a lattice~real-space! self-consistent field theory. This paper includes
the detailed description of our published results@Kodama, Komura, and Tamura, Europhys. Lett.53,
46 ~2001!# as well as more extended calculations. We consider the symmetric case, namely,~i! both
A and B homopolymers have the same degree of polymerizationNA5NB ; ~ii ! AB diblock
copolymer of lengthNAB is symmetric;~iii ! average volume fractions ofA andB homopolymers are
equal. We looked into the influence of relative chain lengthsa5NA /NAB on the phase separated
structure. Our numerical simulations are performed in the real spacewithoutassuming the symmetry
of the structurea priori. For the fixed copolymer length anda,1, the typical length scale of the
microphase separated structure become smaller for relatively shorter homopolymer chains~smalla!.
In other words, the homopolymers becomes more efficient to swell the microphase separated
structure for longer homopolymer chains~largea!. Detailed free-energy analysis revealed that the
stability of the lamellar phase is marginal for small block copolymer volume fraction. Fora.1, on
the other hand, three-phase coexistence either between the disorder,A-rich andB-rich phases or
between the lamellar,A-rich andB-rich phases is observed. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1517038#
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I. INTRODUCTION

A. Polymeric ternary systems

Traditional microemulsions being mixtures of oil, wate
and surfactant, are known to exhibit various interesting
crostructures depending on the temperature or
composition.1,2 When the concentration of surfactant is re
tively large, they show a rich variety of regularly ordere
structures such as the cubic~gyroid! phase, the hexagona
phase, or the lamellar phase. By lowering the concentra
of surfactant and if hydrophilic and lipophilic natures of th
surfactant are balanced, microemulsions form a bicontinu
structure where a randomly oriented monolayer of surf
tants separates oil-rich and water-rich subvolumes. A di
observation of the randomly intertwined structure by us
the freeze-fracture microscopy has been reported.3

It has been widely recognized that mixtures of high m
lecular weight homopolymers and diblock copolymers
analogous to traditional microemulsions.4,5 Similar to the
low molecular weight surfactant molecules,AB diblock co-
polymers tend to locate at the interface between the
phases rich inA andB homopolymers. The emulsifying ef
fect of copolymer added to blends of homopolymer was c
sidered using Flory–Huggins theory and random phase
proximation~RPA! by Leibler.6,7 His theory was used to tak

a!Electronic mail address: komura@comp.metro-u.ac.jp
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into account the microphase separation of the ternary ble
including block copolymers.8,9 For the symmetric ternary
case, the line of macrophase separation intoA-rich and
B-rich phases is connected to the line of microphase sep
tion to the lamellar phase at the isotropic Lifshitz point~see
Sec. II!.8,9

On the basis of self-consistent field theory~SCFT!,
Noolandi and Hong showed that the copolymer chains low
the interfacial tension.10,11They showed that the reduction i
interfacial tension increases with copolymer molecu
weight and concentration. Their theory was extended
Shull and his co-workers to investigate the interfacial pro
erties of ternary blends by performing the numerical tre
ment of the SCFT.12–14 Banaszak and Whitmore calculate
phase diagrams of ternary blends which undergo both
crophase and macrophase separation on the basis of a fo
order expansion.15 Israels et al. examined the effect of
diblock size relative to the homopolymers on the compat
lization of homopolymer blends.16 They showed that interfa
cial tension can be reduced to zero if the blocks in
diblock are longer than the corresponding homopolymer. T
Fourier-space SCFT calculations of ternary blends have b
performed by Janert and Schick.17,18 They investigated the
influence of relative chain length on the phase behavior
the system.17 The calculated phase diagrams include dis
dered, lamellar, hexagonal, and cubic phases, as well as
and three-phase coexistence region. In their later paper
unbinding nature of the system was discussed.18 Upon dilu-
3 © 2002 American Institute of Physics
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tion by the homopolymers, the symmetric lamellar pha
does not unbind, whereas it always becomes unstable to
asymmetric lamellar phases which do unbind.

B. Polymeric microemulsions

One of the most interesting experimental findings
Bateset al. in a polymeric ternary system is the existence
a bicontinuous structure without any long-range ord
~LRO!.19,20 The investigated system consists of nearly eq
size poly~ethylene! ~PE! and poly~ethylene propylene! ~PEP!
homopolymers and a symmetric PE–PEP diblock copolym
They focused on the symmetric case in which the volu
fractions of the two homopolymers are equal~see Fig. 1!. By
changing the average volume fraction of the copolymeru,
transmission electron microscopy~TEM! images revealed
that a lamellar structure is observed foru.uL and a two-
phase structure appears foru,uL , whereuL is the Lifshitz
volume fraction. Images obtained from the specimens cl
to uL bear a striking resemblance to bicontinuous mic
emulsions in mixtures of oil, water, and surfactant. Suc
new phase has been termed as ‘‘polymeric microemulsio
~PME!. For different types of ternary systems, it is demo
strated that there is a common region in phase space
which bicontinuous PME is stable and the general phase
havior is rather universal.21–24 In their works, the bicontinu-
ous PME has been regarded as a disordered phase wh
driven by fluctuations of lamellar phase.19–21To explain this,

FIG. 1. The phase prism for a ternary blend of two homopolymers an
block copolymer.fA andfB are homopolymer volume fractions, andu is
the copolymer volume fraction. The vertical coordinate is the incompati
ity degreexNA . The shaded plane cut through the prism atfA5fB is the
isopleth.
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a singular cusp in the phase transition temperature is
sumed asu is varied aboutuL , and the region of the disor
dered phase is considered to extend to very low temperat
within this cusp.

Various theoretical approaches for PME have been
dressed. Kielhorn and Muthukumar extended the mean-fi
theory by including composition fluctuations, and conclud
that the Lifshitz point is destroyed due to the fluctuations25

Later, Kielhorn and Muthukumar derived a mean-field tim
dependent Ginzburg–Landau equation to model the spin
decomposition of polymeric ternary systems.26 Matsen cal-
culated the elastic properties of a diblock copolymer mo
layer within SCFT,27 and showed that the calculated bendi
modulus and saddle-splay modulus satisfy the conditions
quired to melt the lamellar phase. Using SCFT and stro
segregation theory, Thompson and Matsen have calcul
the effective interactions between the copolym
monolayers.28 From the condition that the attraction becom
sufficiently small, they concluded that the optimum size
the homopolymer molecules is about 80% that of the copo
mer molecule. In a more recent paper, Thompson and Ma
predicted that copolymer polydispersity can improve PM
by forming flexible and nonattractive monolayers.29

C. The present work

In this paper, using a lattice~real-space! SCFT method,
we investigate the phase separated structure of the symm
mixtures ofA andB homopolymers plusAB diblock copoly-
mers. Our purpose is to study the morphological change
the microphase separated structure when the total copoly
volume fraction or the relative chain lengths between
homopolymers and the diblock copolymer is varied syste
atically. We numerically solve the SCFT equations in a r
spacewithout assuming the symmetry of the structurea pri-
ori according to the method proposed by Hasegawa.30 Appli-
cation of this method for the polymeric ternary system a
some of the preliminary results have been reported in
previous works.31–33 This paper provides the detailed d
scription of our results as well as more extended calcu
tions. Independently, the real-space SCFT method has b
used by other authors such as for linearABCA tetrablock
copolymers,34,35 or star and linear ABC triblock
copolymers.36 In general, this method proved to be a powe
ful tool in finding new mesophases either with or witho
LRO.37

Starting with randomly generated initial potential field
we demonstrate that a bicontinuous structure similar to P
results from the microphase separation for relatively lon
copolymer chain. For the fixed copolymer length, we fi
that the typical length scale of the microphase separa
structure becomes smaller for relatively smaller homopo
mer chains. For relatively longer homopolymer chains,
observed the three-phase coexistence either between the
order, A-rich and B-rich phases or between the lamella
A-rich andB-rich phases depending on the strength of
interaction parameter.

