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Tethered vesicles at various constant pressure differences Ap are investigated by Monte Carlo simula-
tions. Flaccid vesicles (Ap =0) exhibit uncrumpled configurations with a mean-square radius of gyration
(R?)y~N", where v~1.0 and N is proportional to the surface area. The roughness of their surfaces is
characterized by an exponent {=0.65. The crossover to inflated vesicles (Ap >0) and to deflated vesi-
cles (Ap <0) are analyzed by means of finite-size crossover scaling assumptions. The crossover to
inflated vesicles (v=1.0) is governed by the reduction of the corrugation due to the pressure, i.e., from
£=0.65 to 0, which is characterized by a crossover exponent ¢ =1.88. The crossover to deflated vesicles
is ruled by the change of their sizes, i.e., from v=1.0 to 0.66, which is characterized by ¢'=4.4.

I. INTRODUCTION

Properties of tethered networks have received great at-
tention recently in connection with both biophysics of
membranes and statistical mechanics of random surfaces
[1]. Tethered membranes are realized not only in biologi-
cal systems, such as the spectrin protein skeleton of eu-
rythrocytes, but also in artificial membranes, for example,
polymerized amphiphilic bilayers. In contrast to linear
polymer chains, polymerized membranes may exhibit a
low-temperature flat phase due to phonon-mediated
long-range interactions, in spite of their two-dimensional
character. This flat phase is not described by the classical
theory of elasticity.

A spherically closed membrane is called a “vesicle,”
exemplified by red blood cells. From the experimental
point of view, it is easier to prepare a single polymerized
vesicle than to control the size of monodisperse ensem-
bles of open sheets. This type of thin-walled vesicles is of
current interest as models of cell membranes which ex-
hibit many different shapes [2]. This shape transforma-
tion is caused by changing, e.g., the osmotic conditions,
the composition of the lipid, or the temperature.

In the present paper, we report on Monte Carlo simu-
lation of tethered vesicles subjected to osmotic pressure
differences

Ap =Pin " Pout > (1)

measured between inside and outside. Our simulation
has been performed in (d=3)-dimensional space, using
vesicles which have (D =d —1=2)-dimensional tethered
surfaces [3,4] (three-dimensional vesicles) as in the real
world. The self-avoidance of the surface is also taken
into account in our simulation, which gives rise to a cer-
tain intrinsic bending rigidity. As has been shown previ-
ously by simulation [5], this induced intrinsic bending ri-
gidity is large enough to keep the flaccid tethered vesicles
(Ap=0) uncrumpled.

On the other hand, our work may be considered as a
continuation and an extension of previous studies on
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(D=1)-dimensional vesicles in (d=2)-dimensional space
(“planar vesicles” or “ring polymers”) performed first by
Leibler, Singh, and Fisher [6,7] (hereafter denoted LSF).
Using also the “sphere and tether model,” they measured
the mean-square radius of gyration and the area of the
planar vesicles. Both of these quantities scale with a sin-
gle correlation exponent v=23 for the flaccid case (note
that they are crumpled). They showed by scaling analysis
that inflated (Ap >0) vesicles become circular, while
deflated (Ap <O0) vesicles collapse to forms of branched-
polymer structures. Planar vesicles change their shapes
continuously and the transformations are controlled by
the scaling variable ApN?", where N is the number of
monomers [8]. Results of a recent subsequent study for
the inflated planar vesicles are well explained by Pincus’s
expression for the size of a stretched polymer chain [9].

We show in this paper that three-dimensional vesicles
exhibit several different properties in comparison to pla-
nar vesicles. These differences originate mainly from the
fact that three-dimensional “hard sphere and tether mod-
els” of vesicles are not crumpled in the flaccid case. It
then turns out to be more important to characterize these
vesicles in terms of roughness using the roughness ex-
ponent §. In order to make this point clear and to extend
the simulations to the case of nonzero constant pressure,
we repeated the simulation for Ap=0 [5]. It is also re-
markable that our data cannot be described by a single
crossover exponent but need different values for inflated
and deflated regimes. This is due to the difference in the
related crossover phenomena.

