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Mean-field approach to polymeric microemulsions
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Abstract. — Equilibrium structure of ternary blends of A and B homopolymers and symmetric
AB block copolymer is investigated using an extended lattice self-consistent field theory by
means of numerical calculations. We demonstrate that bicontinuous polymeric microemulsions
result from microphase separation for relatively longer copolymer chain. Detailed free energy
analysis revealed that the stability of the lamellar phase is marginal in the corresponding region.
For relatively shorter copolymer chain, 3-phase coexistence between the lamellar, A-rich and
B-rich phases is observed.

Introduction. — Blends of homopolymers and block copolymers have been stimulating a
considerable amount of experimental and theoretical studies because of the richness in their
phase behavior as well as their technological importance [1]. Such systems are known to
form either mesoscopically structured phases with long-range order (LRO) or a homogeneous
phase depending on the temperature or the composition. Recently, Bates et al. found a
new bicontinuous phase without any LRO in a ternary blend of A and B homopolymers of
equal sizes and a symmetric AB diblock copolymer [2,3]. This phase has been termed as
“polymeric microemulsion” (PME) and its physical origin is of great interest and importance
to understand.

In the above experiment, the average volume fraction of the copolymer (denoted by 6)
is changed, while the volume fractions of the two homopolymers are kept to be equal. This
system exhibits both macrophase and microphase separations into 2-phase and lamellar 1-
phase for small and large 6, respectively. PME has been observed for intermediate 6 but
within a narrow region close to the mean-field Lifshitz volume fraction 6y, [4-6]. Bates et al.
assumed that, due to the strong fluctuations, a singular cusp in the transition temperature is
induced around 6y,, and PME is regarded as a strongly fluctuating disordered phase [2, 3].

From the theoretical point of view, the appearance of PME in the polymeric ternary
system has not yet been well understood, although various structures with LRO have been
successfully explained within the self-consistent field theory (SCFT) [7-9]. In these works,
the free energies of several periodic structures were calculated by assuming their mesophase
symmetry a priori. Hence this approach is not suitable for dealing with structures without
any LRO such as PME. On the other hand, there is another approach in which the SCFT
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equations are solved numerically without assuming the symmetry of the structure [10, 11].
Although this method generates the structures corresponding to either stable or metastable
equilibrium, it has proved to be a powerful tool in finding new mesophases.

In this letter, using the extended lattice SCFT method with randomly generated initial po-
tential fields, we demonstrate that the bicontinuous structure of PME results from microphase
separation for relatively longer copolymer chain. However, since the obtained PME may cor-
respond to a metastable equilibrium, we have also performed the same numerical calculation
starting from the initial potential fields with an imposed lamellar symmetry. By examining
the free energy of the lamellar phase as a function of 8, we find that there is a region where
the stability of the lamellar phase is marginal. This means that the copolymer monolayers do
not interact each other in the corresponding region.

Lattice SCFT and simulation method. — We first describe the lattice SCFT for general
copolymer mixtures [12]. The space coordinate of each segment composing the copolymers is
specified by a lattice point n = (ng,n,,n;) in an L, X L, x L. cubic lattice box with a lattice
constant b with periodic boundary conditions. We denote the type of molecule by ¢, and the
type of segment by J and K. Segments in a chain are indexed by N’ = 1,---, N;, where
N; is the polymerization index of the i-th molecule. The molecules of type i are indexed by
a=1,---,n;, where n; is the total number of the i-th molecule. The configuration space is
denoted by I' = {nff)N/} In order to explain how we extended the lattice SCFT, we start with
the Hamiltonian deécription. Throughout this letter, all the energies are expressed in units of
kpvT, where kg and T represent the Boltzmann constant and the temperature, respectively.

