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Abstract 

The scattering function of the disordered phase of a block copolymer (BCP) melt under a steady shear flow is 
investigated by the cell dynamical system (CDS) approach. Agreement with previous theoretical calculations indicates the 
applicability of the CDS approach to the disordered phase as well as the ordered phase. 

PACS: 05.40 + j; 61.25.Hq 

Block copolymers (BCP) are linear chains typi- 
cally composed of two homopolymer subchains 
grafted covalently at one end. Their properties have 
attracted great scientific and technological interest. It 
is well-known that the BCP system exhibits various 

fascinating periodic structures as well as a homoge- 
neous disordered phase depending on the tempera- 
ture or the molecular composition. The mesoscopic 
description of these equilibrium phases has been 
rather well established according to the theory by 
Leibler for the weak segregation regime [l], or that 
by Ohta and Kawasaki for the strong segregation 
regime [21. 

In this Letter, using the cell dynamical system 
(CDS) approach [3,4], we investigate the effect of a 

’ E-mail: komura@post.isci.kyutech.ac.jp. 

’ E-mail: fukuda@ton.scphys.kyoto-u.ac.jp. 

steady shear flow on the scattering function of the 
disordered phase in a BCP system. The present 

computer simulation is motivated by the previous 
mean field calculation of Fredrickson, who showed 
that the shear flow affects the scattering function 
highly anisotropically, whereas the peak intensity is 

considerably attenuated [51. In our computer simula- 
tion, we especially pay attention to the scaling analy- 
sis of the attenuation rate in the peak intensity. So far 
the CDS approaches have been used only to simulate 
the ordered phase (low temperature phase) in the 
spinodal decomposition or in the micro-phase separa- 
tion of the BCP system. Our result shows that the 
CDS method is also applicable to investigating the 
high temperature disordered phase at least in the 
latter case. 

According to a previous theory [l], the order 
parameter of the BCP system can be introduced in 
the following way. Let 4,,(r) and &,(r) denote the 
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local volume fraction of segments a and b; N, and 

Nb represent the degrees of polymerization of blocks 
a and b, respectively. Under the condition that the 

molten phase is incompressible (4,(r) + +b(~) = l), 
the system can be described by a single order param- 
eter $(r) = 4&r) - &(r). The spatial average of 
G(r) is determined solely by the relation 3 = 2f- 1, 
with f= N,/(N, + N,), where f is the block ratio. 
For the dynamics of the BCP system, Oono and 
Shiwa first proposed an equation of motion for the 

time dependent order parameter $(r, t) 141. Recently 

Ohta et al. generalized this equation to the case in 

which a macroscopic flow u is present [6], 

-B(ICI- Icl). (1) 

In the above, B, D, T and u are positive phe- 

nomenological parameters and the last term is due to 
the long range interaction. (The transport coefficient 
has been eliminated in Eq. (1) after an appropriate 
scaling.) As for the macroscopic flow in Eq. (l), we 

consider the following shear flow, 

ux(r) = +y, uy = u, = 0, (2) 

where the shear rate i/ is the time derivative of the 

shear strain y. In this case, the convective term in 
Eq. (1) becomes ~y(@/ax) and we are allowed to 
perform our simulation in two-dimensional space [6]. 

The CDS model for spinodal decomposition 
proved to be an efficient algorithm for numerical 
simulations [3]. As a slight modification of this 

model, Oono and Shiwa proposed the corresponding 
CDS model of Eq. (1) [4], and a subsequent detailed 

investigation has been performed by Bahiana and 

Oono [7]. In the present simulation, we employ the 
same CDS model as in Ref. [6] where the rheological 
properties of the hexagonal phase under an applied 
shear flow are reported. The difference equation for 
the order parameter #(n, t) is given by 

rCl(% t+ 1) 

= $(n, t) -@ rlr(n, t) - $1 

-;?++,+1, ny, t)-@(n,-L ny’ t)] 