The outline of this article is as follows. First we ex-
plain our model and the simulation techniques. In Sec.
I1I, we present the results for Ap=0, including the fluc-
tuations of the radius of gyration and the volume. We ex-
plain their relation to the roughness of vesicle surfaces.
In Sec. IV, the scaling analysis for Ap >0 is described. It
will be shown that the increase of internal pressure mani-
fests itself in the decrease of out-of-plane fluctuations. A
similar scaling analysis for the crossover to the “fully col-
lapsed” state (Ap <O0) is explained in Sec. V. Compar-
isons of our work to previous works are made in the last
section.
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II. MODEL AND SIMULATION TECHNIQUES

The initial configuration of. vesicles in (d=3)-
dimensional space consists of a triangular mesh as a sim-
plest approximation for (D=2)-dimensional membrane
[5,10]. Starting from an icosahedron as the original net-
work, we add new points on each triangle followed by a
subsequent rescaling of all bonds to the desired length.
This procedure ensures that most of the grid points have
six neighbors and each bond has approximately the same
length. In the present simulation we studied vesicles con-
sisting of N =10X3*+2 monomers with k=1,2,3,4 (for
Ap=0, we used up to k=5). The number of triangles is
f =2N —4 while the number of bonds is e =3N —6.
These quantities surely satisfy FEuler’s theorem;
N+f—e=2.

Each Monte Carlo step for vesicles consists of random-
ly selecting a monomer and displacing it to a nearby loca-
tion, which is also chosen randomly. The energy as-
signed to a particular configuration of monomers with
positions {r;} in (d=3)-dimensional space is

E=—ApV+ 3 v(ir,--rj[) . (2)
(i, j)
Here V is the volume of a vesicle and the summation is
over all neighboring pairs of monomers (i,j) interacting
by a square-well potential, i.e.,
0, a<r<l

max

vir)= (3)

oo otherwise .
The parameter a represents the diameter of a hard sphere
introduced on each grid point and [ ,, the maximum
length of the tether (“tethered” or ‘“polymerized mem-
brane” [3,4]). The self-avoidance of the network and the
finite extensibility of the tethers are maintained by this
tethering potential. Furthermore, if a/l,,, >1/V3,
self-interpenetration of the surface is safely prohibited
[3]. In our simulation, a=1 and [,,,=V'2a are used.
We fix the pressure difference Ap and let the volume V
fluctuate in accordance with the Boltzmann weighting
factor exp(—E /kyT). In other words, we used the
“stress ensemble” which is generally not equivalent to the
“strain ensemble” [11]. Each attempted move of a mono-
mer is set to be 0.1(a), for which about 70% of trials are
accepted when Ap=0. The actual sampling of
configurations is made at least every N Monte Carlo time
steps (one Monte Carlo time step corresponds to N at-
tempted moves). Since the expected correlation time be-
tween successive configurations is of the order of N 2 the
collected samples are not completely uncorrelated. Equi-
librium averages are taken over up to 10* configurations.

III. FLACCID VESICLES (Ap =0)

First we consider the case Ap=0 where vesicles exhibit
flaccid conformations. This case has been studied previ-
ously for polymerized and fluid vesicles [5]. For the pur-
pose of extending our work to the nonzero pressure re-
gime, we have simulated this case again with more de-
tailed analysis of the data. Some new results are incor-
porated in this section concerning the fluctuations of the
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mean-square radius of gyration and the volume in order
to estimate the roughness of the surface.

A typical equilibrated sample of a polymerized vesicle
at Ap=0 is depicted in Fig. 1(a). The mean-square radius
of gyration (R?), and the mean volume { V" ), of vesicles
are expected to scale with the correlation exponents vy
and vy as

vy /2

(R2)o~ AEZN'®, (V)o~AyN 4)

for large N (the subscript O indicates the average at
Ap=0). Ag and A, are nonuniversal amplitudes of the
radius of gyration and the volume, respectively. In gen-

g

00N >0

MR

FIG. 1. Typical equilibrium configurations of polymerized
vesicles for N=272 with (a) Ap=0 (flaccid vesicle), (b)
P=Apa’/ky T=8.0 (inflated vesicle), (c) = — 8.0 (deflated vesi-
cle). Size of hard spheres is reduced so that the connectivity can
be easily seen.
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eral, the exponent vy is not necessarily equal to v,,. Note
that N is proportional to the surface area.

