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Abstract. We discuss the possibility of Kelvin-Helmholtz instability of a Langmuir monc-

layer. Even for a positive surface tension, this instability is expected to occur above a critical

value of the velocity of the upper air relative to the water. This is in contrast to the buckling
transition which occurs for

a negative surface tension.

Many amphiphilic molecules form a monomolecular layer at an air-water interface when they

are only slightly soluble in the bulk water. Such an insoluble film is called a Langmuir monolayer
and has attracted both academic and technological interests [lj.

Although Langmuir monolayers exhibit various important class of two-dimensional phenom-

ena [2j, their fluctuation and morphology into third dimension have also attracted great inter-

ests both theoretically and experimentally. For instance, MiIner et al. predicted a buckling of

Langmuir monolayers iri a fluid phase under a lateral compression which decreases the surface

tension to 'y = 'ye II, where 'ye is a surface tension of pure water and II is a two-dimensional

surface pressure due to the compression [3j. As the surface tension 'y becomes very low and

even negative, the system intends to increase its interfacial area and the interface turns out

to be unstable. The physical process in this instability is similar to that of a plate under

compression.
In a real system, however, buckling was never observed in fluid monolayers and they collapse

to form multilayers even at positive tensions l'yo > II) upon increasing the surface pressure.

Experimentally, the buckling transition has been found in other types of monolayers such as by
Bourdieu et al. [4] in polymerized monolayers using X-ray scattering, or by Saint-Jalmes et al.

in solid monolayers using light scattering [5]. Formation of multilayers may be suppressed for

these types of monolayers and the buckling takes place at positive 'y. Recently, Hu and Granek

have predicted the buckling modulation of monolayers due to the head-tail asymmetry [6j.
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Fig. I. Schematic representation of a Langmuir trough. H is the surface pressure and U is the

velocity of the air (with density p2) relative to the water (with density pi) in the z-direction- ((z)
denotes the displacement of the interface in the z-direction.

They anticipated an hexagonal array of long-finger structure induced by non-zero spontaneous

curvature of the monolayer.
So far, the problem of monolayer instability has been limited within static arguments. In

this article,
we

discuss the possibility of a dynamical instability of Langmuir monolayers, which

has completely different physical origin compared to the static instabilities mentioned above.

This instability is generally known as "Kelvin-Helmholtz instability" which occurs when two

superposed fluids flow one over the other with a relative horizontal velocity [7, 8j. The physical
mechanism of this instability has been described by Batchelor in terms of vorticity dynamics [9j;

the accumulation process of vorticity at certain points on the interface and of rotation of

neighbouring points occur together, leading to exponential growth of the disturbance. For

Langmuir manolayers, above a certain critical value of the velocity of the air relative to the

water, the Kelvin-Helmholtz instability will arise before the static buckling transition takes

place. Our result shows that the critical velocity and the wavelength of the most unstable

mode are deeply affected by the presence of the adsorbed amphiphilic molecules.

It has been shown that the Kelvin-Helmholtz instability is also relevant to lyotropic liquid
crystals in smectic phase (L~ phase) [10j. They discuss this instability in terms of "Reynolds
effect" triggered by shear flow in which the fluctuation amplitude is amplified owing to the

increase in lifetime. As
a result, mixing and strong concentration fluctuations are expected to

occur near the interface.

Consider a simplified Langmuir trough as depicted in Figure I where the surface pressure

II is exerted on the monolayer along the x-axis. We assume that the Langmuir monolayer is

in its fluid phase. Let us denote by U the velocity of the air in the x~direction relative to the

water and by ((x) the displacement of the interface in the z-direction. We assume a uniform

displacement along the y-direction, and the depth of the water is taken as infinite. We describe

here both the air and the water as incompressible inviscid fluids. Since the flow is uniform,
both of the velocity fields are rotation free, and can be conveniently expressed in terms of the

velocity potential as v~ =
grad #~, with i7~#~

=
0 (I

=
1, 2). Hereafter the lower indices I

refer to the water and 2 to the air, respectively. We assume that the wind does not cause any

flow of amphiphilic molecules on the surface. In fact, this flow can induce a backflow in the

bulk water [2j. As in reference Ii lj,
we seek the velocity potential in the form

#i
=

Aie~~ cos(kx cot), (1)

#2
"

A2e~~~ cos(kx uJt) + Ux. (2)
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The z-component of the velocity of the water and the air at z =
0 are

Next we
consider the force balance condition

at the
interface including

the force due to

monolayer. For this urpose,

2j:

F

2

In the
above,

dA is the surface lement, ~ is the bending rigidity, ci

curvatures,
and co is the spontaneous curvature.

