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Abstract – Using an underdamped active Ornstein-Uhlenbeck particle, we propose two infor-
mation swimmer models having either external or internal feedback control and perform their
numerical simulations. Depending on the velocity that is measured after every fixed time interval
(measurement time), the friction coefficient is modified in the externally controlled model, whereas
the persistence time for the activity is changed in the internally controlled one. In the steady state,
both of these information swimmers acquire finite average velocities in the noisy environment, and
their efficiencies can be maximized by tuning the measurement time. The internally controlled
swimmer can generally achieve a larger velocity and efficiency than the externally controlled one
when the active fluctuation is large.
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Introduction. – In the studies of active matter, much
interest has been focused on the collective motions of self-
propelled particles [1]. It is also important to under-
stand the mechanism of single-particle motion from the
perspective of non-equilibrium statistical mechanics [2].
Among various models, the self-propulsion of an active
Brownian particle (ABP) is generated by an internal driv-
ing force combined with overdamped orientational Brow-
nian dynamics [3]. An overdamped self-propelled motion
can be described by an active Ornstein-Uhlenbeck parti-
cle (AOUP) driven by a stochastic force whose memory
decays exponentially in time [4]. Since the AOUP model
exhibits persistent particle motion mimicking the activity,
it offers a basic reference for active dynamics of cells and
bacteria [5].

Although both ABP and AOUP are active, they
undergo Brownian dynamics in the long time limit [6]
and cannot have any net locomotion on average. For
microswimmers in a Newtonian fluid, it is known that
non-reciprocal cyclic body motion is required for their
persistent locomotion [7,8]. To maintain such continuous
movement, a constant supply of mechanical energy and
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its dissipation to the surrounding fluid is necessary [9].
Other active systems driven by energy injection include
Janus particles that consume a chemical fuel [10]. In con-
trast to these microswimmers, the “odd microswimmer”
consisting of three spheres and two odd springs is purely
driven by thermal energy of the surrounding fluid [11,12].

Recently, much attention has been paid to active sys-
tems that utilize information instead of energy, i.e., in-
formational active matter [13]. During the last decade,
there have been many studies on “information engines”
that use information to extract mechanical work [14–16].
One example proposed by Huang et al. is the “informa-
tion swimmer” in which the swimmer periodically mea-
sures its velocity and adjusts its friction coefficient [17].
They showed that the information swimmer can achieve a
steady-state velocity without external energy input, which
is consistent with the extended second law of thermody-
namics with information [18]. This model can also be
regarded as one type of “information ratchet” that leads
to directional transport or locomotion by repeating mea-
surements and feedback controls [19,20].

In the absence of measurement and feedback, the infor-
mation swimmer proposed by Huang et al. [17] is passive

27001-p1

http://orcid.org/0000-0001-9843-2773
http://orcid.org/0000-0002-7477-8208
http://orcid.org/0000-0003-4275-775X
http://orcid.org/0000-0003-3422-5745
https://creativecommons.org/licenses/by/4.0


Zhanglin Hou et al.

and purely governed by thermal fluctuations. From the
viewpoint of informational active matter [13], however, it
is of interest to consider a swimmer that controls its in-
ternal activity depending on the measurement result. In
this letter, we propose models of information swimmers by
using an underdamped AOUP and call them “Ornstein-
Uhlenbeck information swimmers” (OUISs). To high-
light the role of activity, we discuss two different mod-
els: i) OUIS with external feedback control (E-OUIS) and
ii) OUIS with internal feedback control (I-OUIS). Depend-
ing on the particle velocity, the friction coefficient is ad-
justed in the E-OUIS (similar to ref. [17]), whereas the per-
sistence time for the activity is controlled in the I-OUIS.
While the externally controlled swimmer requires some
structural changes in volume or shape [17], the internal
control can be achieved by various chemical and mechan-
ical processes [21], such as the run-and-tumble motion of
Escherichia coli [22,23]. We perform numerical simula-
tions of the two models and discuss their swimming per-
formance. Although both OUIS models can maintain a
steady motion, the I-OUIS can generally achieve a larger
velocity and efficiency than the E-OUIS when the active
fluctuation becomes large.