The Monte Carlo results of (R2), and (¥V), are
presented in Fig. 2, from which we obtain

A% =~0.10(a)?, A,==0.094(a)®, (5
3VV
vg =0.95+0.05, —=—=1.48+0.04 . (6)

These results recover our previous simulation for polym-
erized vesicles [5] and, in particular, vg is in good agree-
ment with other simulations for open tethered membranes
[12—16] where v =1.0. For the initial condition of the
present simulation, we took not only spherical shapes de-
scribed in Sec. II, but also collapsed configurations equili-
brated first at Ap <0 [compare also Sec. V and Fig. 1(c)].
Even in the latter case, vesicles will expand and the
equilibrated configurations give the same exponents as
shown in Eq. (6). We suspect that the difference between
the values of vz and v, could be due to finite-size effects
and we expect vy =v,, = 1.0 in the asymptotic limit.

For planar vesicles, the relation vz =v,,, where vy, is
the corresponding exponent for (d=2)-dimensional
volume (area), was first found in the Monte Carlo simula-
tion by LSF. This equation was later analytically derived
by Duplantier using the Coulomb-gas method [17]. Our
result suggests that it is also valid for three-dimensional
polymerized vesicles.

The fact that the correlation exponents exhibit their
upper limiting value (v = 1) implies that polymerized vesi-
cles without any applied pressure are essentially expand-
ed. The shape of these expanded vesicles is estimated by
the three axes of inertia (A, ) (k=1,2,3), which are relat-
ed to the mean-square radius of gyration by

(RY)=(A)+ () +{(A3) . @)

We obtained (A;)/{A;),=~0.8 and (A,),/{A;)(=0.9,
where A, and A; are the smallest and the largest eigenval-

logig N

FIG. 2. Plots of the mean-square radius of gyration (MSRG)
{R?), and the mean volume { ¥ ),, for the flaccid (Ap=0) po-
lymerized vesicles as a function of number of monomers, N.
The error bars are within the size of symbols.

ues, respectively. These values suggest that the shape of
flaccid vesicles is close to sphericity but with weak as-
phericity. This view is also supported by the following
ratio between the volume and the radius of gyration [7]
assuming vy =vp:

Vo Ay
(4m/3)(R2)32 " (4mw/3) A}

0.71. (8)

Note that the corresponding value for a sphere is 1.0.

Reasons why self-avoiding tethered surfaces are flat
have been suggested very recently by Abraham and Nel-
son [18]. Due to short-range repulsive interactions be-
tween adjacent spheres of the membrane, a large bending
rigidity is induced in membranes. They showed that this
intrinsic bending rigidity is large enough to produce the
flat phase. It is interesting to note that this behavior of
three-dimensional vesicles is in contrast to planar vesicles
which are fractal (v < 1) with the corresponding radius of
gyration v/ (R?2),~N3"* where N is proportional to the
contour length in this case [6-9].

Although vesicles are in the expanded shapes (with
weak asphericity), their conformations are still flaccid
and have not reached the fully inflated size. This implies
that the surfaces of flaccid vesicles are substantially
rough. The roughness of a surface is generally character-
ized by the out-of-plane fluctuation # whose squared
average scales with the roughness exponent § as [19,20]

Ko

(h2)o~ L%. ©)

L is proportional to the linear length scale of the mem-
brane size and k; is the bending rigidity which, in our
case, corresponds to the intrinsic bending rigidity in-
duced by the self-avoidance effect. As mentioned above,
tethered surfaces are uncrumpled and one has L2~N. In
the case of vesicles, we expect that {#?2) is represented by
the fluctuation of the mean-square radius of gyration, i.e.,

<h2>0~[<(AR2)2>0]1/ZE[<R4)0_(RZ (2)]1/2 . (10)

In Fig. 3, these quantities for various values of N are de-
picted, which exhibit ((AR?2)?),~N!2°¥016_ The rough-
ness exponent is estimated to be §=0.645+0.08 accord-
ing to Eqgs. (9) and (10). This result is in very good agree-
ment with estimates from previous simulations of open
polymerized membranes [12,15,16,18,20,21].