By using

have
the Laplace's ormula

given by [13j

Pi - P2 = -2~yH +
~(2H

+
co)

(2H~ - 2K - coH) + i7)BH, (6)

where P~ are
the pressures,

H = -(ci + c2)/2 is the mean rvature,

curvature,
and

i7(B
is the

Laplace-Beltrami
operator on the surface. The pressions

for Pi

re
by

the
Bernoulli's equations

which satisfy the
oundary

at z = 0 when

( = 0 [llj.
fter

the
inearization

where pi are the respective densities and g is the acceleration of gravity. One can also take into

accomit the fluctuation of the surface tension owing to the fluctuation of the surface density
of amphiphilic molecules, namely, the compressibility of the monolayer [14j. This, however,
only gives rise to higher order contribution to equation (7) as long as the reference state of

the interface is planer. Moreover, K can also depend
on the total area of the interface and

hence on n [3j, but this effect will be neglected for simplicity. One finds from equation (7) that

the spontaneous curvature merely shifts (upward) the surface tension within the lowest order

calculation.

Following the same procedure as in reference [llj,
we look for the displacement ( in the

periodic form (
= a

sin(kx uJt). Notice that only terms of the first order in A2 are retained in

evaluating v] U~ in equation (7). After some calculation, we obtain the dispersion relation

given by

~ ~~~2 ~

~~
~~~

with
~

f(k)
=

~k4 +
~f

+
~)

k2 >u2k + Apg, (9)

where fi = pi p2 / (pi +p2) and Ap
= pi p2. If uJ is a complex number with a positive imaginary

part, the motion becomes unstable and this is called Kelvin-Helmholtz instability. Hereafter we

shall only discuss the case of vanishing spontaneous curvature (co
=

0) just for the simplicity.
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Results for several special cases can be deduced from equation (8). First, we consider the

static case where the air is at rest, I.e. U
=

0. If the surface tension satisfies

~y < 'ye = 'ye IIc
=

-2(~Apg)~/~, f(k)
can be negative for a certain range of the wave

vector k. The most unstable mode is given by kc
=

(Apg/~)~" in this case. This situation

exactly corresponds to the buckling instability predicted by MiIner et al. [3j and occurs only
for mechanical reason due to the lateral compression of the Langmuir monolayer. This is not

a dynamical instability. Notice that the expected critical surface tension is negative although
it is extremely small, and the buckling instability is expected to occur at the vanishing surface

tension in practice [3j.
When there are no amphiphilic molecules, as originally considered by Kelvin, the interfa-

cial property is solely determined by the surface tension of water, 'ye. In this case, f(k) can

be negative provided U > Uci
"

(4'yoApg/@~)~/~, and the most unstable mode is

kci
=

(Apgl'yo)~/~ [7-9, iii. Typical values for air over water (pi
+~

I g cm~~,

p2 +~

10~~ g cm~3,
~yo +~

74 dyn cm~~) provide Uci
~J

730 cm
s~~ and kci

+~
3.6 cm~~

(21r/kci
~J

1.7 cm). (Roughly these values were originally predicted by Kelvin.) Although the

compressibility and the viscosity of the air has been neglected in the calculation, the above

critical velocity gives a good estimate for the onset of the instability [7j.
As the surface pressure II is increased towards

~yo
in the presence of adsorbed amphiphilic

molecules, it turns that the interface is mainly governed by the bending rigidity «. In principle,
for any value of

~y,
there exists a certain critical Uc above which the interface becomes unstable.

Here we consider the case for
~y =

0 which is still larger than
~y~

at which the static buckling
takes place. In this case, the critical velocity is

Uc2
"

(2/3~/~)~~/~>~~/~(Ap9)~/~, (io)

and the most unstable mode is kc2
=

(Apg/3~)~"
=

kc /3~". With the same orders of magni-
tude as used before, and

~ +J

10~~3 erg, we find that Uc2
~J

13 cm
s~~ and

kc2
+~

7.6 x
103 cm~~ (27r/kc2

~J
8 x

10~ 1). This length scale is accessible with current

experimental techniques [4, 5j. Comparing with the pure water surface case, we see Uci » Uc2
and kci « kc2 indicating a dramatic effect of adsorbed amphiphilic molecules on the surface

property. One can expect a crossover of these critical values by changing the surface pressure n.

The zero surface tension case is also realized in the saturated oil-water interfaces in micro-

emulsions [15]. Assuming a flat oil-water interface, it can be destabilized with smaller Uc2.
since the density difference (Ap) is smaller for the oil-water interface than the air-water in-

terface. This type of instability may be also relevant to monolayers at oil-water interfaces in

bicontinuous microemulsious under shearing deformation [16].
In summary, we have discussed the possibility of Kelvin-Helmholtz instability of a Langmuir

monolayer. This instability is expected to take place above
a critical velocity of the air relative

to the water. The critical velocity is deeply affected by the presence of amphiphilic molecules

and also by the exerted surface pressure.
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