
J. Phys. II France 7 (1997) 7-14 JANUARY 1997, PAGE 7
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Abstract. Dynamic response of microemulsions to shear deformation
on

the basis of two-

order-parameter time dependent Ginzburg-Landau model is investigated by means
of cell dy-

namical system approach. Time evolution of anisotropic factor and
excess shear stress under

steady shear flow is studied by changing shear rate and total amount of surfactant. As the

surfactant concentration is increased, overshoot peak height of the anisotropic factor increases

whereas that of the
excess

shear stress is almost unchanged.

1. Introduction

Microemulsions being mixture of oil, water and surfactant are known to exhibit various in-

teresting mesoscopic structures depending on the temperature or the composition ill. When

the concentration of surfactant is relatively large, they show a rich variety of regularly ordered

structures such as the cubic phase, the hexagonal phase or the lamellar phase. By lowering
the concentration of surfactant and if the volumes of oil and water are not very different,

microemulsions form a bicontinuous structure where a multiply connected randomly oriented

monolayer of surfactants separate oil-rich and water-rich subvolumes with a mesoscopic length
scale (10

+~
loo nm).

When one quenches the ternary system from a high temperature homogeneous phase where

the system is uniformly mixed to a low temperature phase where a certain structure exists,
the average domain size increases in time until it reaches the equilibrium size. Several people
have investigated such a dynamics of phase separation using different models. Kawakatsu et al.

have proposed a "hybrid model" where oil and water are represented by coarse-grained fields

and surfactants are treated microscopically [2], whereas Laradji et al. performed molecular

dynamics simulations [3j. In the different paper by Laradji and his coworkers, a phenomeno-
logical two-order-parameter Ginzburg-Landau free energy has been proposed associated with

standard time dependent Ginzburg-Landau (TDGL) equations [4j. In their model, one of the

order parameters represents the local concentration difference between oil and water, while

the other represents the local surfactant concentration. Recently, Pitzold and Dawson ex-

tended this study to incorporate the hydrodynamic effects by coupling the TDGL equations

to Navier-Stokes-type equations [Sj. All of these works have shown that systems containing
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surfactants exhibit a slow non-algebraic growth of the domains, in contrast to the ordinary
spinodal decomposition of pure binary systems.

Another aspect of the dynamics of microemulsions is related to the structural change in

response to externally applied perturbations. The rheological properties of microemulsions have

been theoretically investigated by Mundy et al. using a single-order-parameter TDGL model [6j
and later extended by Pitzold and Dawson ,vho also performed computer simulations [7j. Here

the only order parameter describes the concentration difference between oil and water and the

presence oi suriactants is taken into account through suriace tension parameter. (This point
will be discussed later. In reference iii, authors showed that the microemulsions behave in an

essentially non-Newtonian manner.

As discussed in the paper by Pitzold and Dawson iii, the next step in the computational
study of the rheology of microemulsions is to include the surfactant concentration field. Gen-

erally speaking, for a ternary mixture, it is natural to characterize the system in terms oi

two independent concentration variables. The aim oi this paper is to investigate the dynamic

response oi microemulsions to shear deiormation on the basis oi two-order-parameter Ginzburg-
Landau model. For this purpose, one may naturally think oi employing the above mentioned

Laradji's two-order-parameter model [4]. According to our preliminary numerical study oi

Laradji's model, however, we iound that the domains do not flow globally even in the presence
of the convective macroscopic flow. This problem seems to be related to the fact that Laradji's
model is not well-defined, since the iree energy of configurations with large surfactant concen-

tration at the oil/water interfaces is not bounded from below as pointed out in the book by
Gompper and Schick ill. In fact, we observed the divergence of the surfactant concentration

at the oil/water interfaces as we decreased the simulation mesh size.

2. Model

Here we use a different two-order-parameter free energy functional which has been proposed
in our previous paper [8]. Our model is indeed bounded from below and has no drawbacks

mentioned above. Let ~l(r) describes the local concentration difference of oil and water, and

p(r) the local surfactant concentration. What we have required in our model is that (I) the

profiles of ~l and p at the oil /water interfaces do not depend on the average values of and p
(denoted hereafter as

j and p, respectively) and iii) the coarse-graining dynamics of ~l based

on the free energy becomes slow when the amplitude of p at the interiaces takes a certain

saturated value. The minimum model which iulfils these requirements is [8]

F
=

dr (w(V~~I)~ + d(V~I)~ a~l~ + u~l~ + ep~(p p~)~ sp(V~I)~)
,

ii)

where tu, d, a, u, e, p~ and s are positive constants. The last term -sp(V()~ favors the

surfactants to sit at the oil/water interfaces [4]. The double-minimum potential ep~(p p~)~
guarantees that p locally takes the value either 0 or ps, whereas positive w prevents the model

from becoming unbounded.

