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Abstract Dynamic response of 
microemulsions to shear deformation 
on the basis of two-order-parameter 
time dependent G in zb u r~Lan d au  
model is investigated by means of cell 
dynamical system approach. Time 
evolution of anisotropic factor and 
excess shear stress under steady shear 
flow is studied by changing shear rate 
and total amount of surfactant. As the 
surfactant concentration is increased, 

overshoot peak height of the 
anisotropic factor increases whereas 
that of the excess shear stress is almost 
unchanged. 
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Microemulsions being mixture of oil, water and surfactant 
are known to exhibit various interesting mesoscopic struc- 
tures depending on the temperature or the composition 
[1]. For  relatively low concentration of surfactant and if 
the volumes of oil and water are not very different, micro- 
emulsions form a bicontinuous structure where a multiply 
connected randomly oriented monolayer of surfactants 
separate oil-rich and water-rich subvolumes with a meso- 
scopic length scale (10 ~ 100 nm). 

When one applies an external flow to the microemul- 
sion system, its mechanical response is deeply affected by 
its internal structure. Using a single-order-parameter time- 
dependent Ginzburg-Landau (TDGL) model, Mundy 
et al. have investigated rheological properties of micro- 
emulsions theoretically [2]. In their model, the order para- 
meter represents the concentration difference between oil 
and water, and the presence of surfactants is taken into 
account through the surface tension parameter. Their 
work has been extended by P/itzold and Dawson, and it 
was shown that the microemulsions behave in an essen- 
tially non-Newtonian manner [3]. 

In this proceeding, we investigate the rheological prop- 
erties of microemulsions using a two-order-parameter 
TD G L model. The two-order-parameter Ginzburg-Landau 
free energy for microemulsions has already been proposed 
by Laradji and his coworkers to study their microphase 
separation dynamics [4]. However, the proposed free en- 
ergy is not applicable to the rheological study, since the 
pattern does not deform even in the presence of a flow [5]. 
This is related to the fact that their free energy is un- 
bounded from below for the configurations with large 
surfactant concentration at the oil/water interfaces [1]. 
Thus, we use a different free energy which has been pro- 
posed in our previous paper as an improved model [5]. 

Let O(r) describe the local concentration difference 
between oil and water, and p(r) the local surfactant con- 
centration. What we have assumed in our model is that (i) 
the profiles of 0 and p at oil/water interfaces do not 
depend on the average values of ~ and p (denoted hereafter 
as ~ and fS, respectively) and that (ii) the coarse-graining 
dynamics of 0 based on the free energy becomes slow 
when the amplitude of p at the interface takes a certain 
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saturated value. One  of the m i n i m u m  models  which repro-  
duce the propert ies  of microemuls ions  is [5] 

F = .tdr [w(V2O) 2 + d(VO) 2 - aO z + u~, 4 

+ e p ~ ( p  - p~)~ - sp(VO)q, (1) 

where w, d, a, u, e, Ps and s are positive constants.  The first 
term w(V2~,) 2 with positive w prevents  the model  f rom 
becoming unbounded,  whereas the doub le -min imum 
potential  e p 2 ( p -  p,)2 guarantees  that  p locally takes 
either 0 or  p~. The last te rm - s p ( V ~ )  2 favors the surfac- 
tants to sit at  the oil /water interfaces [4]. 

For  the evolut ion of ~b(r, t) and p(r, t), we assume the 
s tandard  T D G L  equat ions with a macroscopic  flow v. 
Since both  ~ and p are conserved quantities, T D G L  

equat ions are given by 

04, M - 2  fiF a~ + V.(v~) -- o v  ~ + ~,(r, O, 

8p c~F 
+ V.(vp) = M,,v~ ~ + ,7o(r, t). & op 

(2) 

Here  My, and  Mp are t ranspor t  coefficients, ~I~ and ~lt, rep- 
resent the thermal  noise which satisfy the f luc tua t ion-  
dissipation theorem 01o(p)(r, t)rl~,(p~(r', t ')) = - 2kBTMo(p) x 
V2c~(r - r ')fi(t - t'), where kB is the Bol tzmann  constant  
and T the temperature .  As regards the macroscopic  flow in 
Eq. (2), we consider a simple shear flow v~(r)= >;y, 
vy = v~ = 0, where the shear rate '2 is the  t ime derivative of  
the strain y. In our  work,  we have entirely ignored the  

Fig. 1 Time evolution of ~ (left) and p (right) for (a) t5 = 0.1, ") = 2 x 10 ~ (9% = 0.1) and (b) fi = 0.1, 9 = 2 x 10 -3 (9% = 1) 
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hydrodynamic interactions which might play an impor- 
tant role in microemulsions. 