Since the obtained bicontinuous structure may cor
spond to metastable equilibrium, we have also performed
same calculation starting from the initial potential fields w

a

-
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an imposed lamellar symmetry. By calculating the free
ergy of the lamellar phase as a function of the average
ume fraction of the copolymer, we discuss the effective
teractions between the copolymer monolayers. We find
there is a region where the stability of the lamellar phas
marginal.

This paper is constructed as follows. In the next secti
the mean-field phase diagrams of the polymeric ternary
tem are explained within the RPA for various relative cha
lengths. In Sec. III, we summarize the general formulation
the real-space SCFT for a system including copolymers,
describe the numerical procedure based on the lattice ver
of SCFT. Section IV gives the analysis of our simulati
results. Summary and conclusion are provided in Sec. V.
tails of the general formulation and some technical rema
are given in Appendix A. Appendix B describes the iterati
scheme to solve the set of self-consistent equations.

II. RANDOM PHASE APPROXIMATION

A. Notations

In general, we consider a ternary blend ofA andB ho-
mopolymer of polymerization indicesNA and NB , respec-
tively, and AB diblock copolymer of polymerization inde
NAB of which a fractionf consists ofA monomer. Then, we
introduce two dimensionless parameters defined by

aA[
NA

NAB
, aB[

NB

NAB
, ~2.1!

respectively. The volume fractions ofA and B homopoly-
mers are denoted byfA(r ) andfB(r ), respectively, and the
volume fraction ofAB block copolymer byfAB(r ). In ad-
dition, fa(r ) andfb(r ) represent the volume fractions ofA
andB blocks in theAB block copolymer, respectively. Th
average volume fraction of each component is indicated w
a bar, such asf̄A , f̄B , or f̄AB[u. We assume that the
system is incompressible, i.e.,

fA1fB1fa1fb51. ~2.2!

Due to this constraint, we define the following three quan
ties as independent order parameters:

F[fA2fB , ~2.3!

C[fa2fb , ~2.4!

D[fA1fa2fB2fb . ~2.5!

The last order parameter represents the difference in the
ume fractions of allA andB monomers. The Flory–Huggin
interaction parameter betweenA andB segments is denote
by xAB[x.

The phase behavior of a polymeric ternary blend can
represented in the form of a phase prism shown in Fig
Within the large parameter space, we focus on the symme
case, namely~i! bothA andB homopolymers have the sam
length (NA5NB and henceaA5aB[a); ~ii ! the AB block
copolymer containsA andB monomers in equal proportion
( f 51/2); and~iii ! the average volume fractions ofA andB
homopolymers are equal and determined by
Downloaded 15 May 2003 to 133.86.44.17. Redistribution subject to AI
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f̄A5f̄B5
12u

2
. ~2.6!

In other words, we consider the isopleth~shaded plane in
Fig. 1! in the phase prism.

B. Correlation function

Here, we discuss the phase behavior of polymeric
nary systems within the random phase approximation~RPA!
for various values ofa. Mean-field phase diagram on th
isopleth fora51 was considered by Leibler,6,7 and later cal-
culated foraÞ1 by Broseta and Fredrickson.8 The essential
part of the phase diagram can be obtained by looking at
monomer concentration correlation function~structure fac-
tor!. Within the RPA, Leibler calculated the correlation fun
tion for F as7

SFF~x!5
2SA~x!$12x@SAA~x!2SAB~x!#%

12x@SA~x!1SAA~x!2SAB~x!#
. ~2.7!

Here, x5(qR)25q2NAb2/6, whereq5uqu is the absolute
value of the wave vectorq, R is the radius of gyration, andb
is the statistical segment length. In the above,SA(x) is the
correlation function of independentA homopolymer,SAA(x)
andSAB(x) areA–A andA–B monomers correlation func
tions of independent copolymer chains. These are given

SA~x!5
12u

2
NAg~1,x!, ~2.8!

SAA~x!5
uNA

a
gS 1

2
,

x

a D , ~2.9!

SAB~x!5
uNA

a F1

2
gS 1,

x

a D2gS 1

2
,

x

a D G , ~2.10!

whereg(h,x) is the Debye function defined by

g~h,x!5
2

x2 ~hx1e2hx21!. ~2.11!

The limit of stability of the disordered phase occurs f
the smallest value ofx(x) ~highest temperature! at which
~2.7! diverges. From~2.7! to ~2.11!, this condition is written
as

1

x~x!NA
5

1

x2 @211x1e2x

1u$12e2x1a~2314e2x/2a2e2x/a!%#.

~2.12!

When a51, this equation reduces to Eq.~3.2! in Ref. 9.
Minimizing x(x) with respect tox, we see that for 0,u
,2a2/(112a2), the minimum occurs atx50 and the cor-
responding value is

1

xNA
5

12u

2
. ~2.13!

This is called the ‘‘Scott line’’~consolute line! along which
the disordered phase makes a continuous transition to c
isting uniform (q50) phases. The system exhibits the ma
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rophase separation betweenA-rich and B-rich phases. For
2a2/(112a2),u,1, the instability occurs at a nonzer
value ofx. This case corresponds to the microphase sep
tion to a lamellar phase. When the transition to the lame
phase (qÞ0) occurs, the density of the copolymer is give
by

u~x!5@221x1~x12!e2x#/@6a221~x12!e2x

1~x12a!e2x/a22~x14a!e2x/2a#, ~2.14!

and the transition line is located according to~2.12! with
~2.14!. It is important to note that~2.14! holds only for 0
,x<3.785.9 The point which connects the macrophase a
microphase transition lines is known as an isotropicm
5d, wherem is the number of dimensions in which wav
vector instability occurs, andd is the space dimension! Lif-
shitz point8,38

uL5
2a2

112a2 , ~xNA!L52~112a2!. ~2.15!

It is instructive to derive the Ginzburg–Landau~GL!
free energy from the obtained correlation function. By e
pandingSFF

21 in ~2.7! for small q, we obtain the free energ
F@F# as

FGL@F#'
r0

2NA
E dr @c~¹2F!21g~¹F!21tF2#,

~2.16!

wherer0 is the monomer density and the coefficients are

c5
1

36F 1

12u
1

9~xNA!2u

16a3 2
~xNA!3u2

8a4 GR4, ~2.17!

g5
1

3 F 1

12u
2

~xNA!2u

8a2 GR2, ~2.18!

t5
1

12u
2

xNA

2
. ~2.19!

Throughout this paper, all the energies are expressed in u
of kBT, wherekB and T represent the Boltzmann consta
and the temperature, respectively. Notice that the Scott
~2.13! is determined from the conditiont50. On the other
hand, the phase boundary between the lamellar and the
phase coexisting region is determined from the relation39

2~22A6!a5g2/c, ~2.20!

within the GL expansion. It important to note that this re
tion holds only close to the critical point where the expa
sion is justified. We comment here that whenc,t.0 andg
,0, ~2.16! is the free energy of traditional microemulsion
proposed by Teubner and Strey.40 In this case,F(r ) is de-
fined as an order parameter which measures the local di
ence in volume fractions between oil and water.