For the time evolution of ~l(r, t) and p(r, t),
we assume the standard TDGL equations. Both

~l and p are conserved quantities. Since we consider the case that there is a macroscopic flow

v, TDGL equations acquire a convective term and become

~b
~ ~ j~ ~~

~
~~ ~

j~
~~ ~ ~ ~~~~'~~' j2)

~~
+ V (vp)

=
MpV~

~~
+l~p(r, t). (3)

°t ip
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Here JzI~ and Jzlp are transport coefficients, and
1~~

and ~p represent thermal noise which satisfy
the fluctuation-dissipation theorem

(~~~~~(r, t)~~(~~(r',t'))
=

-2kBTJzI~~~~V~6(r r')I(t t'), (4)

where kB is the Boltzmann constant and T is the temperature. As regards the macroscopic flow

in equations (2) and (3), we consider a simple shear flow vx jr)
=

§y, v~ = vz =
0, where the

shear rate § is the time derivative of the strain ~. By inserting equation (1) into equations (2)
and (3), the time evolution equations can be explicitly written as

~
~~

~
~ ~~~~ ~~~ ~ ~~~~ ~ ~~~~~ ~~~ ~~~~~~ ~ ~~~~~~ ~~~~~ ~ ~~~~'~~'

is)

~~~) ~ ~~~~~ ~~~~~~ ~~~~~~ ~~~ ~~~~~~~ ~ ~~~~'~~' ~~~

In our work, we have entirely ignorer the hydrodynamic interactions which might play an

important role in microemulsions.

3. Cell Dynamical System Approach

In order to solve the above time evolution equations, we used the cell dynamical system (CDS)
approach proposed by Oono et al. [9]. The CDS model is a space-time discrete model to

describe a phenomena at the mesoscopic level and proved to be an efficient algorithm for

numerical simulations. Here we restricted ourselves to a two-dimensional system. Accordingly,
the space coordinate is specified by the lattice point n =

(R~, ny) in an L x L square lattice.

The CDS equations corresponding to equations IS) and (6) are

~l(n, t +1)
=

~l(n, t) §Ry0x~l(n, t) + M~(~I(n, t) + C~.q(n, t), (7)

pin, t + 1)
=

pin, t) §Ry0~ pin, t) + M~if~/T(n, t) +
Cpi in, t), (8)

where fin, t) and /T(n, t) are the discrete thermodynamic forces given by

IIn. t)
=

-A tanh~R + ~ + iV(t2)2~ (D sp)V2~ + s(V~>) (Qp), (9)

£TIn, t)
=

EPIP Ps)12P Ps) )SIQ~I)~, (lo)

respectively. The "tanh" term in equation (9) is introduced for the sake of numerical stability

[9]. In the above equations, the discretized differential operators are defined as

Vi
=

ifi~d, fig<)
= j141n~ +1, ny) 41n~ 1,n~), 41n~, ny +1) 41n~, ny i)) Iii)

and

T7~#
=

£ #(nearest-neighbor cells + £ #(next-nearest-neighbor cells) 3#. (12)
2 4

ii denotes either ~l or p-j The noise terms in equations Ii) and (8) are given by

~J~'~ln, t)
=

~J[~In~ + i, fly, t) ~J[~Inx,ny, t) + ~J[~In~, ny + i, t) ~J[~lR~,ny,t), l13)

where ~i~ and ~li~ are random numbers uniformly distributed in the interval [-I, Ii and C~jpj

are the noise amplitudes taken as independent parameters in CDS [10]. In the presence of
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Fig. 1. Time evolution of ~l (left) and p (right) for (a) p
=

0.1, §
=

2 x10~~, (b) p
=

0.4.

§
=

2 x 10~~, (c) p
=

0.1, §
=

2 x
10~~ and (d) p

=
0A, §

=
2 x

10~~
every 5 strains.

the shear flow, we required a boundary condition such that

#(n~, ny, t)
=

#(n~ + iL + ~jL, fly + jL, t) (14)

holds for arbitrary integers I and j ill]. The initial distributions of ~l and p are specified
by a random uniform distribution in the range ii o.01, j + 0.01] and [p 0.ol,p + o.ol],
respectively. In our simulations, we fixed the parameters as L

=
128, A

=
1.3, W

=
0.2,

D
=

o-S, S
=

0.S, E
=

0.25, ps =
I. JzI~. = Jzlp =

0.05, C~
=

Cp
=

0.02 and j
=

0, whereas

p has been changed as p
=

0.1,0.2,0.3 and 0.4. Notice that our parameter choice satisfies

D
=

Sps which ensures the interfacial tension to vanish when p = ps. Before the shear flow is

applied, equations (7) and (8) are numerically solved up to 5 x 10~ time steps. The average
domain size in the equilibrium pattern of ~l decreases when p is increased as has been observed

experimentally [12] and theoretically [4,13]. The scaling behavior to reach the equilibrium
configurations within our model has been analyzed previously [8]. Hereafter the time origin is

taken as the instance when the shear flow is turned on. The application of the steady shear

flow is tried for §
=

2 x
10~~, 5 x 10~4, 1 x

10~3 and 2 x
10~3



N°1 BICONTINUOUS MICROEMULSIONS 11

v p v p

~ l '

to
,

1'

y=o y"o

;. =. =,",fiW
,

~ '

=$f$jqq~
---....~~ ;>~.

,;_, ._,,m_'=" ; ~'~ ~'~ ~~'~ )~(~/~=/j
~~~~~'~~~

