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Abstract. 2014 The spectral dimension ds of polymerized and fluid self-avoiding vesicles are investi-
gated by Monte Carlo methods. For both cases we obtained ds=2, which indicates that these surfaces
belong to the same class of "microcanonical" surfaces.
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Properties of flexible sheet polymer networks have been explored in recent theoretical investi-
gations [1]. Polymerized membranes have a nonzero shear modulus in the plane and are said to
be solid-like, whereas fluid membranes are not rigid in the plane and have zero in-plane modulus.

It has been shown using computer simulations [2,3] that polymerized self-avoiding membranes
are essentially flat and the corresponding in-plane squared radius of gyration is proportional to
the number of monomers on the surface,

Very recently, a model of fluid self-avoiding membranes has been proposed which exhibits, in con-
trast to polymerized membranes, crumpled shapes with v m 0.8 [3] . One important question with
respect to the differences between polymerized and fluid membranes is related to their internal
connectivity which is commonly characterised by the spectral dimension ds [4,5] . The spectral
dimensions of various classes of membranes have been discussed in detail by Cates [6] . For the
case of polymerized surfaces with random connectivity, it is expected d, = 2. Very recently, it has
been shown that even for fractal surfaces with hierarchical connectivity [7] the spectral dimension
is, somewhat unexpectedly, not changed and also ds = 2.

In the present Communication, we report on Monte Carlo studies of the spectral dimension for
fluid membranes. For comparison, we also include the results of ds for the corresponding model
of polymerized membranes.

The standard way to measure the spectral dimension is related to a random walk on the given
surface [4, 5] . Given a particular realization of the membrane, the corresponding mean-square
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displacements at time t of a random walk on the surface is expressed as

where df = 2/v is the fractal dimension of the model membrane. In practice, r2(t) has to be aver-
aged over various walks on one particular frozen realization of the surface as well over different
realizations. For convenience, we used a spherically closed surface ("vesicle") in order to take
into account the periodic boundary conditions for the random walk properly.
The simulation technique for generating various conformations of self-avoiding vesicles is the

same as has been used previously [3] . In a polymerized vesicle, the connectivity at each monomer
is fixed. For a fluid vesicle, however, we relax the restriction on the fixed connectivity; we allow the
monomers to exchange their neighbors, but keeping the rule that the topology and the integrity of
the stucture should be preserved ("triangulation" procedure). This procedure provides for a given
monomer to escape after several bond exchanges from its original neighborhoods of monomers,
and hence represents a "fluid" particle.

The averaged mean-square displacement of a random walker on various sizes of vesicles are
analyzed by using the crossover scaling form (similar to that of diffusion on percolating clusters,
e.g., Ref.[8] ),

where f (x) is a scaling function with f(z) - x ds/df for x « 1 and f (x) = const. for x » 1.

With this scaling function, the mean-square displacement behaves as (r2( t») "-1 ids/df for t « T,
and (r2 ( t») "-1 Nv for t » r, where T = N 2/ ds gives the crossover time. For very long times
(t » T), (r2(t») saturates and remains constant reflecting the fact that the displacement of the
random walker are bounded by the finite size of the vesicles. The exponent v has been estimated
according to the relation (2) at x » 1, i.e., (r2(t)) - NV, which yields v = 0.98 f 0.02 and
0.83 f 0.02 for polymerized and fluid vesicles, respectively. Since we expect that under the scaling
of (2) all data should collapse to a single curve, we have estimated the spectral dimension ds from
several attempts to obtain optimal overlap of the curves for all N. This is presented in figure
1, where y = (r2(t») IN" is shown as a function of x = t/N2/ds. Fixing v =0.98 and 0.83 for
the two types of vesicles, we obtained the best fit using ds = 1.96 + 0.05 for polymerized and
ds= 2.02 ± 0.04 for fluid vesicles. Of course, these estimates of v = 2/d f and cas are consistent
with the slope f(z ) - xds/df for x « 1. Our conjecture is that ds = 2 for both polymerized and
fluid vesicles.

It is worthwhile to point out the next consideration on the crossover time r. The return prob-
ability P(t) that the random walker comes back to the starting point at time t scales as [4,5]

Therefore the number of accessible sites E(t) increases as E(t) - (P(t) ) - 1 - tds/2. When t
comes close to the crossover time r, t N N 2/ds holds. This means that the number of accessible
sites amounts to the order of E (t) ~ tds/2~N. This can be interpreted that once the random
walker has visited all N sites, it will start to access the sites it has already visited and therefore the
mean-square displacement begins to saturate for t &#x3E; T.

Finally, it should be noted that ds = 2 of the present model for fluid membranes implies that this
type of model belongs to the class of "microcanonical" surfaces [6] , which is commonly restricted
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Fig. 1. - Scaling plot for average mean-squared displacement of a random walker on polymerized and fluid

setf-avoidingvesicles. Here x = tIN 2/d -1 and y = r2(t)&#x3E; IN" with ds = 1.96 and v = 0.98 for polymerized
vesicles ds = 2.02 and v = 0.83 for fluid vesicles.

to polymerized random surfaces [2, 3, 9] subjected to the constraints of constant surface area, S =
const., and fixed "local" connectivity. With respect to the present results for fluid membranes,
df = 2.5, it seems to be reasonable to extend the class of "microcanonical" surfaces by including
fluid surfaces with S = const., but with the weaker constraint of fixed "global" connectivity, or
in other words, constant numbers of vertices, faces and edges. Moreover, with respect to the
recent findings of ds = 2 for deterministic fractal surfaces with df = 2.33 [7] , it is suggestive to
attribute ds = 2 to the class of "microcanonical" manifolds in general, including (so far as we know
currently) random polymerized, fluid and fractal surfaces.
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