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We discuss the directional motion of an elastic three-sphere micromachine in which the spheres are in equilibrium
with independent heat baths having different temperatures. Even in the absence of prescribed motion of springs, such a
micromachine can gain net motion purely because of thermal fluctuations. A relation connecting the average velocity
and the temperatures of the spheres is analytically obtained. This velocity can also be expressed in terms of the average
heat flows in the steady state. Our model suggests a new mechanism for the locomotion of micromachines in
nonequilibrium biological systems.

Microswimmers are tiny machines that swim in a fluid,
such as sperm cells or motile bacteria, and are expected to be
applied to microfluidics and microsystems.1) By transforming
chemical energy into mechanical work, these objects change
their shape and move in viscous environments. Over the
length scale of micromachines, the fluid forces acting on
them are governed by viscous dissipation. According to
Purcell’s scallop theorem,2) time-reversal body motion
cannot be used for locomotion in a Newtonian fluid. As
one of the simplest models exhibiting broken time-reversal
symmetry, Najafi and Golestanian proposed a three-sphere
swimmer,3,4) in which three in-line spheres are linked by two
arms of varying length. Recently, Pande et al. and the present
authors independently proposed a generalized three-sphere
microswimmer in which the spheres are connected by two
elastic springs.5,6)

In the previous three-sphere microswimmer models, either
the arm lengths or the natural lengths of the springs were
assumed to undergo prescribed cyclic motions.3–6) Such
active motions can lead to net locomotion if the swimming
strokes are nonreciprocal. From a practical point of view,
however, it is not a simple task to implement these motions at
micron length scales. Another approach for extending the
Najafi–Golestanian model is to consider the arm motions as
occurring stochastically.7–10) Although proteins or enzymes
are naturally designed to include such sophisticated molecu-
lar mechanisms, it is still a substantial challenge to construct
them artificially. It should also be noted that thermal
agitations due to surrounding fluids become more significant
at these small scales.

In this letter, by using an elastic three-sphere micro-
machine,5,6) we suggest a new mechanism for locomotion
that is purely induced by thermal fluctuations. To highlight
this effect, we do not consider any prescribed motion of the
natural lengths.6) On the other hand, the key assumption in
our model is that the three spheres are in equilibrium with
independent heat baths having different temperatures. In this
case, heat transfer occurs from a hotter sphere to a colder one,
driving the whole system out of equilibrium. We show that a
combination of heat transfer and hydrodynamic interactions
among the spheres can lead to directional locomotion in the
steady state. We analytically obtain the expression for the
average velocity in terms of the sphere temperatures. Our
finding is further confirmed by numerical simulations. Since
our model has a similarity to a class of thermal ratchet models

that have been intensively studied before,11–13) the suggested
mechanism is relevant to nonequilibrium dynamics of
proteins and enzymes in biological systems.

As schematically shown in Fig. 1, we consider a three-
sphere micromachine and take into account the elasticity in
the internal spring motions.5,6) This model consists of three
hard spheres of radius a connected by two harmonic springs
A and B with spring constants KA and KB, respectively. The
natural length of the springs, ‘, is assumed to be constant.
The total energy is given by

E ¼ KA

2
ðx2 � x1 � ‘Þ2 þ KB

2
ðx3 � x2 � ‘Þ2; ð1Þ

where xiðtÞ (i ¼ 1; 2; 3) are the positions of the three spheres
in a one-dimensional coordinate system and we assume x1 <
x2 < x3 without loss of generality. Owing to the hydro-
dynamic interactions, each sphere exerts a force on the
viscous fluid of shear viscosity η and experiences an opposite
force from it. In general, the surrounding medium can be
viscoelastic,14) but such an effect is not included in this letter.

We consider a situation in which the three spheres are in
equilibrium with independent heat baths at temperatures Ti.
When these temperatures are different, the system is driven
out of equilibrium because a heat flux is generated from a
hotter sphere to a colder one. Denoting the velocity of each
sphere by _xi, we can write the equations of motion of the
three spheres as

_x1 ¼ KA

6��a
ðx2 � x1 � ‘Þ � KA

4��

ðx2 � x1 � ‘Þ
x2 � x1

þ KB

4��

ðx3 � x2 � ‘Þ
x2 � x1

� KB

4��

ðx3 � x2 � ‘Þ
x3 � x1

þ �1; ð2Þ

a

η
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Fig. 1. (Color online) Thermally driven elastic three-sphere micromachine
in a fluid of viscosity η. Three spheres of radius a are connected by two
harmonic springs with elastic constants KA and KB. The time-dependent
positions of the spheres are denoted by xiðtÞ (i ¼ 1; 2; 3) in a one-dimensional
coordinate system. Importantly, the three spheres are in equilibrium with
independent heat baths at temperatures Ti.
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_x2 ¼ KA