OUIS with external feedback control (E-OUIS).
– We consider an underdamped AOUP moving in a one-
dimensional space [24,25]. In the E-OUIS model, the
AOUP measures its center-of-mass velocity v after every
time interval τm (measurement time) and compares it with
a threshold velocity v0 [17,26]. The friction coefficient is
set to be α2

1Γ and α2
2Γ if v ≤ v0 and v > v0, respec-

tively, where α1 and α2 are dimensionless coefficients and
we typically choose α1 > α2. The change in the friction co-
efficient can be induced by some structural changes, such
as the particle volume, shape, and surface structure [17].
The results of measurement are recorded in the swimmer’s
internal memory that is assumed to be sufficiently large.

During the time interval nτm < t < (n + 1)τm, the
Langevin equation for the underdamped E-OUIS is given
by

Mv̇(t) =
⎧
⎨

⎩

−α2
1Γ[v(t) − u(t)] + α1

√
2ΓkBT ζ(t), v(nτm) ≤ v0,

−α2
2Γ[v(t) − u(t)] + α2

√
2ΓkBT ζ(t), v(nτm) > v0.

(1)

Here, M is the particle mass, v̇ = dv/dt, Γ is the friction
coefficient, kB is the Boltzmann constant, T is the tem-
perature, and ζ(t) is the Gaussian white noise with zero
mean and unit variance:

⟨ζ(t)⟩ = 0, ⟨ζ(t)ζ(t′)⟩ = δ(t − t′). (2)

The coefficients of the noise terms in eq. (1) are chosen to
satisfy the fluctuation-dissipation relation for both v ≤ v0

and v > v0, reflecting the equilibrium nature of the ambi-
ent environment [27]. Note that the threshold velocity v0

can take both positive and negative values. In the above,
we assume that the change of the friction coefficient does
not require any mechanical work [17].

In eq. (1), u is a stochastic driving velocity with memory
on a finite time leading to a persistent motion [24,25]. It
mimics the activity of the particle and evolves through an
Ornstein-Uhlenbeck process [4],

u̇(t) = −u(t)

τa
+

√
2A

τa
ξ(t), (3)

where τa is the persistence time, A is the strength of active
fluctuation (having the dimension of a diffusion constant).
The term ξ(t) in eq. (3) also represents the Gaussian white
noise with zero mean and unit variance:

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = δ(t − t′). (4)

Although we do not discuss here the chemical or mechan-
ical origins of the driving velocity u, it pushes the particle
away from equilibrium and guarantees a persistent motion
in one direction for times smaller than τa. The parame-
ters τa and A can be used to quantify the activity of the
AOUP, such as the persistence length ℓ0 =

√
Aτa and the

magnitude of the driving velocity u0 =
√

A/τa [24,25].
In the following analysis, we use the Brownian relax-

ation time τ = M/Γ and the thermal velocity vT =√
kBT/M to rescale the variables as t̃ = t/τ , ṽ(t̃) =

v(t)/vT , ũ(t̃) = u(t)/vT , ζ̃(t̃) =
√

2M/Γζ(t), and ξ̃(t̃) =√
2M/Γξ(t). Moreover, the dimensionless parameters are

defined as τ̃m = τm/τ , ṽ0 = v0/vT , τ̃a = τa/τ , and
Ã = AΓ/(kBT ). Then, the dimensionless form of the E-
OUIS model can be summarized as

dṽ(t̃)

dt̃
=

⎧
⎨

⎩

−α2
1[ṽ(t̃) − ũ(t̃)] + α1ζ̃(t̃), ṽ(nτ̃m) ≤ ṽ0,

−α2
2[ṽ(t̃) − ũ(t̃)] + α2ζ̃(t̃), ṽ(nτ̃m) > ṽ0,

(5)

dũ(t̃)

dt̃
= − ũ(t̃)