+ ((I(% t)>> -I(% t) +Q(n, t), (3) 

with 

I( n, t) = -A tanh +( n, t) + @(n, t) 

-D[((rCl(n, t)>> - rCr(n, t)], (4) 

where 12 = (n,, ny) assigns the two-dimensional lat- 
tice point. The operator ((X)) defines the isotropic 
spatial average of the quantity X, and is defined on 

the square lattice by ((X)) = iCX(nearest- 

neighbor cells) + &CX(next-nearest-neighbor cells) 
[3]. The last term on the r.h.s. of Eq. (3) represents 

the noise term, C being the noise amplitude and 

rl(n, t) = q&r, + 1, IIY, t) - 77x(nx, IzY, t) + 
77y(lt*, nY + 1, t> - rl,(n,, nyr t>, where 77, and 77y 
are random numbers uniformly distributed in the 
interval [ - 1, l] [7]. In the present simulation, we 
have fixed the parameters to the values B = 0.02, 

C = 0.01, D = 0.5, 6 = 0, whereas the shear rate has 
been changed for the values i, = 0, 1 X 10m4, 3 X 

10-4, 5 X 10m4 and 1 X 10m3. 

The linear stability analysis based on Eq. (1) 

without any flow (o = 0) shows that the spinodal 
line is determined by (T- 3~$‘)~ - 4BD = 0 [8]. 
Since the line of microphase-separation temperature 
(MST) and the spinodal line coincides for $ = 0 
(symmetric BCP), the transition temperature between 

the lamellar phase and the disordered phase is given 
by rc = 2fi = 0.2 for above values of parameters. 
Hence the corresponding critical value of A in Eq. 
(4) should be A, = 1 + TV = 1.2. We have chosen 
several values of A to lie between 1.190 and 1.199 

representing just above the transition temperature. 
(In general the flow changes the locus of the spin- 

odal and MST, but we do not consider this problem 
here.) 

In our simulation we have studied a system on a 
square lattice of size L XL = 64 X 64 and the initial 
distribution of 4(n) is specified by a random uni- 
form distribution in the range [ -0.025, 0, 0251. In 
the presence of the shear flow given by Eq. (2), the 
required boundary condition should satisfy 

*(n,, nY, t) = +(n, + iL + yjL, ny + jL, t> for ar- 
bitrary integers i and j [6]. The Fourier components 
$(k, t) under this sheared boundary condition can 
be calculated by performing the affine transforma- 
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tion of $(n, t) as 

X+(x, Y, t) exp[i(k,x + kyy)], 

(5) 
where x1=x- yy and k = (k,, k 

I 

1 = 
(277-/LXm, n - rm) with m and n integers [6 . The 

scattering functions S(k) = ( 1 t)(k) 1 2> have been 

computed after 5000 time steps, which is long enough 
to observe the steady state behavior of the system. 
We have also checked that S(k) does not change 
appreciably for longer runs up to 10000 time steps. 
In order to improve the statistics, the average has 
been taken over 200 sample patterns for each param- 

(a) 

(cl 

eter set. It is important to add the noise in this 
simulation since we are close to the transition point. 

For a fixed value of A = 1.198, two-dimensional 

scattering patterns S(k) are presented for (a) i/ = 0, 
(b) 3 X 10p4, (c) 5 X low4 and (d) 1 X 10e3 in Fig. 
1. The dark area denotes the region of higher scatter- 

ing intensity. When there is no applied shear flow 
(i, = O), the scattering pattern is isotropic and the 

radius of the circular ring corresponds to the absolute 
value of the most unstable wave vector with which 

the lamellar pattern will be developed below the 
transition temperature. As the shear rate is increased, 
the pattern becomes more and more anisotropic. 
Depending on the direction in the scattering patterns, 
the peak positions in S(k) are shifted towards larger 
or smaller value of k = I k I as compared to the case 

(b) 

(d) 

Fig. 1. Two-dimensional scattering patterns for A = 1.198 and (a) 9 = 0, (b) 3 X 10w4, (c) 5 X 10e4 and (d) 1 X lo-‘. The dark area 

denotes the region of higher scattering intensity. 
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Fig. 2. S(k)( k>* as a function of the scaled wavevectors k/(k) 
for A = 1.198 and (a) q5 = 0, (b) $T, (c) f~ and (d) :T. (k) is 

the location of the peak in the absence of shear flow for A = 1.198. 