4��

ðx2 � x1 � ‘Þ
x2 � x1

� KA

6��a
ðx2 � x1 � ‘Þ

þ KB

6��a
ðx3 � x2 � ‘Þ � KB

4��

ðx3 � x2 � ‘Þ
x3 � x2

þ �2; ð3Þ

_x3 ¼ KA

4��

ðx2 � x1 � ‘Þ
x3 � x1

� KA

4��

ðx2 � x1 � ‘Þ
x3 � x2

þ KB

4��

ðx3 � x2 � ‘Þ
x3 � x2

� KB

6��a
ðx3 � x2 � ‘Þ þ �3; ð4Þ

where we have used the Stokes’ law for a sphere and the
Oseen tensor in a three-dimensional viscous fluid.

Furthermore, the white-noise sources �iðtÞ have zero mean,
h�iðtÞi ¼ 0, and their correlations satisfy15)

h�iðtÞ�jðt0Þi ¼ 2Dij�ðt � t0Þ; ð5Þ
where Dij is the mutual diffusion coefficient. When i ¼ j, Dii

is simply given by the Stokes–Einstein relation, i.e.,

Dii ¼ kBTi

6��a
; ð6Þ

where kB is the Boltzmann constant. When i ≠ j, on the other
hand, we assume the following general relation:

Dij ¼ kB�ðTi; TjÞ
4��jxi � xjj ; ð7Þ

where �ðTi; TjÞ is a function of Ti and Tj. For example, the
relevant effective temperature can be the mobility-weighted
average,16) which in the present case is given by �ðTi; TjÞ ¼
ðTi þ TjÞ=2 because all the spheres have the same size.
However, its explicit functional form is not needed here,
and it only needs to satisfy an appropriate fluctuation
dissipation theorem in thermal equilibrium, i.e., Ti ¼ Tj.
This is because we only consider the limit of a � ‘ in the
present study.

It is convenient to introduce a characteristic time scale
given by � ¼ 6��a=KA. We further define the ratio between
the two spring constants as � ¼ KB=KA. We shall denote the
two spring extensions by

uAðtÞ ¼ x2 � x1 � ‘; uBðtÞ ¼ x3 � x2 � ‘: ð8Þ
Notice that these quantities are related to the sphere velocities
in Eqs. (2)–(4) as _uA ¼ _x2 � _x1 and _uB ¼ _x3 � _x2, respec-
tively. In the following analysis, we generally assume that
uA, uB � ‘ as well as a � ‘, and focus only on the leading-
order contribution.

To present the essential outcome of the model, we first
consider the simplest symmetric case, i.e., KA ¼ KB (� ¼ 1).
We introduce the bilateral Fourier transform for any function
fðtÞ as fð!Þ ¼ R1

�1 dt fðtÞe�i!t and the inverse transform as
fðtÞ ¼ R1

�1ðd!=2�Þfð!Þei!t. Solving the time derivative of
Eq. (8) with the aid of Eqs. (2)–(4) in the frequency domain,
we obtain

uAð!Þ � ð2 þ i!�Þ�1ð!Þ � ð1 þ i!�Þ�2ð!Þ � �3ð!Þ
�3 � 4i!� þ ð!�Þ2 �

þ OðaÞ; ð9Þ

uBð!Þ � �1ð!Þ þ ð1 þ i!�Þ�2ð!Þ � ð2 þ i!�Þ�3ð!Þ
�3 � 4i!� þ ð!�Þ2 �

þ OðaÞ; ð10Þ
where OðaÞ indicates the terms of the order of a.