The Hamiltonian of the system is composed of two parts:

H(T) = Ho(L) + W(D), (1)

where the first and the second terms represent the ideal and the interaction Hamiltonians,
respectively. The ideal Hamiltonian Hy describes independent polymer chains represented as
random walks, and is given by

exp [—ﬂO(F)} = H 0 Hn<(1i7)1\7’+1 - n{(j)N,
i,a,N'

1], (2)

where 4[,] is a Kronecker delta-function. The interaction Hamiltonian W(I') is assumed to
have the form of W(I') = W[{¢,(n;I')}]. Here ¢;(n;T) = >, , \v 5[n,n((1’7)N,] o[, fi(N")] is
the microscopic representation of the segment density field, where f;(N') is a “type function”
representing the type of the segment N’ in the chain 4. The functional form of W is given by

W)Y = 5 33 s 6(m) (6xc (), 3)

n JK

where x i is the Flory-Huggins interaction parameter and ((X(n))) denotes the average of
X (n) over the nearest-neighbor lattice sites, i.e., ((X(n))) = (1/6)>_,,, 0[|ln —n'[,1] X (n’).
The partition function is calculated by Z = (1/][,n:!) Yp exp[~H(T)]. As a reference
state to compare the energy, we choose a pure system in which the segment interactions
are switched off. Hence the partition function of this reference system is given by Z; =
IL (mNizNifl)ni /mn;!, where z is the coordination number.

Using the mean-field approximation, we can express the free energy relative to this refer-
ence state as a functional of the segment density {¢;(n)} and the segmental potential fields
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{Us(n)} conjugate to {¢;(n)},

r--tog(2) = Zmlog% W) - S s és(n), ()

J mn

which should be minimized under a suitable constraint. In the above, we have introduced the
single-chain statistical weight G;(n, N) for a chain ¢ under the segment potential {U;(n)}
starting from the free segment N’ = 1 and having the segment N’ = N at n. Similarly,
the conjugate weight Gz(n,N) is defined for a chain having the free segment N’ = N,.
Minimizing F' with respect to both {¢;(n)} and {U;(n)} subjected to the constraint of local
incompressibility, ) ; ¢;(n) = 1, we obtain the set of SCFT equations as

Usm) = LI ) = 5w (o ) + u(r), )

NOGHm N o
ZZGXP Uf N/< TS Gl V) O VL (©)

i N’'=1

In eq. (5), u(n) is a Lagrange multiplier which ensures the incompressibility condition. In the
practical numerical procedure, we use the following recursive relations to calculate G;(n, N')
and G (n, N'):

Gi(n, N') = exp[~Uy, (v (n)] ((Gi(n, N = 1)), (7)
Gl(n, N') = exp[ Uy, ()] (Gl (n. N + 1), (8)
with the initial conditions G;(n, 1) = exp[—Uy,(1)(n)] and GT( N;) = exp[—Uy,(n,)(n)].

We now extend the present lattice SCFT formulation in order to avoid the geometric
constraints associated with a lattice. For this purpose, we redefine the ideal Hamiltonian in

eq. (2) as [13]

exp [—7:[0(1“)] = H ( Una N1~ "S)N/ :

i,a,N’

1]+

50 Una oo — 0y

).

This is an important extension in our work to deal with isotropic structures such as PME.
According to eq. (9), the definition of the neighborhood average should be modified as

2 (i)
,:|+ 6|:‘naN/+1_naN/

(X)) = 35 | gy dllm = 1]+ ol = 2,20+ G ol = '] X (10)

The above self-consistent set of equations are solved numerically by employing the iteration
scheme used in refs. [10,11,14]. We first give an initial guess for {U;(n)} which can be either
random or periodic in space. Then by using egs. (7) and (8), the single-chain statistical
weights G;(n, N') and G!(n, N’) are calculated, and the density fields {¢;(n)} are evaluated
by eq. (6). We finally update {U;(n)} according to both eq. (5) and the incompressibility
condition. We repeat these steps until the variance of errors both in the multiplier u(n) and
in the local density Y ; ¢;(n) becomes less than 107®. Notice that the present algorithm is
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TABLE I — Characterization of the polymeric ternary systems. The parameter values in parentheses
are for 1D systems whereas the others are for 2D systems (see the text).