One can think of another way of estimating the rough-
ness exponent from the fluctuation of the volume which
is also given in Fig. 3 with the result
AV )o=AV2)o—(V)3~N?%£013 We regard flac-
cid vesicles to be, on the average, a sphere of mean radius
R~N"®" and with transverse undulation 4. Then one
would expect

((AV)o~[RH( W) ) 2P~ NTRTE (11)
Putting vz =1.0, which yields £=0.44+0.13, gives poor
agreement with the above observation. Taking, however,
the value for v in Eq. (6) with its associated error, one
has £=0.54+0.20.

It has been suggested recently [22] using scaling argu-
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FIG. 3. Plots of the fluctuation of mean-square radius of
gyration ((AR?)?), and the fluctuation of volume {(AV)?), for
the flaccid (Ap=0) polymerized vesicles as a function of number
of monomers, N.

ments and Monte Carlo simulation that previous esti-
mates of {=0.64 [12,15,16,18,20,21] are probably masked
by crossover effects. They observed a crossover from
fluidlike behavior with {=1 on small scales to solidlike
behavior with §=1 on large scales. {=1 is in agreement
with earlier prediction by Nelson and Peliti [23] giving
finite value of the shear modulus on large scales.

Due to the large error bar in § estimated from the fluc-
tuation of the volume, it is not clear whether our value
could be taken as an indication for {=1. Rather, we still
think it would be more reasonable to take the former esti-
mate {=0.645 for our size of vesicles. This value is at
least consistent with the result of field-theoretical
methods, namely, the 1/d expansion for (D=2)-
dimensional polymerized membranes embedded in a high
d-dimensional space [25,26]. This result is {=2 for d=3
and order 1/d.

IV. INFLATED VESICLES (Ap >0)

When positive or negative constant pressure difference
is applied, the shapes of vesicles deviate from flaccid
configurations. The related crossover scaling forms are
expected to be the analog to those for planar vesicles pro-
posed by LSF and co-workers [6-9], i.e.,

(R*)~A3N*X(x), (V)~A,N>*?Y(x), (12)

where v~ 1.0 and x is the scaled pressure variable
3
x =pNo*72, p=L2PL (13)

The crossover exponent ¢ is determined by the fluctua-
tion of the volume at 7=0 [6,7] and is provided according
to the linear response theorem,

V)

((AV )
ap

~N(3+zp)v/2 . (14)
5=0

FIG. 4. Scaling plots of the mean-square radius of gyration
and the volume for the inflated (p>0) polymerized vesicles.
—=NeV/2 Y —(R2 2 AR — vy /2
Here x =pN?/?, X =(R*)/A3N %, and Y=(V)/A,N
with ¢=1.88, v =0.95 and v;,=0.99. X (x) is shifted to avoid
the overlap of two curves.

Putting v=1.0 and using the Monte Carlo result for the
fluctuation of the volume (Fig. 3) as discussed in the
preceding section, one obtains ¢=1.88+0.26. It is in-
teresting to note that Egs. (11) and (14) provide a relation

“—J;"”—”=2v+g, (15)

and hence @ determines the crossover between the rough
surface of flaccid vesicles with £=~0.65 and the smooth
surface of fully expanded vesicles (7 — oo ) with £=0.

For large p >0, one expects that the inflated vesicle ap-
proaches its spherelike limiting shape [see Fig. 1(b)]. In
Fig. 4, X=(R2)/AAN"® and Y=(V)/A,N>"" are
plotted according to the crossover scaling form Eq. (12)
as a function of x =pN#"/2. Using the estimated cross-
over exponent ¢ = 1.88, one observes the collapsing of all
the data to a single curve. This result supports the scal-
ing forms Eq. (12).

Since v=~1.0 in the flaccid (p=0) as well as in the
inflated (7 > 0) case, the scaling functions in Eq. (12) can-
not obey a simple power law. In Fig. 4, one observes pla-
teaus in the large x limit which arise from the finite ex-
tensibility of the tethers. We give here a rough estimate
of the limiting values X (o) and Y (o). When vesicles
are completely expanded the surface will be covered with
regular triangles of length V'2a. Therefore the total sur-
face area S is approximately S =V 3Na?. Since the radius
and the volume of a sphere are expressed in terms of sur-
face area S as R?*=S/4r and V =(4w/3)(S/47)*"?,
respectively, the  limiting values are given
by X (o0)==(V'3/41)/0.10=1.37 and Y()
~(1/3"*V47)/0.094=2.28 [see Eq. (6)]. These values
are in agreement with the Monte Carlo results.