The velocity of a three-sphere micromachine is generally
given by VðtÞ ¼ ð _x1 þ _x2 þ _x3Þ=3, which now becomes

VðtÞ � a

4‘�
uB � uA þ u2B

2‘
� u2A

2‘

� �

þ 1

3
ð�1 þ �2 þ �3Þ þ Oðu3A; u3BÞ: ð11Þ

By taking its statistical average, we further obtain

hVðtÞi � a

8‘2�
hu2BðtÞ � u2AðtÞi þ Oða2; u3A; u3BÞ; ð12Þ

where we have used huAðtÞi ¼ huBðtÞi ¼ 0 in the lowest-
order of a. In the Fourier domain, Eq. (12) can be written in
terms of convolution as

hVð!Þi � a

8‘2�

Z 1

�1

d!0

2�
huBð! � !0ÞuBð!0Þ

� uAð! � !0ÞuAð!0Þi þ Oða2; u3A; u3BÞ: ð13Þ
Next, we substitute Eqs. (9) and (10) into Eq. (13) and use

the relation h�ið!Þ�jð!0Þi ¼ ð2�Þð2DijÞ�ð! þ !0Þ, as directly
obtained from Eq. (5). After some calculation, we have

hVð!Þi ¼ a�

4‘2
ðD33 � D11Þ 2�i

4i� � !�2
�ð!Þ: ð14Þ

Notice that the cross correlations for i ≠ j can be neglected
here because these are higher-order contributions of Oða2Þ.
Transforming back to the time domain, we obtain the average
velocity as

hVi ¼ akBðT3 � T1Þ
16�KA‘

2
¼ kBðT3 � T1Þ

96��‘2
; ð15Þ

where we have used Eq. (6).
The above expression is an important result of this letter

and deserves further discussion. The average velocity is
proportional to the temperature difference T3 � T1. Since we
have assumed x1 < x2 < x3, the swimming direction is from
a colder sphere to a hotter one, i.e., hVi > 0 when T3 > T1

and vice versa. It is also remarkable that Eq. (15) does not
depend on the temperature T2 of the middle sphere. Hence
hVi ¼ 0 when T1 ¼ T3 even though T1 and T3 can be
different from T2. However, the presence of the middle
sphere is essential for directional locomotion because the
hydrodynamic interactions among the three spheres are
responsible for it. Notice that a two-sphere micromachine
cannot move even if the temperatures are different. This is
because, if we keep only the first two terms in Eqs. (2) and
(3) plus the noise terms �1 and �2 for the two spheres, we can
immediately see that h _x1 þ _x2i ¼ h�1i þ h�2i ¼ 0.

Having discussed the simplest symmetric case, we now
present the result for general asymmetric cases when KA ≠
KB (� ≠ 1). By repeating the same calculation as before, the
two spring extensions in Eq. (8) now become

uAð!Þ � ð2� þ i!�Þ�1ð!Þ � ð� þ i!�Þ�2ð!Þ � ��3ð!Þ
�3� � 2ð1 þ �Þi!� þ ð!�Þ2 �

þ OðaÞ; ð16Þ

uBð!Þ � �1ð!Þ þ ð1 þ i!�Þ�2ð!Þ � ð2 þ i!�Þ�3ð!Þ
�3� � 2ð1 þ �Þi!� þ ð!�Þ2 �

þ OðaÞ: ð17Þ
Then, the average velocity is

J. Phys. Soc. Jpn. 86, 113801 (2017) Letters Y. Hosaka et al.

113801-2 ©2017 The Physical Society of Japan

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by  on 10/05/17



hVðtÞi � a

8‘2�
h�u2BðtÞ � u2AðtÞ þ 3ð1 � �ÞuAðtÞuBðtÞi

þ Oða2; u3A; u3BÞ: ð18Þ
The substitution of Eqs. (16) and (17) into the Fourier-
transformed expression of Eq. (18) yields the average
velocity hVð!Þi similar to Eq. (14). By performing the
inverse Fourier transform, we finally obtain the general
expression for the average velocity:

hVi ¼ kB

144��‘2ð1 þ �Þ ½ð2 � 5�ÞT1

� ð7 � 7�ÞT2 þ ð5 � 2�ÞT3�: ð19Þ
When � ¼ 1, Eq. (19) reduces to Eq. (15), as expected.

When the three temperatures are identical, i.e., T1 ¼ T2 ¼ T3,
one can also show that the velocity vanishes, hVi ¼ 0. This
indicates that an elastic three-sphere micromachine can attain
a finite velocity owing to the temperature difference among
the spheres, rather than its structural asymmetry.

To confirm our analytical prediction, we performed
numerical simulations of the coupled stochastic equations
in Eqs. (2)–(4) when � ¼ 1. The equations can be discretized
according to Storatonovich interpretation.13) Then, the
strength of thermal noise acting on each sphere is determined
by a dimensionless parameter Si ¼ ½2kBTi=ðKA‘

2Þ�1=2. We
performed simulations for (i) thermally asymmetric nonequi-
librium cases in which S1 ¼ S2 ¼ 0 and S3 ¼ 0:2 or S3 ¼
0:141, and (ii) a thermally symmetric equilibrium case
in which S1 ¼ S2 ¼ S3 ¼ 0:067. For comparison, we also
performed a simulation for (iii) a thermally asymmetric
nonequilibrium two-sphere case in which S1 ¼ 0 and
S2 ¼ 0:133 (sphere 3 does not exist). The average over 100
independent runs has been taken for each case.