τ̃a
+

√
Ã

τ̃a
ξ̃(t̃), (6)

⟨ζ̃(t̃)⟩ = 0, ⟨ζ̃(t̃)ζ̃(t̃′)⟩ = 2δ(t̃ − t̃′), (7)

⟨ξ̃(t̃)⟩ = 0, ⟨ξ̃(t̃)ξ̃(t̃′)⟩ = 2δ(t̃ − t̃′), (8)

for nτ̃m < t̃ < (n + 1)τ̃m.
When α1 = α2 = 1, namely, when the feed-

back control is absent, one can easily convert the
above Langevin equations to a Fokker-Planck equation
and obtain the velocity autocorrelation function of an
AOUP, as explained in the Supplementary Material
Supplementarymaterial.pdf (SM). Using the equal-time
velocity correlation, one can define the effective tempera-
ture of an AOUP as kBT ∗ = M⟨v2⟩, where

kBT ∗ = kBT +
AΓτ

τ + τa
= kBT

(
1 +

Ã

1 + τ̃a

)
. (9)

Hence, the effective temperature T ∗ is larger than T , and
the additional term is proportional to the active fluctu-
ation strength A. In the absence of feedback control
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Fig. 1: Various statistical properties of the E-OUIS model with external feedback control (see eqs. (5)–(8)) The fixed parameters
are τ̃a = 1 and Ã = 1. (a) The steady-state velocity distribution function P (ṽ) when the threshold velocity is changed within the
range of −5 ≤ ṽ0 ≤ 5. Here, we choose (α2

1,α
2
2) = (10, 1) and the measurement time interval is τ̃m = 0.01. (b) The steady-state

average velocity ⟨ṽ⟩ as a function of the threshold velocity ṽ0 when (α2
1,α

2
2) = (2, 1), (5, 1), (10, 1), (100, 1) and τ̃m = 0.01.

(c) The efficiency ηext of the E-OUIS model (see eq. (10)) as a function of τ̃m for the same combinations of (α2
1,α

2
2) shown in

(b). The threshold velocity is ṽ0 = 0.

(α1 = α2), however, the E-OUIS does not exhibit any net
locomotion in the long time limit, as mentioned before.

The above stochastic equations for the E-OUIS are dis-
cretized over the small time step ∆t̃ = 0.001, and they
are numerically integrated by using the first-order Euler-
Maruyama scheme [28]. Among several model parameters,
we fix τ̃a = 1 and Ã = 1, while we change α2

1, α
2
2, τ̃m, and

ṽ0. When the particle has reached the steady state after
107 time steps, we obtain the time-independent velocity
distribution function P (ṽ) to calculate the steady-state
average velocity ⟨ṽ⟩ =

∫∞
−∞ dṽ ṽP (ṽ). On the other hand,

the steady-state distribution function P (ũ) of the driving
velocity u is purely Gaussian (see eqs. (6) and (8)), and
its average should vanish, ⟨ũ⟩ = 0, as we have checked
numerically.

In fig. 1(a), we show the results of the velocity distri-
bution function P (ṽ) of the E-OUIS when (α2

1,α
2
2, τ̃m) =

(10, 1, 0.01) (corresponding to τ̃m = 10∆t̃) and ṽ0 is varied
between −5 ≤ ṽ0 ≤ 5. When the absolute value of ṽ0 is as
large as |ṽ0| ≈ 5, P (ṽ) is almost Gaussian and ⟨ṽ⟩ vanishes.
For |ṽ0| < 4, however, P (ṽ) becomes highly asymmetric
and even bimodal for ṽ0 > 0 (see later discussion for its
physical origin). In such a situation, the average velocity is
finite, ⟨ṽ⟩ > 0, and hence the E-OUIS model acquires net
locomotion under noisy environment. In fig. 1(b), we plot
⟨ṽ⟩ as a function of ṽ0 for different values of α2

1. The maxi-
mum of ⟨ṽ⟩ increases for larger α2

1, and it occurs at positive
ṽ0 such as at ṽ0 ≈ 0.6 when α2

1 = 10. Notice that the in-
duced average velocity is the order of thermal velocity vT .