It is intuitively clear that the roughness due to the fluc-
tuations of the surface is decreased by increasing the
internal pressure. In fact, according to our data
{(AR?)?) becomes independent of N with increasing p.
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Instead of presenting these raw data, we analyzed the
fluctuation of the mean-square radius of gyration for vari-
ous p >0 by the crossover scaling form

((AR?)7?)

Here f(y) is a scaling function with f(y)=const for
y <<1. In this limit ((AR?)?) reduces to Eq. (9) for flac-
cid vesicles. Fixing {=0.645, we obtained the best over-
lap of data if $=0.0540.03. This is presented in Fig. 5,
where f=((AR??)/N?% is shown as a function of
y =pN?t5. Our results yield a power-law behavior of the
scaling function according to f (y)~1/y? for y >> 1.

This power law can be understood by the following ar-
gument. The configuration of a nearly flat polymerized
membrane with surface tension o ~pN? is described by
two in-plane phonon-displacement fields, u(x,,x,), and
an out-of-plane displacement field, 4 (x,,x,). The strain
tensor u;; has the form [24]

=1[8,u;+8;u;+(3;h)3;h)] (17)

=N%f(pN?*¢) . (16)

with 9; =0x; and i,j=
by [23]

H(u,h)=1 [ d][
+1 [ Quul+rup) , (18)

1,2, and the elastic energy is given

(VR +ky(V2h)?]

where u,A are Lamé coefficients. Because of the non-
linear coupling between u and A, the effective long-
wavelength bending rigidity differs from their microscop-
ic value; effective bending rigidity is scale dependent
[19,21,23,25,26],

K,
Ken(q)~;%, 0<n<2 (19)

for small g. Assuming that o is not renormalized by this
nonlinear coupling, we obtain the out-of-plane fluctuation
from the equipartition theorem

—a - o £ B
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= . . |
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FIG. 5. Scaling plot of the fluctuation of mean-square radius
of gyration for the inflated (p >0) polymerized vesicles. Here
y =pN**¢and f =((AR?*)?) /N* with $=0.05 and £=0.645.
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T 9max 1
< h 2) ~ f 3 7 dq
2 9min oq + Kegd

kgT _
~ L n|1+—2— |, =227 (o
2(2—n)mo KOQrzngin 2

This integral diverges at its lower limit g ;, ~N "~
Equation (20) implies that the quantity (h2) /N*¢ depends
only on the variable oN¢. The case of fluid membranes
[27,28] with surface tension [29] can be easily recovered
by putting 7=0. The two limiting cases for 0 —0 [19]
and o0 — « are

kgT
(h?y~—2=N¢ @1
Ko
and
kgT ¢
() ~=Bl oV (22)
0 Ko
respectively. Equation (22) shows the power-law depen-

dence of the quantity (h2)/N%on oN™.
In the case of closed membranes (vesicles), the surface
tension depends on the vesicle size according to [8,9]

=1ApR ~ApN'/?, (23)

i.e., $=0.5, which is not consistent with our result. This
discrepancy probably indicates a local dependency of the
surface tension which is not included in the present argu-
ment.

V. DEFLATED VESICLES (Ap <0)

Monte Carlo results for deflated vesicles with p <O are
analyzed by the same crossover scaling forms as given in
Eq. (12). However, it was necessary to employ a different
crossover exponent ¢'=4.40%0.20 in order to obtain a
collapse of all the data on a single curve. We estimated
this value from several attempts to obtain optimal over-
lap of the curves for all values of N. Scaling plots with
@' =4.40 are depicted in Fig. 6. One observes power laws
for |x| > 10%

X_ Y_

X(x)z—, )’(-x)z s
|x|? |x|”

with p=0.140+0.007 and 7=0.185+0.008. These results

imply that (R2*)~N "R and (V)~N""" with
vg =vg(1—@'p/2)=0.661+0.08 and 3v, /2=(3v}/2)(1
—¢@'7/3)=1.08+0.08.