In addition to these phase boundaries, one can locate
‘‘disorder line’’ and the ‘‘Lifshitz line’’ in the disordered re-
gion of the phase diagram.9 The disorder line is the locus o
points at which the asymptotic behavior of the correlat
function changes from a monotonic exponential decay to
exponentially damped oscillatory decay. This oscillatory b
havior reflects the tendency of the copolymer to order
Downloaded 15 May 2003 to 133.86.44.17. Redistribution subject to AI
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homopolymers. The disorder line can be calculated fr
~2.12! and~2.14! by settingx52y, wherey ranges over all
positive real numbers (y.0). On the other hand, the Lifshit
line is the locus of points at which the oscillations are su
cient to produce the dominant peak in the associated st
ture function at nonzero wave vector. The Lifshitz line f
the F–F structure functionSFF @see~2.7!# is obtained by
settingg50 in ~2.18!, and one obtains

1

xNA
5F ~12u!u

8a2 G1/2

. ~2.21!

However, another situation occurs asu is increased. The Lif-
shitz line is connected to the ‘‘equimaxima line’’ at which th
two peaks~one atq50, and the other atqÞ0) in the struc-
ture function become of equal height.9

Phase diagrams on the isopleth fora50.25, 0.5, and 1
including several different lines are shown in Fig. 2. Noti
that Fig. 2~c! is the same as Fig. 3 in Ref. 9. The Scott lin
start from (u,xNA)5(0,2) ~point C!, whereas the lines o
microphase separation end at (u,xNA)5(1,10.5a) ~point
G!. Disorder lines start from~0,0! ~point D! except fora
51. The transition line between the lamellar and the tw
phase coexistence region is drawn only near the Lifsh
point where the GL expansion is valid. According to Fi
2~c! (a51), Holyst and Schick concluded that the copol
mer is inefficient in the organization of homopolymers sin
the Lifshitz line ~line LE! is far from the disorder line~line
LD!. However, this tendency changes asa is decreased from
1. We see that the Lifshitz line appears even in the sm
copolymer volume fraction region such as in Fig. 2~a!. In the
experiment by Bateset al., the parametera was chosen as
a;0.2 in order to ensure that both the points C and G in
phase diagram can be explored over the similar tempera
window.19,21,22

C. Multiphase coexistence

It is important to notice that the above discussion is va
only for a<1. Fora.1, the Lifshitz point is preempted by
a tricritical point8

uTCP5
2a

112a
, ~xNA!TCP52~112a!. ~2.22!

Notice that (xNA)TCP,(xNA)L for a.1. The special case o
a51 corresponds to a ‘‘Lifshitz tricritical point,’’ as ha
been pointed out in Refs. 8 and 9. The tricritical point ind
cates a continuous segregation into three phases;
homopolymer-rich phases and a copolymer-rich lame
phase.

A typical phase diagram fora52 is calculated in Fig. 3.
For small u, the disordered phase undergoes a continu
transition toA- andB-rich uniform phases at the Scott lin
~2.13!. This line ends at a tricritical point~2.22!, beyond
which is a line~triple line! of three-phase coexistence b
tween A-rich, B-rich, and disordered block copolyme
phases. The region of three-phase coexistence can be c
lated within the Flory–Huggins approximation where the
duced free energy is given by8
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9907J. Chem. Phys., Vol. 117, No. 21, 1 December 2002 Mean-field approach to ternary systems
FIG. 2. Phase diagrams of the symmetric ternary mixture for~a! a
5NA /NAB50.25; ~b! a50.5; and~c! a51 as obtained from the random
phase approximation.u is the total volume fraction of the copolymer. Th
regions labeled LAM, DIS, and 2P are, respectively, regions of lame
disordered, and two-phase coexisting phases. L is the Lifshitz point. The
CL is that of continuous transition from the disordered phase to coexis
A-rich andB-rich phases, LG is the line of continuous transitions from t
disordered phase to the lamellar phase, LD is the disorder line, and LE
EG are the Lifshitz and equimaxima lines for theF–F structure function,
respectively.
Downloaded 15 May 2003 to 133.86.44.17. Redistribution subject to AI
f ~F,u!5
12u1F

2
log~12u1F!

1
12u2F

2
log~12u2F!1au logu2

xNAF2

4
.

~2.23!

The compositionsF andu of the three coexisting phases a
obtained by equating the chemical potentials of each spe

mF5
] f

]F
, ~2.24!

mu5
] f

]u
, ~2.25!

and the osmotic pressure

P5 f 2mF2mu . ~2.26!

The triple line terminates at a four-phase point at wh
the lamellar phase coexists with the other three phase41

Beyond this point, there is a direct transition line between
disordered phase and the lamellar phase. These region
not shown in Fig. 3.

III. LATTICE SELF-CONSISTENT FIELD THEORY

A. Self-consistent field theory

Self-consistent field theory~SCFT! in polymer science
originates from the early works by Edwards42 or by Helfand
and Tagami.43 The basic idea of SCFT is as follows: poly
mers are represented as random walks in a positional de
dent segment potential, which depends in a self-consis
way on the distribution of segments. SCFT has been app
to various problems and its recent achievements are sum
rized such as in Refs. 37 and 44. In fact, the RPA used in
previous section is one of the approximated formulations
SCFT.

r,
e
g

nd

FIG. 3. Phase diagram of the symmetric ternary mixture fora5NA /NAB

52. In addition to the notations given in Fig. 2, the region labeled 3P is
region of three-phase coexistence betweenA-rich, B-rich, and disordered
block copolymer phases. T is the tricritical point.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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There are, basically, two possible ways to formulate
SCFT: Fourier-space and real space representations.
cently, the Fourier-space SCFT method proved to be q
useful to predict the phase diagram of block copolym
melts.45,46 In this method the set of self-consistent equatio
is solved by using a restricted Fourier basis appropriate
an assumed mesophase symmetry. Later, various per
structures with LRO were successfully explained within t
SCFT for polymeric ternary systems.15,17,18 In these works,
the free energies of several periodic structures were ca
lated by assuming their mesophase symmetrya priori.

On the other hand, the set of self-consistent equati
~see the next subsection! can be solved also in a real spac
This real-space method was initiated by Scheutjens and F
as a lattice version of SCFT,47 and has been further deve
oped for surface problems with specific bounda
conditions.48,49More recent works using the real-space~both
lattice and off-lattice! SCFT are given in Ref. 50.

Furthermore, it is advantageous in the real-space me
that one need not assume the symmetry of structurea
priori .31–37In order not to bias the symmetry of patterns th
emerges, one numerically solves the self-consistent e
tions by starting with random potential fields. Although th
method may generate the structures corresponding to e
stable or metastable equilibrium, it has proved to be a p
erful tool in finding new mesophases. A similar approa
was taken in Ref. 16, in which they observed droplet mic
emulsions. In the present paper, we employ the real-sp
lattice SCFT with a slight extension of the previous meth

B. Self-consistent equations in the lattice formulation

Here, we give the set of self-consistent equations in
lattice formulation of SCFT which is essentially based
Refs. 48 and 49. While Ref. 48 treats only surface adsorp
problems, we apply the lattice SCFT to higher space dim
sions. Although there are many derivations of SCFT, we g
the details of the lattice formulation in Appendix A for th
completeness of our paper. Notice that the present la
formulation is not a simple discretization of the continuu
model.