Next, we argue the swimming performance of the E-
OUIS model. First, the change rate of information
entropy is given by İ = I/τm, where I is the mu-
tual information [18]. Since there is no error in the
measurement, the mutual information is equal to the
Shannon entropy, I = −kB

∑
i pi ln pi, where pi is the

probability of the state i = 1, 2 and satisfies
∑

i pi = 1.
We have assumed that the swimmer’s memory space is

sufficiently large so that the information entropy can
increase steadily, and hence there is no need to erase
information [17]. Second, we estimate the power of the
swimmer by the product of the frictional force α2

iΓ⟨v−u⟩i
and the center-of-mass velocity ⟨v⟩i, and then averaged
over the two states i = 1, 2. Dividing the average power
by the effective temperature T ∗ in eq. (9), we estimate
the entropy production rate due to the frictional motion
by σ̇v =

∑
i α

2
iΓ⟨v − u⟩i⟨v⟩ipi/T ∗. Then, we define the

entropic efficiency of the E-OUIS model as

ηext =
σ̇v

İ
=

∑
i α

2
i ⟨ṽ − ũ⟩i⟨ṽ⟩ipi/T̃ ∗

Ĩ/τ̃m
, (10)

where T̃ ∗ = T ∗/T and Ĩ = I/kB. Huang et al. consid-
ered a similar efficiency for an information swimmer that
can maintain directional motion only by measurement and
feedback [17].

The above efficiency ηext is plotted as a function of τ̃m
in fig. 1(c) when ṽ0 = 0. The overall behavior is similar
for different choices of α2

1. The efficiency is low for small
and large τ̃m values, taking a maximum value ηext ≈ 0.38
at around τ̃m ≈ 1 for all α2

1. In other words, the efficiency
is maximized when the measurement time is close to the
Brownian relaxation time τ . As separately shown in fig. S1
of the SM, the velocity distribution P (ṽ) for τ̃m = 1 is
more symmetric and ⟨ṽ⟩ is smaller than that for τ̃m = 0.01.
However, since İ is also smaller for τm = 1, ηext is also
maximized at around τ̃m ≈ 1. We have further checked
the other cases of (α2

2, τ̃m) = (0.1, 0.01) and systematically
changed α2

1, as shown in fig. S2 in the SM. The results are
similar to those in fig. 1, showing a robust dependence on
the model parameters. However, as shown in fig. S2(c)
in the SM, ηext decreases much slower when τm is made
larger.

OUIS with internal feedback control (I-OUIS).
– In the previous E-OUIS model, the friction coefficient
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Fig. 2: Various statistical properties of the I-OUIS model with internal feedback control (see eqs. (13)–(16)). The fixed
parameters are τ̃a = 1 and Ã = 1. (a) The steady-state velocity distribution function P (ṽ) when the threshold velocity is
changed within the range of −5 ≤ ṽ0 ≤ 5. Here, we choose (β1,β2) = (10, 0.1) and the measurement time interval is τ̃m = 0.01.
(b) The steady-state average velocity ⟨ṽ⟩ as a function of the threshold velocity ṽ0 when (β1,β2) = (10, 1), (10, 0.2), (10, 0.1),
(10, 0.01) and τ̃m = 0.01. (c) The efficiency ηint of the I-OUIS model (see eq. (17)) as a function of τ̃m for the same combinations
of (β1,β2) shown in (b). The threshold velocity is ṽ0 = 0.

of the AOUP was switched according to the measurement
(see eq. (1)). Next, we consider a different type of OUIS
that changes the dynamics of the driving velocity u by
measuring the center-of-mass velocity v, i.e., OUIS with
internal feedback control (I-OUIS). With the same nota-
tion as before, the underdamped equation for an AOUP
is given by

Mv̇(t) = −Γ[v(t) − u(t)] +
√

2ΓkBT ζ(t), (11)

where the Gaussian white noise ζ(t) satisfies the same sta-
tistical properties as in eq. (2). In the I-OUIS model, the
driving velocity u obeys either of the following equations
depending on v after every time interval τm:

u̇(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−β1u(t)

τa
+

β1

√
2A

τa
ξ(t), v(nτm) ≤ v0,

−β2u(t)

τa
+

β2

√
2A

τa
ξ(t), v(nτm) > v0.