The solid, dotted and dot-dashed lines represent t = 0, 3 X low4 

and 1 X 10-j, respectively. 

of Jo = 0. To specify the orientation of k in the 
k,-k, plane, we let 4 denote the polar angle mea- 

sured relative to the k,-axis. For the same fixed 
value of A = 1.198, the shape of the scattering 
functions for + = 0 (solid), 3 X 10m4 (dotted) and 
1 X 10e3 (dot-dashed) are presented in each graph of 
Fig. 2 corresponding to the direction of (a) 4 = 0, 

(b) an, (c) $n and (d) tn. In these four graphs, the 
dimensionless quantities S(k)(k)2 are plotted as a 
function of the normalized wavevector k/(k), where 

(k) is the averaged peak position for A = 1.198 and 

9 = 0. Considering the symmetry of Eq. (21, the 
scattering function should not be changed by the 

shear flow for 4 = in (k, = 0) and this requirement 
is well reproduced in Fig. 2c, where we see no 

appreciable difference in the scattering function for 
different values of T. As was predicted by Fredrick- 
son [5], the scattering peak should be shifted to 
smaller values of k for 4 = 0 and f7r whereas the 
peak is shifted to larger k for 4 = irr. Moreover the 
peak height is significantly attenuated in all direc- 
tions except for 4 = in. One can also observe that 
the larger the shear rate +, the larger both the peak 
shift and the attenuation are. 

For different values of A, the effect of the shear 
flow turns out to give rise to the same effect as 
described above for A = 1.198. However as the tem- 

perature approaches the transition temperature, the 
peak intensity is more attenuated, even if the shear 
rate is kept unchanged. In order to summarize these 
behaviors, we look at the attenuation rate defined by 

where Z(A, y, 4) is the maximum value of S(k) 
depending on A, i, and 4. Recalling the lowest 

order calculation of the maximum peak intensity by 

Fredrickson [5], we anticipate the following scaling 
form, 

T(A, ?, 4) =f(x, 4), 

with x= y2/(l.2-A)3. (7) 

In the limit of x + 0, f(x) should behave as f(x) 
+ 1. Fig. 3 is the log-linear plot of f(x,4 = i rr ) as 

a function of X. Although the data collapse is not 
satisfactory due to the large error bars, the above 

described qualitative behavior is well reproduced. 
Below the transition temperature (A > 1.2) and in 

the absence of the shear flow, the above CDS model 

does not provide a well-defined lamellar structure 
but rather a complicated bicontinous pattern in con- 
trast to the real system. Bahiana and Oono tried to 

avoid this difficulty by performing such as three-di- 
mensional simulation, adding sufficiently large ther- 
mal noise, imposing a bending penalty or taking into 

account the hydrodynamic interactions, but none of 
these attempts could change the pattern significantly 
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Fig. 3. Log-linear plot of f(x, C#J = $T) as a function of x. 
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[7]. In spite of these difficulties, we found that a References 
well-ordered lamellar structure can be obtained by 
imposing a macroscopic shear flow given by Eq. (2). 
The scattering pattern of such a lamellar structure 
exhibits two sharp spots on k, = 0 with much larger 

intensity than that of disordered phase. 
In summary, we investigated the scattering func- 

tion of the disordered phase of a BCP melt under a 
steady shear flow through the CDS approach. The 
results indicate that the CDS approach is also appli- 

cable to the disordered phase. 
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