The space coordinate of each segment composing
polymers is specified by a lattice pointn5(nx ,ny ,nz) in an
Lx3Ly3Lz([V) cubic lattice box with a lattice constanta.
We denote the type of molecule byi , and the type of seg
ment byJ andK. ~In the present case,i 5A,B for A andB
homopolymers, andi 5AB for AB copolymer, whereasJ or
K points to eitherA or B segment.! Segments in a chain ar
indexed byN851,2,...,Ni , whereNi is the polymerization
index of thei th molecule. The molecules of typei are in-
dexed byp51,2,...,ni , whereni is the total number ofi th
molecule.

We introduce two Green’s functionsGi(n,N8) and
Gi

†(n,N8) for walks starting atN851 andNi , respectively.
These functions obey the following recursive relations:

Gi~n,N8!5exp@2U f i (N8)~n!#^̂ Gi~n8,N821!&&, ~3.1!

Gi
†~n,N8!5exp@2U f i (N8)~n!#^̂ Gi

†~n8,N811!&&, ~3.2!

together with the initial conditions
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Gi~n,1!5exp@2U f i (1)~n!#, ~3.3!

Gi
†~n,Ni !5exp@2U f i (Ni )

~n!#. ~3.4!

Here, f i(N8) is the ‘‘type function’’ representing the type o
the segmentN8 in the i th chain, and̂^¯&& denotes a neigh-
borhood average defined later by~3.9!. The segment poten
tial is given by

UJ~n!5u~n!1(
K

xJK^̂ fK~n!&&, ~3.5!

wherexJK is the Flory–Huggins parameter betweenJ andK
segments. Physically,u(n) represents an entropic hard-co
potential which is independent of the segment type, wher
the second term is the interaction part. The segment distr
tion function in ~3.5! is expressed as

fJ~n!5(
i

(
N851

Ni

d@J, f i~N8!#f i ,N8~n!, ~3.6!

with

f i ,N8~n!5
niGi~n,N8!Gi

†~n,N8!

exp@2U f i (N8)~n!#(n8Gi~n8,Ni !
, ~3.7!

whered@J, f i(N8)# is a Kronecker delta with value 1 if seg
ment f i(N8) is of typeJ, and 0 otherwise. Equation~3.7! is
called the ‘‘composition law.’’ Finally, the incompressibilit
condition requires that

(
J

fJ~n!51, ~3.8!

holds at any site. From~3.1! to ~3.8! forms a set of self-
consistent equations to be solved for$fJ(n)% and$UJ(n)%.

Up to now, the formulation is rather general and sta
dard. In order to avoid the geometric constraints associa
with a lattice, the neighborhood average^̂ ¯&& in ~3.1!, ~3.2!,
or ~3.5! is taken according to51

^̂ X~n!&&5(
n8

F 6

80
d@ un2n8u2,1#1

3

80
d@ un2n8u2,2#

1
1

80
d@ un2n8u2,3#GX~n8!. ~3.9!

This type of neighborhood average has the desirable prop
of being more generally isotropic, and is a natural extens
of the standard nearest-neighbor average given by~A5!. See
also the corresponding ideal Hamiltonian~A29!. On the
other hand,~3.9! has been successfully used in the ce
dynamical simulations.51 A related discussion is provided i
Ref. 52 in which the coefficients in~3.9! are carefully deter-
mined in order to be consistent with the Gaussian ch
model in a continuum treatment.

After solving these equations, we calculate the mixi
free energyFm with respect to the unmixed pure referen
system where the segment interactions are switched
Then, we have
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Characterization of the symmetric polymeric ternary systems for the fixed copolymer length
(a<1).

System NA5NB NAB a x xNA5xNB xNAB (uL ,(xNA)L)

system 1~S1! 2 8 0.25 2 4 16 ~1/9, 9/4!
system 2~S2! 4 8 0.5 2 8 16 ~1/3, 3!
system 3 (S35S6) 8 8 1 2 16 16 ~2/3, 6!
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Fm@fJ ,UJ#5(
i

ni log
niNi

(nGi~n,Ni !

1
1

2 (
n

(
J,K

xJKfJ~n!^̂ fK~n!&&

2(
n

(
J

UJ~n!fJ~n!. ~3.10!

C. Numerical procedure

The above set of self-consistent equations is solved
the following way.30,48,49 We first give an initial guess fo
$UJ(n)% which can be either random or periodic in space.
general, we do not need to assume any symmetry of
structurea priori, which differs from the Fourier-space trea
ment of SCFT such as in Refs. 45 and 46. Then, we comp
the single chain statistical weightsGi(n,N8) andGi

†(n,N8)
from ~3.1! and~3.2!, respectively. Using these quantities, w
obtain the distribution$f i ,N8(n)% from ~3.7!. Then,fJ(n) is
calculated by~3.6!. At this point, we examine whether th
incompressibility condition~3.8! is satisfied, and whether th
segment potential gives the sameu(n) for each segmen
type. If these constraints are satisfied, the initial estim
corresponds to equilibrium. Otherwise, new estimates
$UJ(n)% are made until the conditions are met. Notice th
the present algorithm is not intended to mimic real polym
dynamics, but is an efficient artifice to evolve a system
fast as possible to a free-energy minimum which can be
ther stable or metastable. The details of the Picard-type it
tion scheme used is presented in Appendix B.

First, we numerically solve the set of SCFT equatio
starting with randomly generated potential fields. This sim
lation is performed in 2D (Lx5Ly5256, Lz51) and 3D
(Lx5Ly5Lz564) systems. In 2D cases, we neglect any g
dients in thez-direction and put53

X~nx ,ny ,nz21!5X~nx ,ny ,nz11!5X~nx ,ny ,nz!.
~3.11!

Furthermore, the periodic boundary condition is imposed.
in Sec. II, we only consider the interaction between theA
andB segments

xAB5xBA5x. ~3.12!

Notice that although the present method may not be s
able for determining the fully equilibrated structures, it e
ables us to generate a structure which does not posses
LRO such as PME as a metastable structure. Since the
tained patterns may depend on the initially prepared poten
fields, we also study 1D systems starting with 1D perio
potential fields. The latter case yields lamellar structures w
ay 2003 to 133.86.44.17. Redistribution subject to AI
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a well-defined periodicity. We chose different parameters
1D and 2D calculations in order to maximize the compu
tional efficiency for large 2D systems.

IV. RESULTS AND DISCUSSION

In this section, we present our results of simulations
scribed previously. We focus here on the symmetric case
in Sec. II, and examine the influence of the relative ch
length between homopolymers and copolymer. We did it
two ways; one by fixing the copolymer length and chang
the homopolymer length, and the other by fixing the h
mopolymer length and changing the copolymer length. So
preliminary results fora.1 case and 3D system are als
reported. All the results from Sec. IV A to IV D are obtaine
starting with randomly generated potential fields without
suming any symmetry, whereas Sec. IV E treats the c
starting from 1D periodic initial conditions.