Our result for vg is very close to the lower limiting
value for the correlation length exponent v, correspond-
ing to the “fully collapsed” configuration. The exponent

(24)

v for a self-avoiding D-dimensional surface in d-
dimensional space should generally satisfy
—3 <v<1, (25)

which is in our case 2 <v=1. This compact structure is
also observed by the exponent for the volume, 3vy /2,
since (V') ~Na? is expected for this configuration. In
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FIG. 6. Scaling plots of the mean-square radius of gyration
and the volume for the deflated (p <0) polymerized vesicles.
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Here |x|=|pN¥"?|, X =(R*) A3}N Rand Y=(V)/A,N
with ¢’ =4.40, vz =0.95, and v;,=0.99. X (x) is shifted to avoid
the overlap of two curves.

other words, our results show that the fractal dimension
of deflated vesicles is d,=3, which is related to v by
d;=D/v.

This is in contrast to planar deflated (D=1)-
dimensional vesicles [6,7], which exhibit conformations
matching the structure of branched polymers with
v=~0.62. Since the corresponding exponent for branched
polymers in (d=3)-dimensional space is v=1.0 [30-32]
(note that the definition of v in the case of membranes is
twice that for polymers), our result v =~0.66 for deflated
(D=2)-dimensional vesicles indicates that the related
conformations must resemble more closed-packed struc-
tures rather than ramified arrangements. This is also
supported by a typical snapshot of a deflated vesicle
presented in Fig. 1(c).

Abraham and Nelson investigated self-avoiding teth-
ered surfaces by molecular-dynamics simulation also, in
the presence of Lennard-Jones-type attractive interaction
between monomers [18]. Their scaling analysis of the
structure function gives the correlation exponent v=2
characteristic of a collapsed object. This value has been
indeed observed for deflated vesicles in our simulation.
As they point out in their paper, it is remarkable that we
can obtain a compact phase for self-avoiding finite thick-
ness membranes by a simulation in spite of the previous
difficulties [3,33].

It should be noted that the difference between ¢’ ~4.4
and ¢~1.88 [Eq. (15)] determining crossovers in the
deflated and inflated regimes, respectively, is due to the
difference in the crossover phenomena concerned; while
¢’ is related to the change of v=1.0 to v~ =0.66, the ex-
ponent g is related to the change of £~0.65 to 0.

VI. DYNAMICS

In the following section we discuss some dynamical
properties of polymerized vesicles at constant pressure.
We restrict our attention to the time-dependent correla-
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tion function of the mean-square radius of gyration

— (R*0)R*(#))—(R?*)?
(R*)—(R?*)?

This is depicted in Figs. 7, 8, and 9 for p=0, 4, and —4,
respectively. In order to estimate typical relaxation times
7~ NV for the various cases, and assuming for the slowest
mode P(¢/7) to be approximately independent of N, we
have fitted an effective exponent w by attempting to find
the best overlaps of ®(¢) versus ¢ /7 for each of the three
cases of p.

In the case where no pressure is applied (p=0), one
would expect to observe a Rouse-type behavior, r~N!17,
which has been explained in detail for open polymerized
membranes by Kantor, Kardar, and Nelson [3]. Howev-
er, according to our data for ®(z) versus t/N 2 (since
v=1) as depicted in Fig. 7a, this Rouse-type behavior is
not observed, but rather a relaxation with 7~ N is detect-
ed for ¢ /N < 10, which is presented in Fig. 7(b). A possi-
ble explanation for this finding must be related to the fact
that the vesicle at p=0 is not flaccid, in which case we
would expect a Rouse-type relaxation, but only rough,
which requires separate considerations of in-plane and

(1)
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FIG. 7. (a) Time correlation function ®(t) of the mean-

square radius of gyration vs scaled time ¢t/N? for the rough
(p=0) polymerized vesicles. (b) Time correlation function ®(z)
vs scaled time ¢ /N for the rough (p=0) polymerized vesicles.
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out-of-plane time correlation functions. For in-plane lon-
gitudinal relaxation we expect 7, ~ N, similar to the case
of permanent cross-linked networks [34], whereas for
out-of-plane relaxation 7, ~N!*5. Assuming that ®(¢)
can be reasonably represented by the sum of two ex-
ponentials

O(t)~ A exp(—t/7,)+ A exp(—t/T;) ,

our data in Fig. 7(b) might be interpreted to indicate
A,/ A, >>1, which would explain the dominance of in-
plane relaxation, at least for small N. Of course, accord-
ing to this argument, for very large N, we must expect the
out-of-plane fluctuations to become the more important
relaxation mechanism for rough vesicles. Estimates of 7,
and 7, separately can be obtained by simulations of open
polymerized membranes.