System o X N Nap 9 (xN)L
System 1 (S1) 0.25 2 (0.2) 2 (20) 8 (80) 1/9 9/4
System 2 (S2) 0.5 2 (0.2) 4 (40) 8 (80) 1/3 3
System 3 (S3) 1 2 (0.2) 8 (80) 8 (80) 2/3 6
System 4 (S4) 2 2 (0.2) 16 (160) 8 (80) - -

not intended to mimic the real polymer dynamics, but is an efficient artifice to evolve a system
as fast as possible to a free energy minimum which can be either stable or metastable.

We consider symmetric ternary systems composed of equal-size A and B homopolymers
and a symmetric AB diblock copolymer. The common degree of polymerization of A and B
homopolymers is denoted by IV and that of the block copolymer by Nap. Such systems are
characterized by two parameters, i.e., « = N/Nap and xNap (x = xap). We change the
copolymer volume fraction 6, keeping the volume fractions of the two homopolymers equal.
Within the mean-field level, the isotropic Lifshitz point is located at 6, = 2a?/(1 + 2a?)
and (YN)p, = 2(1 + 2a2) [5]. As listed in table I, we consider four different values of a, but
keeping xNap = 16 which corresponds to the intermediate-segregation regime of pure diblock
copolymers. We also fix the copolymer length, whereas the A and B homopolymer lengths
are changed systematically. Notice that the Lifshitz point appears only for a < 1 since it is
pre-empted by the tricritical point for o > 1 [5].

First, we numerically solve the set of SCFT equations starting with randomly generated
potential fields. This simulation is performed in 2D systems (L, = L, = 256, L, = 1). Since
the obtained patterns may depend on the initially prepared potential fields, we next study 1D
systems starting with 1-dimensional periodic potential fields using the parameters written in
the parentheses of table I. (We chose different values for 1D and 2D calculations in order to
maximize the computational efficiency for large 2D systems.) The latter case yields lamellar
structures with a well-defined periodicity.

Random initial conditions. — Let us denote the volume fractions of A and B homopoly-
mers by ¢4 and ¢p, respectively, and that of AB block copolymer by ¢4p. Moreover, the
volume fractions of A and B blocks in the copolymer is represented by ¢, and ¢, respec-
tively. We then introduce three order parameters defined by ® = ¢4 — ¢, ¥ = ¢, — ¢, and
A =¢s+ ¢o — ¢ — ¢p. Typical equilibrium patterns of & and ¥ starting with randomly
generated potential fields are shown in fig. 1 for S2 (a = 0.5) and S4 (a = 2). The patterns
obtained for S1 and S3 are qualitatively similar to those of S2 although they are different
from the patterns of S4. For § = 0.1 of S2 most of the copolymers are located at the interface
between A-rich and B-rich domains, and form saturated monolayers without any LRO. As 6
is increased to 0.4 in S2 the amount of interface increases, but LRO still does not exist. No-
tice that this pattern which results from microphase separation resembles the experimentally
observed PME structure [2]. For 8 = 0.9 of S2, the system exhibits a lamellar structure (with
defects) which is swollen by the small fraction of homopolymer chains. On the other hand,
S4 (o = 2) undergoes macrophase separation and we observe 3-phase coexistence between
the copolymer-rich lamellar phase and the A-rich and B-rich homogeneous phases. This is
clearly seen for 8 = 0.4 of S4. Such a dependence on « is entirely consistent with the previous
theoretical predictions in refs. [5,8].
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0=0. -2.0)

System 2 (o = 0.5)

Fig. 1 — Typical 2D equilibrium patterns of System 2 (o = 0.5) and System 4 (a = 2.0) for three
different values of 0. ® = ¢4 — ¢ and ¥ = ¢, — ¢». The dark area denotes the region of higher
values.

For systems with o < 1, we have calculated the following (inverse) characteristic length of
each pattern:

_ Sipo Rl S(R)
iero IR 2S(R)'

Here S(k) = (A[k]A[—k]) is the structure function of all the A and B monomers, and Alk] =
>k A(k) explik - n] is the discrete Fourier transform of A(k) with k = 27n/L and n €
{0,1,---,L — 1}2. In fig. 2, (k) is plotted as a function of 6 for different systems. We see
that (k) is larger for relatively shorter homopolymer chain by which the penetration of the
copolymer brushes becomes more efficient [15].