A. Fixed copolymer length „aÏ1…

We first discuss the case where the length ofAB block
copolymer is fixed toA4B4 (NAB58), whereas lengths o
both A and B homopolymers are changed. Three differe
homopolymer lengths are considered, which we refer to
systems 1, 2, 3~or S1, S2, S3! as listed in Table I. For each
homopolymer length, the average volume fraction of the
polymeru (5f̄AB) is varied between 0 and 1. The intera
tion parameter betweenA and B monomers is fixed tox
52. Hence, the degree of incompatibility is fixed toxNAB

516, which corresponds to the temperature below the
crophase separation temperature (xNAB)MST'10.5 for u
51.54 The typical patterns obtained from 2D simulations a
depicted in Figs. 4 and 5 for S1 and S3, respectively. T
volume fractionsfA , fB , fa , andfb as defined in Sec. II
are drawn in gray scale for five different copolymer volum
fractions u50.1, 0.3, 0.5, 0.7, and 0.9. Here, the values
and 1 correspond to white and black, respectively. In Fig
we plotted the part of cross-section profiles ofF andC @see
~2.3! and ~2.4!# for u50.1, 0.5, and 0.9 obtained from S3.

For small u, there are large regions ofA and B ho-
mopolymer rich domains. As can be clearly seen from F
6~a!, the profile ofF changes sharply from21 to 1 at the
interface between theA-rich and B-rich domains. Most of
the copolymers are located at the interface, and form s
rated monolayers without any LRO. Asu is increased, the
domain size becomes smaller and the amount of the inter
increases, although the LRO still does not exist. Moreov
the difference between the maximum and the minimum v
ues ofF becomes smaller. This is due to the fact that t
homopolymers are excluded by the copolymer brushes wh
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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start to overlap. Whenu is relatively large, the system exhib
its a lamellar structure~with many defects! which is swollen
by the small fraction of homopolymer chains. The lamel
structure can also be clearly seen in Fig. 6~c!.

Both in Figs. 4 and 5, bicontinuous structures witho
any LRO appear below the transition temperature. No
that in the present simulation, the effect of fluctuation is n
included except for the initial random distribution of se
ment potential. We remark that there is a resemblance
tween the sequence of patterns shown here and those of
obtained from the TEM micrographs19 asu is varied. In order
to discuss the stability of PME, one needs to know, for
ample, the entropic contribution due to the random confi
ration of interfaces, which is balanced with their bendi
energy.27 Of course, this is beyond the scope of the pres
mean-field approach. However, our result with random ini
conditions shows, at least in the static sense, that PME
random configuration of interfaces results from microph
separation as metastable equilibrium. Notice that even
experimentally obtained PME may not necessarily be fu
equilibrated structure. Interestingly, many holes observe
theA-rich andB-rich domains in the experiment@Fig. 3~d! in
Ref. 19# are also reproduced such as inu50.1 in Fig. 4 or
u50.3 in Fig. 5. These holes should be due to the emuls
cation of homopolymers by block copolymers.

In order to analyze the obtained patterns quantitativ

FIG. 4. Final patterns of system 1 in Table I for different values ofu drawn
in gray scale. The values 0 and 1 correspond to white and black, res
tively. fA andfB are volume fractions ofA andB homopolymers, andfa

and fb are the volume fractions ofA and B blocks in the copolymer,
respectively.
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we pay attention to the behavior ofD given in~2.5!. First, we
define a discrete Fourier transform ofD(n) by

D@k#5(
n

D~n!exp~ ik•n!, ~4.1!

with k52pm/L, mP$0,1,...,L21%2, and L is the system
size. Then, the structure factor is given by

S~k!5^D@k#D@2k#&, ~4.2!

where the average is over the ensemble of systems. Figu
shows the circularly averaged structure factorS(k) (k
5uku) of S3 for several values ofu ranging fromu50.2 to 1.
Structure factors foru50 and 0.1 are not shown here b
cause their peak heights are much larger than those plotte
the graph. The peak height decreases asu is increased at leas
up to u50.5. This reflects the fact that the contrast betwe
overall A and B segments becomes smaller. Above th
value, the peak height gradually increases up tou51.

By increasingu from 0 to 1, the peak position shift
systematically to higher values of the wave vector. The p
position characterizes the typical length scale of each patt
To see this in more detail, we calculate the~inverse! charac-
teristic length scale defined by51

^k&5
(kÞ0uku21S~k!

(kÞ0uku22S~k!
. ~4.3!

In Fig. 8, ^k& is plotted as a function ofu for S1, S2, and S3
simultaneously. Although the homopolymer lengths are d

c-
FIG. 5. Final patterns of system 3 in Table I. Notations are the same as t
given in Fig. 4.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ferent for these three systems, the values of^k& at u50 are
the same.~In principle, macrophase separation takes pla
for ^k&50. Finite value of̂ k& for u50 in our simulation is
due to the finite system size effect.! For 0,u,1, ^k& is
larger for relatively longer copolymer chain~smallera!. This
result indicates that the homopolymers becomes more

FIG. 6. Part of the cross-section profiles ofF andC for ~a! u50.1; ~b! u
50.5; ~c! u50.9 of system 3 in Table I.
Downloaded 15 May 2003 to 133.86.44.17. Redistribution subject to AI
e

fi-

cient to swell the microphase separated structure by choo
largera. In other words, the homopolymer chains penetr
into the copolymer brushes for smalla.14 However, it should
be noted that this tendency is true as long as the system is
too close to the unbinding transition point at which t
lamellar spacing diverges upon dilution by homopolymer

Since we do not know of a systematic experimen
study on the polymeric ternary system, we compare our
sults with the experiment on the traditional microemulsio
The structure of one-phase AOT/D2O/decane microemul-
sions containing equal volumes of water and oil and a v
able concentration of surfactant was investigated by Kot
chyk et al. using SANS.55 They found that as the volum
fraction of AOT is increased from 0.18 to 0.42, the pe
position exhibits an approximately linear shift to larger va
ues of wave vector, while the peak height rapidly diminish

FIG. 7. Circularly averaged structure factor for different values ofu of
system 3 in Table I.u50.2, 0.3,...,1.0from left to right peaks.

FIG. 8. The inverse characteristic length as a function ofu for systems 1, 2,
and 3 in Table I which have the same copolymer length but different
mopolymer length.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



case

9912 J. Chem. Phys., Vol. 117, No. 21, 1 December 2002 Komura, Kodama, and Tamura

Downloaded 15 M
TABLE II. Characterization of the symmetric polymeric ternary systems for the fixed homopolymer length
(a<1).

System NA5NB NAB a x xNA5xNB xNAB (uL ,(xNA)L)

system 4~S4! 8 32 0.25 2 16 64 ~1/9, 9/4!
system 5~S5! 8 16 0.5 2 16 32 ~1/3, 3!
system 6 (S65S3) 8 8 1 2 16 16 ~2/3, 6!
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The latter observation is in accord with our results in Fig
for u,0.5. However, the behavior of^k& depends ona in
the polymeric systems~see Fig. 8!.

B. Fixed homopolymer length „aÏ1…

Next, we fix both of the homopolymer lengths toNA

5NB58, and change the copolymer lengthNAB . Three dif-
ferent copolymer lengths are considered as in Table II, wh
we refer to as systems 4, 5, 6~or S4, S5, S6!. Notice that S6
is identical to S3. The interaction parameter is fixed tox
52, i.e., the degree of incompatibility is set toxNA516.