Fig. 1. (Continued. )

4. Results and Discussions

Typical time evolutions of ~§ and p are shown in Figure 1 for (a) p
=

0.1, §
=

2 x
10~~, 16)

p
=

0.4, §
=

2 x 10~~, (c) p
=

0.1, 'j
=

2 x
10~~ and (d) p

=
0A, §

=
2 x

10~~. By changing
p and §, we found the following general behaviors. When the shear rate is small (Figs. la, b),

surfactants move under the flow keeping themselves attached to the oil /water interfaces. The

total amount of the interface does not seem to change appreciably during the deformation.

On the other hand, when the shear rate is large (Figs. 1c, d), the surfactants cannot saturate

all the interfaces. The coagulation and break-up processes take place as has been observed in

the spinodal decomposition under steady shear flow [11] and the total amount of the interface

increases.

Given the evolving patterns, we have evaluated the anisotropic factor defined by [6, 7j

Q~y
=

~j
(-D(fi~~§)(fly~§) 2W(0~0y~§)(T7~~)j

,

(15)
~

n

where fl is the total volume (area) of the system. Although this quantity essentially represents
the xy-component of the macroscopic excess stress tensor in the case of spinodal decomposition
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Fig. 2. The anisotropic factor Q«y (upper 4 curves, see Eq. (15) and the shear stress a~~ (lower 4

curves, see
Eq. (16))

as a
function of the shear strain ~i =

fit for fixed §
=

2 x
10~~ and p

=
0.1, 0.2,

0.3, 0.4.
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Fig. 3. The shear stress a~~ (see Eq. (16)) as a
function of the shear strain ~f =

it for fixed p
=

0.1

and §
=

2 x
10~~, 5 x10~~, 1 x 10~~, 2 x

10~~ from bottom to top.
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without any surfactants [11], this is not the case in the present model since there should be a

contribution to the stress due to the non-local coupling term in equation (1). Nevertheless the

problem of stress division between ~ and p is theoretically not yet clear. Instead, we propose
here the following quantity

a~y =

~ (-(D Sp)(fi~~§)(fly~§) 2W(fi~by~§)(t~~§)j
,

j16)

which is assumed to express the excess shear stress. Figure 2 shows the plot of Q~y and a~y

as a function of the shear strain ~ for several values of p. Here the shear rate is fixed as

I
=

2 x
10~~ In Figure 3, we also plotted a~y for several values of § fixing the total amount

of surfactants as fl
=

0.1. It is seen that both Q~y and a~y initially increase rapidly and

then decrease. We observed that the strain giving the peak position of Q~y and a~~ is almost

constant, ~ipeak " 2, through the present simulation. On the other hand, the peak height of

Q~y is larger than that of a~~ as a whole. fl dependencies of the peak height of Q~~ and a~y

are also different; the peak height of Q~y increases linearly with p, while that of a~y is almost

independent of fl. However, a clear shear rate dependence of the peak height of a~y is observed

in Figure 3 as in reference ill].

Finally we comment on the difference between the present rheological study based on the

two-order-parameter model and the previous works [6, 7] which essentially utilize the single-
order-parameter free energy proposed by Teubner and Strey to describe the microemulsion

phase [14]

FTS
"

/
dr [A(V~ib)~ 8(V~§j~ + C~§~] (17)

where A, 8 and C are positive constants (8 is the surface tension parameter). This free energy

is consistent with the observed scattering function which shows a peak at non-zero wavevector

q and falls off as q~~ at large wavevectors [14]. Since C > 0 in equation (17),
~§

locally prefers

to vanish,
~§ m 0, whereas

~§ takes either ~§ m
+fi # 0 for equation (1). (Notice that a

in Eq. (1) is defined as
positive.) In this sense, previous rheological studies of microemulsions

[6, 7] have examined essentially the disordered phase as in the study of the rheology of block

copolymer melts near to the critical point [15]. In our work, on the other hand, we observe

motions of domains with sharp oil /water interfaces, and hence dealing with dynamics of ordered

phase. Similar approaches to the phase separating binary mixture [11] or the ordered block

copolymers [16j have been also reported.

In summary, within the CDS approach, we have investigated the effect of the steady shear

flow on bicontinuous microemulsions by changing the average surfactant concentration and the

shear rate. Details of our results will be published elsewhere that will also include the case

where the concentrations of water and oil are different from each other.
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