The scaled relaxation function for inflated vesicles is
presented in Fig. 8. For simplicity we have restricted our
attention to p=4.0, where the vesicles have almost as-
sumed their fully expanded shape [compare Fig. 1(b)].
The effective exponent is approximately w =~0.4. An al-
most exponential decay is observed over three time inter-
vals of the order of 40N%*, which can be considered to be
sufficient for obtaining equilibrated data of various static
quantities. We have not undertaken to develop a theoret-
ical explanation for the effective exponent w=0.4. In or-
der to characterize in general the relaxation of inflated
vesicles, one would have to consider the crossover behav-
ior between the rough and the inflated (flat) case, in the
same way as has been demonstrated above for static
quantities [see, e.g., Egs. (12) and (13)]. This is not within
the scope of the present paper and is left to subsequent
work.

In Fig. 9, the scaled relaxation functions for deflated
vesicles at p= —4 are presented. Assuming Rouse-type
relaxation [3] with 7~N'*", we have scaled the time ac-
cording to t/N3’3, corresponding to v~2% for deflated
vesicles. The relaxation is, as expected, very slow as com-
pared to the relaxation of rough or inflated vesicles. For
small vesicles (N=32,92), the decay of the correlation
functions according to Fig. 9 seems to give support for
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FIG. 8. Time correlation function ®(¢) vs scaled time ¢ /7 for
inflated (7=4) polymerized vesicles of various sizes N.
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FIG. 9. Time correlation function ®(¢) vs scaled time ¢ /7 for

deflated (p = —4) polymerized vesicles of various sizes N.

well-equilibrated static quantities, whereas for larger vesi-
cles the data of static quantities, as discussed in Sec. V,
might be taken with some reservations with respect to
represent uncorrelated ensembles. Crossover scaling
analysis for ®(¢) must therefore fail. Separate Monte
Carlo investigations to the dynamics of deflated polymer-
ized vesicles are required.

VII. SUMMARY AND CONCLUSION

This work can be summarized as follows.

We have performed Monte Carlo simulations for po-
lymerized vesicles at various constant pressure differences
Ap. Flaccid vesicles (Ap=0) exhibit uncrumpled
configurations with a mean-square radius of gyration
(R?)y~N" and the volume { ¥ ),~N3"/2, where v~1.0.
Here N is the number of monomers and is proportional to
the surface area. The surface of flaccid vesicles is rough
and the related roughness exponent {=0.64510.08, es-
timated from the fluctuation of the mean-square radius of
gyration, is in good agreement with other simulation re-
sults.

We presented a crossover scaling analysis for the
mean-square radius of gyration and the mean volume for
inflated (Ap >0) and deflated (Ap <0) vesicles. The
crossover to inflated vesicles (v=1.0) is governed by the
successive reduction of the corrugation due to the pres-
sure, i.e., from {=0.65 to O in the asymptotic limit. This
crossover is characterized by an exponent ¢=1.88.
Inflated vesicles become expanded spheres.

On the other hand, the crossover to deflated vesicles,
characterized by the exponent ¢'=4.4, is ruled by the
change of their sizes. The correlation length exponent
changes from v=1.0 to 0.66 with which deflated vesicles
exhibit fully collapsed configuration.

ACKNOWLEDGMENTS

One of us (S.K.) is very grateful for the hospitality of
IFF at Forschungszentrum Jilich. We would like to ex-
press our appreciation to Professor R. Lipowsky and Dr.
Y. Taguchi for their interest and useful comments. This
work was done on a Cray X-MP/416.