The sequences of patterns of S4, S5, and S6 (a<1) as a
function ofu are essentially similar to those of S1, S2, or S
However, the lamellar phase contains many defects
longer copolymer chains. According to the SAN
experiments,56 the intermediate-segregation regime w
identified asxNAB'5 – 29. Hence, S4 and S5 belong to t
strong-segregation regime, whereas S6 (5S3) belongs to the
intermediate-segregation regime. In the strong-segrega
regime, the defects are hardly eliminated once they are
ated. The~inverse! characteristic lengtĥk& is plotted as a
function of u for S4, S5, and S6 in Fig. 9 as before. T
typical length scale is smaller for systems containing sho
copolymer chains. This means that the copolymer len
dominates the overall structure.

For a51, Janert and Schick predicted a three-phase
gion at which the symmetric lamellar phase coexists with
A- and B-rich phases for large values ofxNA .18 However,

FIG. 9. The inverse characteristic length as a function ofu for systems 4, 5,
and 6 in Table II which have the same homopolymer length but differ
copolymer length.
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we have not observed this three-phase coexistence foa
51 in our simulation. This is because the energy differen
between the homogeneous lamellar phase and the th
phase coexisting state is too small to detect within our
merical accuracy.

C. aÌ1

We now show some results for the case ofa.1. As
described in Sec. II, the Lifshitz point is preempted by t
tricritical point beyond which there is a region of three-pha
coexistence betweenA-rich, B-rich, and disordered phases8

~see Fig. 3!. The typical obtained patterns for system 7~S7!
and system 8~S8! are depicted in Figs. 10 and 11, respe
tively. Also see Table III. The difference between these t
systems is the value of Flory–Huggins interaction parame
x. Compared to the case ofa,1, the patterns in these case
exhibit completely different sequences and the microph
separated bicontinuous structure does not appear. For i
mediateu (u50.3, 0.5, and 0.7 in Fig. 10!, the system is

tFIG. 10. Final patterns of system 7 in Table III. Notations are the sam
those given in Fig. 4.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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now in three-phase coexistence betweenA-rich, B-rich, and
block copolymer rich phases, although the copolymer reg
is not microphase separated. For largeu (u50.9 in Fig. 10!,
the homogeneous disordered phase is obtained. Notice
xNAB58 in S7 is smaller than (xNAB)MST'10.5. These be-
haviors are consistent with the predicted phase diag
given in Fig. 3.

By increasingx, the disorderedAB copolymer region
starts to microphase separate, and the system is in an
three-phase coexistence betweenA-rich, B-rich, and lamellar
phases. This situation can be observed for the intermediau
in Fig. 11. It is interesting to note that the lamellar structu
aligns parallel to the interface between other homogene
phases, and the shape of domain is polygonal.

D. 3D case „aÏ1…

Here, we present some preliminary results from
simulations. Figure 12 shows typical configurations obtain

FIG. 11. Final patterns of system 8 in Table III. Notations are the sam
those given in Fig. 4.
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from S2 for differentu. Shown is configuration ofD in gray
scale where values21 and 1 correspond to white and blac
respectively.

To characterize the geometrical properties of the s
faces, we measured various area averaged curvatures. S
several methods have been proposed for the curvature d
mination of the bicontinuous structure.57–59 For the surface
defined implicitly by

S~x,y,z!50, ~4.4!

we use here convenient expressions for the mean and Ga
ian curvatures60

H5
1

2Y3 @Sxx~Sy
21Sz

2!22SxSySxy1perm#, ~4.5!

K5
1

Y4 @SxxSyySz
22Sxy

2 Sz
212SxzSx~SySyz2SzSyy!

1perm#. ~4.6!

Here

Y5u¹Su, ~4.7!

and S i5]S/]r i , where r5(x,y,z), and ‘‘perm’’ indicates
that two additional permutations of each term should be c
sidered, i.e., one where (x,y,z)→(z,x,y) and another with
(x,y,z)→(y,z,x).

The results for the average mean curvature squa
^H2&, and for the average Gaussian curvature^K& for S1, S2,
and S3 in Table I are shown as a function ofu in Fig. 13.
Average over four different equilibrium configurations h
been taken for each data point. The average mean curva
^H& vanishes due to the symmetry of the system. We see
the Gaussian curvature is negative, corresponding to a
face which is dominated by saddle-shaped configuratio
For smallu, both ^H2& and ^K& are small, corresponding to
the macrophase separated structure in the symmetric sys
For largeu, on the other hand, the system is dominated
the lamellar structure, and both curvatures take small val
It is interesting to note that there exist maximum and mi
mum of^H2& and^K&, respectively. Although it was difficult
to distinguish between the three systems clearly in this an
sis, we can at least say that the value ofu which gives the
maximum of ^H2& or the minimum of^K& is smaller for
smallera as in S1.

E. Periodic initial conditions

Since it is probable that the patterns obtained so far m
correspond to metastable equilibrium, one should also
attention to the existence of equilibrium phases with LR
To check this point, we performed the same numerical c

s

TABLE III. Characterization of the symmetric polymeric ternary systems for the samexNA and a case (a
.1).

System NA5NB NAB a x xNA5xNB xNAB (uTCP,(xNA)TCP)

system 7~S7! 8 4 2 2 16 8 ~4/5, 10!
system 8~S8! 8 4 2 4 32 16 ~4/5, 10!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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culations starting with the assumed 1D periodic poten
fields and generated artificial lamellar structures. The par
eters used in this case are listed in Table IV. Four differ
systems are considered as given from system 9~S9! to sys-

FIG. 12. Typical 3D final configuration for~a! u50.1; ~b! u50.6; ~c! u
50.9 of system 2. Shown is configuration ofD in gray scale where values
21 and 1 correspond to white and black, respectively.
Downloaded 15 May 2003 to 133.86.44.17. Redistribution subject to AI
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t

tem 12~S12!. Notice thata.1 in S12. We then obtained th
fully equilibrated lamellar phase by minimizing the free e
ergy Fm in ~3.10! with respect to the lamellar spacing.61,62

The resulting free energyFm is shown as a function ofu in
Fig. 14~a!. In Fig. 14~b!, we plotted the deviation of the fre
energy from the tangent atu50.05 for each curve in order to
magnify its curvature. By carefully examining Fig. 14~b!, we
find that there are three distinct regions for each curve;
gion 1 ~R1! where the profile is flat, region 2~R2! where the
curvature of the profile,]2Fm/]u2, is negative, and region 3
~R3! where the curvature is positive. These different regio
are indicated in Fig. 14~b! for S12. One should note that onl
R3 is locally stable.

Physically speaking, the loss of configurational entro
of the homopolymer confined between the monolay
causes an attraction, while its translational entropy produ
a repulsion. From the curvature of the free energy, we
discuss the effective interactions between the copolym
monolayers. The flat part of the free energy in R1 indica
that the local stability of the lamellar phase is marginal.
this region, arbitrary number of phases with differentu can
coexist without any free-energy cost. This means that

FIG. 13. ~a! Average mean curvature squared^H2& and ~b! average Gauss-
ian curvature squared̂K& for systems 1, 2, and 3 in Table I which have th
same copolymer length but different homopolymer length.
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TABLE IV. Characterization of the symmetric polymeric ternary systems starting with 1D periodic in
conditions.* is the value for the tricritical point.