(k) (11)

<k>b

0 0.2 0.4 0.6 0.8 1
0

Fig. 2 — The inverse characteristic length (k) as a function of 0 for different systems.
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Periodic initial conditions. — Since it is probable that the patterns in fig. 1 may corre-
spond to metastable equilibrium, one should also pay attention to the existence of equilibrium
phase with LRO. To check this point, we performed the same numerical calculations star-
ing with the assumed 1-dimensional periodic potential fields and generated artificial lamellar
structures. We then obtained the fully equilibrated lamellar phase by minimizing the free
energy F with respect to the lamellar spacing [16]. The resulting free energy F' is shown as
a function of ¢ in fig. 3(a). In fig. 3(b), we plotted the deviation of the free energy from the
tangent at @ = 0.05 for each curve in order to magnify its curvature. By carefully examining
fig. 3(b), we find that there are three distinct regions for each curve; Region 1 (R1) where
the profile is flat, Region 2 (R2) where the curvature of the profile (92 F/36?) is negative, and
Region 3 (R3) where the curvature is positive. These different regions are indicated in fig.
3(b) for S4.

One should note that only R3 is locally stable. On the other hand, the flat part of the free
energy in R1 indicates that the local stability of the lamellar phase is marginal. In this region,
an arbitrary number of phases with different # can coexist without any free energy cost. This
means that the copolymer monolayers do not interact with each other, and any separation
distance between the monolayers within the corresponding range is allowed. Similar behavior
has been predicted for a highly swollen lamellar phase in binary blends [17]. We also find that
¢ap in the bulk region is constant (= 0.01 for all the systems in table I) in R1. This constant
value should coincide with the value of 6 at which the lamellar periodicity diverges (unbinding
transition) [8] and the free energy curve is smoothly connected to that of the 2-phase state.
Since we are considering the intermediate-segregation regime (xNap = 16), 6 ~ 0.01 is much
smaller than the Lifshitz volume fraction 8;,. We also point out that R1 is larger for relatively
shorter copolymer chain. This is consistent with the result in fig. 2 where the typical length
scale (~ 1/(k)) is larger for larger a.

Negative curvature in R2 results from the attractive interactions between the mono-
layers [17]. In this region, the lamellar phases in R1, R2 and a part of R3 are thermody-
namically unstable, and macrophase separation into the lamellar, A-rich and B-rich phases
(determined by a common tangent construction) should take place [5,8]. This unstable region
hardly exists for S1 and S2, whereas it is remarkable for S4 and this is consistent with the
3-phase coexistence shown in fig. 1.
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Fig. 3 — (a) The free energy F as a function of 6 for four different systems, and (b) its deviation from
the tangent at § = 0.05. The inset in (b) is the same plot magnified in the vertical axis.
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Discussion. — In order to discuss the stability of PME, one needs to know, for example,
the entropic contribution due to the random configuration of interfaces, which is balanced
with their bending energy [18]. Of course, this is beyond the scope of the present mean-field
approach which showed the marginal stability of the strongly swollen lamellar phase. However,
our result in fig. 1 with random initial conditions shows, at least in the static sense, that PME
with random configuration of interfaces results from microphase separation as a metastable
equilibrium. We comment that even the experimentally obtained PME may not necessarily
be a fully equilibrated structure.

In summary, we have investigated the equilibrium structure of ternary blends of A and B
homopolymers and symmetric AB block copolymer by numerically solving the set of extended
lattice SCFT equations. We showed that PME results from microphase separation for o < 1 at
least as a metastable equilibrium. Detailed free energy analysis revealed the marginal stability
of the strongly swollen lamellar phase in the corresponding region. Further developments of
the present study, such as 3D simulations, asymmetric ternary system, binary system, or
different copolymer structure (e.g., ABC' triblock copolymer [19]) are in progress.
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