(12)

Here, β1 and β2 are dimensionless coefficients and ξ(t) also
represents the Gaussian white noise as in eq. (4). Different
values for β1 and β2 (typically chosen as β1 > β2) give rise
to the internal feedback control of the swimmer. The di-
mensionless form of the I-OUIS model can be summarized
as

dṽ(t̃)

dt̃
= −[ṽ(t̃) − ũ(t̃)] + ζ̃(t̃), (13)

dũ(t̃)

dt̃
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−β1ũ(t̃)

τ̃a
+

β1

√
Ã

τ̃a
ξ̃(t̃), ṽ(nτ̃m) ≤ ṽ0,

−β2ũ(t̃)

τ̃a
+

β2

√
Ã

τ̃a
ξ̃(t̃), ṽ(nτ̃m) > ṽ0,

(14)

⟨ζ̃(t̃)⟩ = 0, ⟨ζ̃(t̃)ζ̃(t̃′)⟩ = 2δ(t̃ − t̃′), (15)

⟨ξ̃(t̃)⟩ = 0, ⟨ξ̃(t̃)ξ̃(t̃′)⟩ = 2δ(t̃ − t̃′). (16)

In figs. 2(a) and (b), we plot the velocity distribution
function P (ṽ) and the velocity ⟨ṽ⟩ of the I-OUIS, respec-
tively, when (β1,β2, τ̃m) = (10, 0.1, 0.01) for different val-
ues of ṽ0. Similar to the E-OUIS model, P (ṽ) becomes
asymmetric with the internal feedback control, and ⟨ṽ⟩
becomes finite. Compared to fig. 1(b), however, ⟨ṽ⟩ is
much larger when β2 is made smaller, and reaches up to
⟨ṽ⟩ ≈ 4 when (β1,β2) = (10, 0.01) as ṽ0 is varied. In con-
trast to the E-OUIS case, the distribution function P (ũ)
of the driving velocity u is no longer Gaussian and be-
comes highly asymmetric, as shown in fig. S3(a) in the
SM. Even though P (ṽ) and P (ũ) are very different in
the steady state, we have numerically confirmed that the
corresponding average velocities coincide, ⟨ṽ⟩ = ⟨ũ⟩ (see
fig. 2(b) and fig. S3(b) in the SM). Although this is ex-
pected from eqs. (11) and (13), the variances of P (ṽ) and
P (ũ) plotted in figs. S3(c) and (d) in the SM, respectively,
are apparently different. The results of P (ṽ) and ⟨ṽ⟩ with
a larger measurement time τ̃m = 1 are shown in figs. S4(a)
and (b) in the SM, respectively.

To discuss the efficiency of the I-OUIS model, we ad-
ditionally need to take into account the active power
due to the driving velocity u because its average ⟨û⟩ is
nonzero (unlike the E-OUIS model). Similar to the en-
tropy production rate σ̇v of the E-OUIS model, the ac-
tive power is estimated by Ẇu =

∑
i(βiM/τa)⟨u⟩2i pi/T ∗

i ,
where T ∗

i = T [1 + Ã/(1 + τ̃a/βi)] (i = 1, 2) (see eq. (9)).
Notice that the effective friction for u is given here by
βiM/τa that is proportional to the mass. Using these
quantities, we consider the following modified efficiency
for the I-OUIS model:

ηint =
σ̇v

İ + Ẇu

=

∑
i⟨ṽ − ũ⟩i⟨ṽ⟩ipi/T̃ ∗

i

(Ĩ/τ̃m) +
∑

i(βi/τ̃a)⟨ũ⟩2i pi/T̃ ∗
i

, (17)

where T̃ ∗
i = T ∗

i /T .
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Fig. 3: Various statistical properties of the I-OUIS model with internal feedback control (see eqs. (13)–(16)). The fixed
parameters are τ̃a = 1 and (β1,β2) = (10, 0.1). (a) The steady-state velocity distribution function P (ṽ) when the threshold
velocity is changed within the range of −5 ≤ ṽ0 ≤ 5. Here, we choose Ã = 10 and the measurement time interval is τ̃m = 0.01.
(b) The steady-state average velocity ⟨ṽ⟩ as a function of the threshold velocity ṽ0 when Ã = 0.1, 1, 2, 5, 10 and τ̃m = 0.01.
(c) The efficiency ηint of the I-OUIS model (see eq. (17)) as a function of τ̃m for the same values of Ã shown in (b). The
threshold velocity is ṽ0 = 0.

The above efficiency ηint is plotted as a function of τ̃m in
fig. 2(c) when ṽ0 = 0. In the case of (β1,β2) = (10, 1), for
example, the efficiency takes a maximum value ηint ≈ 0.23
at around τ̃m ≈ 1.43. When β2 is decreased to (β1,β2) =
(10, 0.01), the efficiency increases significantly up to ηint ≈
0.72, and it decays slowly even for large τ̃m values. In
fig. S5 in the SM, we have performed the simulation of the
I-OUIS with the other choices of parameters for which we
have fixed (β1, τ̃m) = (1, 0.01) and systematically changed
β2. The overall behavior is robust to the parameter choice
as long as τa and Ã are fixed.

So far, the strength of active fluctuation in eq. (14) has
been fixed to Ã = 1. Choosing (β1,β2, τ̃m) = (10, 0.1, 0.01)
as before, we plot in figs. 3(a), (b) and (c) the distribution
function P (ṽ), the velocity ⟨ṽ⟩, and the efficiency ηint, re-
spectively, when Ã is varied from 0.1 to 10. Generally, ⟨ṽ⟩
becomes larger and the range of ṽ0 that gives finite ⟨ṽ⟩
becomes wider as Ã is increased. For example, the maxi-
mum velocity exceeds ⟨ṽ⟩ ≈ 7 and the maximum efficiency
can be as large as ηint ≈ 0.74 when Ã = 10. Hence, the
strength of active fluctuation has a significant effect on
the performance of the I-OUIS, and it can also control the
swimming efficiency.

To discuss the efficiency ηint of the I-OUIS model more
quantitatively, we separately plot dimensionless σ̇v, İ, and
Ẇu in fig. 4 as a function of τ̃m when Ã = 10 (corre-
sponding to the purple data in fig. 3(c)). For small τ̃m,
İ is larger than Ẇu, whereas Ẇu becomes larger when
τ̃m > 0.5. However, İ becomes larger than Ẇu for large
τ̃m values. The contribution of σ̇v takes a maximum value
at around τ̃m ≈ 1. As a result, the efficiency is maximized
with a value ηint ≈ 0.74 at around τ̃m ≈ 3.6 as shown in
fig. 3(c) (the purple data). A similar behavior can also be
seen for Ã = 1 and 5, as presented in figs. S6(a) and (b)
in the SM, respectively. From these results, we find that
the contribution of Ẇu becomes larger as Ã is increased.

Fig. 4: Contributions of dimensionless σ̇v, İ, and Ẇu to the
efficiency ηint of the I-OUIS model (see eq. (17)) as a function
of τ̃m. The choice of parameters corresponds to that of Ã = 10
(purple) in fig. 3(c).

If we do not include Ẇu in the denominator of ηint in
eq. (17) and simply estimate ηext in eq. (10), the latter can
exceed unity for certain choices of the model parameters.
A similar situation was reported for an information engine
in a non-equilibrium bath [29] that shows an efficiency
larger than unity [30] (called “pseudo-efficiency” [31]). To
be consistent with the extended second law of thermody-
namics with information [18], it is necessary to consider
the active power Ẇu resulting from the driving velocity.