System NA5NB NAB a x xNA5xNB xNAB (uL ,(xNA)L)

system 9~S9! 20 80 0.25 0.2 4 16 ~1/9, 9/4!
system 10~S10! 40 80 0.5 0.2 8 16 ~1/3, 3!
system 11~S11! 80 80 1 0.2 16 16 ~2/3, 6!
system 12~S12! 160 80 2 0.2 32 16 (4/5,10)*
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copolymer monolayers do not interact with each other, a
any separation distance between the monolayers within
corresponding range is allowed. Similar behavior has b
predicted for a highly swollen lamellar phase in bina
blends.63,64

For a certain region of smallu, we also find thatfAB in
the bulk region is independent ofu ('0.01 for all the sys-
tems in Table IV! in R1. This value offAB should coincide
with the value ofu at which the lamellar periodicity diverge
~unbinding transition!17,18 and the free-energy curve i
smoothly connected to that of two-phase state. Since we
considering the intermediate-segregation regime (xNAB

516), u'0.01 is much smaller than the Lifshitz volum
fractionuL . We also point out that R1 is larger for relative
shorter copolymer chain. This is consistent with the resul
Fig. 8, where the typical length scale increases for largea.

Negative curvature in R2 results from the attractive
teractions between the monolayers.63,64 In this region, the
lamellar phases in R1, R2 and a part of R3 are thermo
namically unstable, and macrophase separation into
lamellar,A-rich andB-rich phases~determined by a common
tangent construction! should take place.8,17,18 This unstable
region hardly exists for S9 and S10, whereas it is remarka
for S12. This fact is consistent with the occurence of
three-phase coexistence shown in Fig. 11. Notice that
attractive interaction between the monolayers is presen
the patterns of Fig. 5.

Similar to our work, Thompson and Matsen calculat
the effective interactions between the monolayers by us
the Fourier-space SCFT.28 From the condition that the attrac
tion becomes sufficiently small, they concluded that there
an optimum value ofa'0.8 in order to emulsify the ho
mopolymers. They further insist that emulsification ef
ciency is enhanced by introducing the copolym
polydispersity.29

V. SUMMARY AND CONCLUSION

In this paper, we have investigated the real-space st
ture of ternary blends ofA and B homopolymers and sym
metricAB diblock copolymer using an extended lattice~real-
space! SCFT by means of numerical calculations. W
restricted ourselves to the symmetric case where~i! both A
and B homopolymers have the same length;~ii ! the AB
block copolymer is symmetric;~iii ! the average volume frac
tions of A andB homopolymers are equal. We performed
systematic study to see how the copolymer fractionu and the
relative chain lengthsa5NA /NAB affect the microphase
separated structure. Starting with randomly generated in
potential fields, i.e., without assuming any symmetry of
ay 2003 to 133.86.44.17. Redistribution subject to AI
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FIG. 14. ~a! The free energyFm as a function ofu for four different systems,
and ~b! its deviation from the tangent atu50.05. ~c! is the same plot with
~b! magnified in the vertical axis.
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mesophasea priori, we obtained various bicontinuous stru
tures fora<1. For the fixed copolymer length, the typic
length scale of the microphase separated structure beco
smaller for relatively shorter homopolymer chains~smalla!.
This means that the homopolymers becomes more effic
to swell the microphase separated structure for longer
mopolymer chains~largea!. Some preliminary results of 3D
simulations indicate that the average Gaussian curvatur
negative corresponding to a surface which is dominated
saddle-shaped configurations. The bicontinuous patterns
tained for a<1 resemble the TEM images of PME foun
experimentally by Bateset al. Our result with random initial
conditions shows, at least in the static sense, that PME
random configuration of interfaces results from microph
separation as metastable equilibrium.

The situation is different fora.1. In this case, the Lif-
shitz point is preempted by the tricritical point within th
mean-field theory, and the three-phase coexistence betw
either the disorder,A-rich andB-rich phases or between th
lamellar, A-rich andB-rich phases occurs. Here, the blo
copolymer rich phase can either be disordered or m
phase separated into the lamellar structure depending on
strength of the interaction parameter.

Since the obtained bicontinuous structures may co
spond to metastable equilibrium, we have also performed
same numerical calculation starting from the initial poten
fields with an imposed lamellar symmetry. Detailed fre
energy analysis revealed that there is a region where
stability of the lamellar phase is marginal. This means t
the copolymer monolayers do not interact each other in
corresponding region.

We finally comment that the metastable irregular def
structures obtained in 2D or 3D cases are due to the initi
prepared random potential fields. In order to avoid such
regularities in real-space mean-field calculations, one can
ply various tricks, such as by adding noise, adding exte
fields, or using a more realistic dynamics.35 These methods
will be included in our future calculations especially for 3
case.

Further developments of the present study, such
asymmetric ternary system~asymmetry inaA andaB , asym-
metry in f̄A and f̄B , asymmetry in the block copolyme
etc.!, homopolymer/copolymer binary system,63,64 co-
polymer/copolymer binary system,65,66 or different copoly-
mer structure ~e.g., ABC triblock copolymer67! are in
progress.
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APPENDIX A: EXTENDED LATTICE FORMULATION
OF SCFT

In this Appendix, we give the detailed formulation of th
extended lattice SCFT for the completeness of the pre
paper. All of the self-consistent equations in Sec. III B a
derived here.

Some of the notations are repeated first. We denote
type of molecule byi , and the type of segment byJ andK.
Segments in a chain are indexed byN851,2,...,Ni , where
Ni is the polymerization index of thei th molecule. The mol-
ecules of typei are indexed byp51,2,...,ni , whereni is the
total number ofi th molecule.

We start to write the total Hamiltonian of the system

Ĥ~G!5Ĥ0~G!1Ŵ~G!, ~A1!

where G[$np,N8
( i ) % represents the configuration space. T

first term is the ideal Hamiltonian describing independe
polymer chains represented as random walks, and is give

exp@2Ĥ0~G!#5)
i

)
p51

ni

)
N851

Ni -1

d@ unp,N811
( i )

2np,N8
( i ) u,1#,

~A2!

where the Kronecker delta function is defined in Sec. III
Next, the interaction HamiltonianŴ(G) is assumed to to be
written as a density functional form Ŵ(G)
5W@$f̂J(n;G)%#, where

f̂J~n;G!5(
i

(
p51

ni

(
N851

Ni

d@n,np,N8
( i )

#d@J, f i~N8!# ~A3!

is the microscopic representation of the segment den
field. The ‘‘type function’’ f i(N8) is also introduced in Sec
III B. The functional form ofW is given by

W@$fJ~n!%#5
1

2 (
n

(
J,K

xJK fJ~n!^̂ fK~n!&&. ~A4!

In the above,xJK is the Flory–Huggins parameter betweenJ
and K segments, and̂̂X(n)&& denotes the average ofX(n)
over the nearest-neighbor lattice sites

^̂ X~n!&&5
1

z (
n8

d@ un2n8u,1#X~n8!, ~A5!

wherez is the number of the nearest-neighbor sites (z56 for
a cubic lattice!. At the end of this Appendix, we will extend
this definition.

Under the incompressibility condition

(
J

fJ~n!51, ~A6!

the partition function is calculated by
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Z5
1

) ini !
(
$G%

exp@2Ĥ~G!#

5E D@fJ~n!#E D@UJ~n!#

3expF logZe@UJ#2W@fJ#

1(
n

(
J

UJ~n!fJ~n!G
3expF2(

n
u~n!S (

J
fJ~n!21D G . ~A7!