We solved the above time-evolution equations numer- 
ically by using the "cell dynamical system" approach pro- 
posed by Oono et al. [6]. The details of the numerical 
method have been mentioned in our previous paper [5]. 
The simulation conducted here is essentially equivalent to 
solving Eq. (2) with the parameter values fixed as w = 0.1, 
d = 0.25, a = 0.3, u = 0.18, e = 0.125, p~ = l, s = 0.25 and 
M 0 = Mp = 0.05. The noise terms are treated as a random 
noise with an amplitude 0.02. We fixed ~ as ~ = 0, whereas 
/5 has been changed as/5 = 0.1, 0.2, 0.3 and 0.4. Here, we 
restricted ourselves to a two-dimensional system. The sys- 
tem size is chosen as 128 x 128, and the sheared-periodic 
boundary condition is imposed both for ~ and p. We first 
started from random uniform distributions of ~ and p in 
the range [~  - 0.01, ~ + 0.01] and [/5 - 0.01,/5 + 0.01], 
respectively. We relaxed them according to Eq. (2) without 
any shear flow up to t = 5 • 105, and then applied the 
shear flow with a constant shear rate ~ = 2 x  10 -4, 
5 x 10 4, 1 x 10 -3 and 2 x  10 -3. Since we have not in- 
cluded any hydrodynamic interactions, our model lacks 
a bare viscous time scale against which we can compare 
these shear rates. Nevertheless, we can choose the model 
intrinsic time scale ro as the inverse of the initial growth 
rate of the most unstable mode, which is estimated as 
ro ~ 5.0x 102 for the above parameter values. The 
investigated shear ranges from weak to medium shear 
(~o = 0.1 ~ 1). 

Typical time evolutions of ~ and p are shown in Fig. 1 
for (a) /5 = 0.1, o~ = 2 x 10 -'~ ($Zo = 0.1) and (b) /5 = 0.1, 

= 2 x 10-3 (gZo = 1). By changing/5 and ~, we found the 
following general behaviors. When the shear rate is small 
(Fig. la), surfactants move under the flow keeping themsel- 
ves attached to the oil/water interfaces. The total amount 
of the interface does not seem to change appreciably dur- 
ing the deformation. On the other hand, when the shear 
rate is large (Fig. lb), some surfactants are blown off the 
interfaces by the shear. The coagulation and break-up 
processes take place as has been observed in the spinoidal 
decomposition under steady shear flow [7], and the total 
amount of the interface increases. 

Given the evolving patterns, we have evaluated the 
anisotropic factor defined by [2, 3] 

Q~, 2d t ~ x  ~y t 4w 02~' ~ 2 - \  = _  _ , / ,  (3) 

where ~ ... ) denotes the average over the total volume. 
Although this quantity essentially represents the xy-com- 
ponent of the macroscopic excess stress tensor in the case 
of one-order-parameter model, this is not the case in the 
present model since there should be a contribution to the 
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Fig. 2 The anisotropic factor Q~, (upper 4 curves, see Eq. (3)) and the 
shear stress %y (lower 4 curves, see Eq. (4)) as a function of the shear 
strain 7 = )t for fixed 9 = 2x 10 .4 (~z 0 = 0.1) and/5 = 0.1, 0.2, 0.3, 
0.4 

stress due to the non-local coupling term in Eq. (1). Never- 
theless, the problem of stress division between ~ and p is 
theoretically not yet clear. Instead, we propose here the 
following quantity: 

•xr=-2 (d-sP)~x~y/-4w ~/, (4) 

which is assumed to express the excess shear stress. Figure 
2 shows the plots of Qxy and (rxy as a function of the shear 
strain 7 for several values of/5. Here the shear rate is fixed 
as ~ = 2 x  10 -4 (~ro = 0.1). In the time region where 
Qxy and axy increase the domains are elongated, whereas 
these quantities start to decrease once the burst and the 
recombination take place. We observed that the strain 
giving the peak position of Qxr and a~y is almost constant 
throughout the present simulation (7 ~ 2). On the other 
hand, the peak height of Q~y is larger than that of ~rxy as 
a whole. /5 dependencies of the peak height of Qxy and 
axy are also different; the peak height of Qxy increases 
linearly with/5, while that of axy is almost independent of ft. 
However, a clear shear rate dependence of the peak height 
of axy could be observed as in ref. [7]. 

Details of the present work have been published else- 
where [8]. 
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