Discussion. – For both E-OUIS and I-OUIS models,
we have assumed that the measurement and feedback con-
trol cause no energy dissipation, and these swimmers ac-
quire net locomotion without any external energy input.
On the other hand, the memory spaces of these OUISs
are sufficiently large so that the stored information en-
tropy can increase monotonically. Owing to the latter
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assumption, the second law of thermodynamics is not vi-
olated even though these models can achieve a nonzero
velocity under noisy conditions. For the I-OUIS model,
the second law can be stated as ηint ≤ 1 or σ̇v − Ẇu ≤ İ,
which is equivalent to that discussed in the context of in-
formation thermodynamics [18]. Notice that the active
power Ẇu vanishes in the E-OUIS model. We emphasize
again that the maximum efficiency can be obtained by
tuning the measurement time τm for both OUIS models.

In the two OUIS models discussed in this letter, not
only the information but also the particle’s inertia (char-
acterized by the mass M) plays an essential role. In the
presence of inertia, the unidirectional motion of the par-
ticles is maintained and serves as a memory effect. Since
we chose α1 > α2 and β1 > β2 for the E-OUIS and I-
OUIS models, respectively, the inertia effect is weak when
v < v0 and it is strong when v > v0. Since the state
with weak inertia can be partially converted to that with
strong inertia owing to the switching mechanism, nonzero
center-of-mass velocity v can be maintained by positive
feedback. The bimodal asymmetric velocity distributions
P (v) shown in figs. 1(a) and 2(a) originate from the su-
perposition of a Gaussian distribution reflecting the weak
inertia case (v < v0) and a biased distribution reflecting
the strong inertia case (v > v0). A similar bimodal veloc-
ity distribution was also reported in ref. [17].

Corresponding to the I-OUIS, we give some numbers
for the model parameters. Recently, the run-and-tumble
motion of E. coli has been quantitatively measured by
using intermediate scattering functions and the renewal
theory [22,23]. For a wild-type E. coli, the running and
tumbling times were estimated to be τR = 2.39 s and
τT = 0.38 s, respectively, and the average self-propulsion
velocity was u0 = 15.95 µm/s. If we identify τR as the
persistence time τa in our OUIS models, the strength of
active fluctuation can be estimated as A ≈ 4×10−10 m2/s.
Since the ratio β1/β2 can also be estimated from the ratio
τR/τT ≈ 6, the choice (β1,β2) = (10, 1) in fig. 2 is realistic
for a wild-type E. coli. Experimentally, the running and
tumbling times can be controlled by adding a chemical
inducer [22,23].

In this work, we have implemented a process of mea-
surement and feedback control in an AOUP. However,
the concept of information swimmer is more general. For
example, Kumar et al. proposed a Brownian inchworm
model of a self-propelled elastic dimer [32,33]. In their
model, the crucial mechanism is the position-dependent
friction coefficients of the two particles. Although such a
mechanism was not regarded as an explicit feedback con-
trol operation, the proposed Brownian inchworm model of-
fers a typical example of informational active matter [34].
Currently, we are constructing a general framework of in-
formation swimmers using the statistical formulation of
Onsager-Machlup variational principle [35].

Summary. – In this letter, we have performed numeri-
cal simulations of the information swimmers based on the

active Ornstein-Uhlenbeck model; E-OUIS with external
feedback control and I-OUIS with internal feedback
control. Both OUIS models exhibit nonzero average
velocities in the steady state, and their statistical proper-
ties as well as the efficiencies have been discussed. For both
models, maximum efficiency can be obtained by tuning
the measurement time, and hence the information entropy
plays an essential role in their locomotion. Depending on
the choice of the model parameters, I-OUIS can achieve a
larger average velocity and higher efficiency than those of
E-OUIS when the active fluctuation is large. Our models
provide an important step toward understanding informa-
tional transport in biological systems.
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