Here,u(n) is a Lagrange multiplier to incorporate the co
straint of the incompressibility condition~A6!, andZe@UJ# is
a partition function of the chains interacting with the extern
potential field$UJ(n)%, i.e.,

Ze@UJ#5
1

) ini !
(
$G%

exp@2Ĥ0~G!2Ŵ8~G!#, ~A8!

with

Ŵ8~G!5(
J

(
i

(
p51

ni

(
N851

Ni

d@J, f i~N8!#UJ~np,N8
( i )

!. ~A9!

From ~A7! we obtain the mean-field free energy as

F@fJ ,UJ#52 logZe@UJ#1W@fJ#

2(
n

(
J

UJ~n!fJ~n!, ~A10!

together with the saddle-point conditions

UJ~n!5u~n!1(
K

xJK^̂ fK~n!&&, ~A11!

and

fJ~n!52
1

Ze

dZe@UJ#

dUJ~n!
. ~A12!

Inserting~A2! and ~A9! into ~A8!, we get

Ze@UJ#5)
i

1

ni !
~Zi@UJ# !ni, ~A13!

whereZi@UJ# is the single chain partition function

Zi@UJ#5(
$G i %

H )
N851

Ni -1

d@ unN811
( i )

2nN8
( i ) u,1#J

3expF2(
J

(
N951

Ni

d@J, f i~N9!#UJ~nN8
( i )

!G ,

~A14!

with G i[(nN0

( i )
¯nN1

( i ) ) representing the configuration space

single i th molecule. By substituting~A13! and ~A14! into
~A12!, fJ(n) can be expressed as
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f

fJ~n!5(
i

(
N851

Ni

d@J, f i~N8!#f i ,N8~n!, ~A15!

where the single segment distribution is

f i ,N8~n!5
ni

Zi
(
$G i %

d@n,nN8
( i )

#H )
N951

Ni -1

d@ unN911
( i )

2nN9
( i ) u,1#J

3expF2(
J

(
N-51

Ni

d@J, f i~N-!#UJ~nN-
( i )

!G .

~A16!

Up to now, the problem has been reduced to that o
single chain statistics under the external potentialUJ(n)
~A11! with the incompressibility condition~A6!. This prob-
lem should be solved in a self-consistent manner. In thei th
chain, let us define the following two-point correlation fun
tion for the positions of the segmentsN85N0 andN1 :

Qi~n0 ,N0 ;n1 ,N1!

5
1

VzuN12N0u (
$G i %

H )
N85N0

N1-1

d@ unN811
( i )

2nN8
( i ) u,1#J

3expF2(
J

(
N95N0

N1

d@J, f i~N9!#UJ~nN9
( i )

!G
3d@n0 ,nN0

( i ) # d@n1 ,nN1

( i ) #. ~A17!

Notice thatVzN21 is the partition function of a single idea
chain of polymerization indexN. We next define the forward
and backward end-segment statistical weights as

Gi~n,N8!5V(
n0

Qi~n0,1;n,N8!, ~A18!

and

Gi
†~n,N8!5V(

n1

Qi~n,N8;n1 ,Ni !, ~A19!

respectively. The single segment distributionf i ,N8(n) in
~A16! can be rewritten in terms of the end-segment statist
weights as

f i ,N8~n!5
niGi~n,N8!Gi

†~n,N8!

exp@2U f i (N8)~n!#(n8Gi~n8,Ni !
. ~A20!

It is straightforward to see that end-segment statist
weights satisfy the following recursive relations:

Gi~n,N8!5exp@2U f i (N8)~n!#^̂ Gi~n8,N821!&&, ~A21!

Gi
†~n,N8!5exp@2U f i (N8)~n!#^̂ Gi

†~n8,N811!&&, ~A22!

together with the initial conditions

Gi~n,1!5exp@2U f i (1)~n!#, ~A23!

Gi
†~n,Ni !5exp@2U f i (Ni )

~n!#. ~A24!

By comparing from~A17! to ~A19! with ~A14!, we see that
the single chain partition function can be rewritten as
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Zi@UJ#5zNi(
n

Gi~n,Ni !5zNi(
n

Gi
†~n,1!. ~A25!

The unmixed pure system is taken as a reference sys
in which all the segment interactions are switched off. T
free energy of such a reference system is

F052 logZ0 , ~A26!

with the partition function

Z05)
i

~V iz
Ni !ni

ni !
. ~A27!

Here,V i5niNi is the total number of lattice sites occupie
by the pure system consisting of thei th molecule. From
~A10! and~A26!, we finally calculate the mixed free energ
Fm with respect to the reference system as

Fm@fJ ,UJ#5F@fJ ,UJ#2F0

5(
i

ni log
niNi

(nGi~n,Ni !

1
1

2 (
n

(
J,K

xJKfJ~n!^̂ fK~n!&&

2(
n

(
J

UJ~n!fJ~n!. ~A28!

We now extend the present lattice SCFT formulation
order to avoid the geometric constraints associated wit
lattice. For this purpose, we redefine the ideal Hamiltonian
~A2! as

exp@2Ĥ0~G!#5)
i

)
p51

ni

)
N851

Ni -1 S d@ unp,N811
( i )

2np,N8
( i ) u2,1#

1
1

2
d @ unp,N811

( i )
2np,N8

( i ) u2,2#

1
1

6
d @ unp,N811

( i )
2np,N8

( i ) u2,3# D . ~A29!

This is an important extension in our work to deal with is
tropic structures. According to~A29!, the definition of the
neighborhood average should be modified as51

^̂ X~n!&&5 (
n8

F 6

80
d@ un2n8u2,1#1

3

80
d@ un2n8u2,2#

1
1

80
d@ un2n8u2,3#GX~n8!, ~A30!

which is used in our simulations.
Equations ~A6!, ~A11!, ~A15!, ~A20!, ~A21!, ~A22!,

~A23!, ~A24!, and~A30! form a set of self-consistent equa
tions given in Sec. III B.

We finally comment that a different definition of th
ideal Hamiltonian gives rise to different Kuhn’s statistic
segment lengthbK . For ~A5!, we havebK5a, whereas for
~A29!, we havebK5(33/20)a.
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APPENDIX B: ITERATION SCHEME

Here, we describe the iteration scheme proposed by
segawa to solve the set of self-consistent equations.30 A simi-
lar Picard-type iteration scheme has been used by others34,68

The new estimates for$UJ(n)% are calculated from the
previous ones according to the following rule:

UJ
(T11)~n!5UJ

(T)~n!1c1F(
J

fJ
(T)~n!21G

1c2F(L~UL
(T)~n!2(MxLM ^̂ fM

(T)~n!&&!

(L1

2S UJ
(T)~n!2(

K
xJK^̂ fK

(T)~n!&&D G , ~B1!

where c1 and c2 are positive constants andT50,1, . . . .
This iteration scheme is continued until the quantitye de-
fined by

e5(
n

FU(
J

fJ
(T)~n!21U2

1(
J

U(L~UL
(T)~n!2(MxLM ^̂ fM

(T)~n!&&!

(L1

2S UJ
(T)~n!2(

K
xJK^̂ fK

(T)~n!&&DU2G , ~B2!

becomes less than 1026. The time step required for the con
vergence strongly depends on the choice ofc1 andc2 .
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