3518 S. KOMURA AND A. BAUMGARTNER 44

*Present address: Institute of Physics, College of Arts and
Sciences, University of Tokyo, Meguro-ku, Tokyo 153,
Japan.

[1] See, for instance, Statistical Mechanics of Membranes and
Surfaces, Proceedings of the Fifth Jerusalem Winter
School, edited by D. R. Nelson, T. Piran, and S. Weinberg
(World Scientific, Singapore, 1989).

[2] K. Berndl, J. Kis, R. Lipowsky, E. Sackmann, and U.
Seifert, Europhys. Lett. 13, 659 (1990).

[3] Y. Kantor, M. Kardar, and D. R. Nelson, Phys. Rev. Lett.
57, 791 (1986); Phys. Rev. A 35, 3056 (1987).

[4] Y. Kantor and D. R. Nelson, Phys. Rev. Lett. 58, 2774
(1987); Phys. Rev. A 36, 4020 (1987).

[5] A. Baumgértner and J.-S. Ho, Phys. Rev. A 41, 5747
(1990).

[6] S. Leibler, R. R. P. Singh, and M. E. Fisher, Phys. Rev.
Lett. 59, 1989 (1987).

[7] M. E. Fisher, Physica (The Hague) D 38, 112 (1989).

[8] C. J. Camacho and M. E. Fisher, Phys. Rev. Lett. 65, 9
(1990).

[9] A. C. Maggs, S. Leibler, M. E. Fisher, and C. J. Camacho,
Phys. Rev. A 42, 691 (1990).

[10] S. Komura and A. Baumgirtner, J. Phys. (Paris) 51, 2395

(1990).

[11] R. M. Neumann, Phys. Rev. A 31, 3516 (1985).

[12] M. Plischke and D. Boal, Phys. Rev. A 38, 4943 (1988).

[13] F. F. Abraham, W. E. Rudge, and M. Plischke, Phys. Rev.
Lett. 62, 1757 (1989).

[14]J.-S. Ho and A. Baumgirtner, Phys. Rev. Lett. 63, 1324
(1989).

[15] D. Boal, E. Levinson, D. Liu, and M. Plischke, Phys. Rev.
A 40, 3292 (1989).

[16]J.-S. Ho and A. Baumgirtner, Europhys. Lett. 12, 295
(1990).

[17] B. Duplantier, Phys. Rev. Lett. 64, 493 (1990).

[18] F. F. Abraham and D. R. Nelson, J. Phys. (Paris) 51, 2653
(1990).

[19] R. Lipowsky, Europhys. Lett. 7, 255 (1988).

[20] S. Leibler and A. C. Maggs, Phys. Rev. Lett. 63, 406
(1989).

[21] E. Guitter, S. Leibler, A. C. Maggs, and F. David, J. Phys.
(Paris) 51, 1055 (1990).

[22] R. Lipowsky and M. Girardet, Phys. Rev. Lett. 65, 2893
(1990).

[23] D. R. Nelson and L. Peliti, J. Phys. (Paris) 48, 1085 (1987).

[24] L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Wi-
ley, New York, 1970).

[25]J. A. Aronovitz and T. C. Lubensky, Phys. Rev. Lett. 60,
2634 (1988).

[26] E. Guitter, F. David, S. Leibler, and L. Peliti, J. Phys.
(Paris) 50, 1787 (1989).

[27] W. Helfrich, J. Phys. (Paris) 46, 1263 (1985).

[28] L. Peliti and S. Leibler, Phys. Rev. Lett. 54, 1690 (1985).

[29] W. Helfrich and R. Servuss, Nuovo Cimento D 3, 137
(1984).

[30]J. Isaacson and T. C. Lubensky, J. Phys. (Paris) Lett. 41,
1469 (1980).

[31] M. Daoud and J. F. Joanny, J. Phys. (Paris) 42, 1359
(1981).

[32] G. Parisi and N. Sourlas, Phys. Rev. Lett. 46, 871 (1981).

[33] M. A. F. Gomes and G. L. Vasconcelos, Phys. Rev. Lett.
60, 238 (1988); Y. Kantor, M. Kardar, and D. R. Nelson,
ibid. 60, 239 (1988).

[34] P. G. de Gennes, Macromolecules 9, 587 (1976).