In Fig. 2, we plot the obtained center-of-mass position
XðtÞ ¼ ðx1 þ x2 þ x3Þ=3 as a function of time t. For case (i),
we clearly see that a micromachine migrates towards the
positive direction with well-defined finite velocities. The
dashed lines correspond to the analytical result in Eq. (15),
which is in good agreement with the numerical simulations.
However, a micromachine cannot gain any net displacement
for cases (ii) and (iii). Our simulation result clearly
demonstrates that a three-sphere micromachine can acquire
directional motion because of thermal fluctuations only when
the three spheres have different temperatures.

In the above numerical simulations, a three-sphere micro-
machine undergoes not only ballistic motion but also
diffusive motion due to the presence of thermal fluctuations.
The crossover time separating these two different regimes can
be roughly estimated by the condition 2Dt� � hVi2t�2, where
the total diffusion coefficient is approximately given by
D � kBT=ð18��aÞ with T ¼ ðT1 þ T2 þ T3Þ=3. By denoting
the temperature difference in Eq. (15) as �T ¼ T3 � T1,
the crossover time is roughly obtained as t� � D=hVi2 �
�‘4T=½akBð�TÞ2�. When S1 ¼ S2 ¼ 0 and S3 ¼ 0:2, for
example, we estimate t� � 300�, which is much smaller than
the total simulation time in Fig. 2.

Next, we argue that the analytically obtained velocity in
Eqs. (15) or (19) can be related to the ensemble average
of heat flows in the steady state. Within the framework of
“stochastic energetics” proposed by Sekimoto,13) the heat
gained by the i-th sphere per unit time is expressed as

dQi

dt
¼ 6��að� _xi þ �iÞ _xi; ð20Þ

where _xi and �i are given by Eqs. (2)–(4). In the calculation
of average heat flows, we also consider terms up to the
leading-order contribution of a=‘. For example, only the first
term on the r.h.s. of Eq. (2), KAuA=ð6��aÞ, and the noise
term, �1, are taken into account when we eliminate _x1 in
Eq. (20). We further use the statistical properties of quantities
such as hu2Ai and huA�1i, which can be estimated according
to Eqs. (16) and (5).

Then, the lowest-order average heat flows are obtained
as

dQ1

dt

� �
0

¼ kB
6ð1 þ �Þ� ½ð3 þ 2�ÞT1 � ð3 þ �ÞT2 � �T3�; ð21Þ

dQ2

dt

� �
0

¼ kB
6ð1 þ �Þ� ½�ð3 þ �ÞT1 þ ð3 þ 2� þ 3�2ÞT2

� ð� þ 3�2ÞT3�; ð22Þ
dQ3

dt

� �
0

¼ kB
6ð1 þ �Þ� ½��T1 � ð� þ 3�2ÞT2

þ ð2� þ 3�2ÞT3�; ð23Þ
which all vanish when T1 ¼ T2 ¼ T3. It is also remarkable
that the above lowest-order heat flows satisfy12,13)

dQ1

dt

� �
0

þ dQ2

dt

� �
0

þ dQ3

dt

� �
0

¼ 0: ð24Þ

Assuming a linear relation between the velocity in Eq. (19)
and the heat flows in Eqs. (21)–(23), we obtain an alternative
expression for the velocity:

hVi ¼ a

8KA‘
2

3 � 5�

1 þ �

dQ1

dt

� �
0

þ 5 � 3�

�ð1 þ �Þ
dQ3

dt

� �
0

� �
: ð25Þ

For the symmetric case of � ¼ 1 corresponding to Eq. (15),
the above expression reduces to

0 2 4 6 8 10

0

50

100

Fig. 2. (Color online) Simulations of scaled center-of-mass position X=‘
of an elastic micromachine as a function of scaled time t=� when a=‘ ¼ 0:1.
The strength of thermal noise is Si ¼ ½2kBTi=ðKA‘

2Þ�1=2. Case (i): thermally
asymmetric nonequilibrium three-sphere micromachine with S1 ¼ S2 ¼ 0

and S3 ¼ 0:2 (red) or S3 ¼ 0:141 (green). Case (ii): thermally symmetric
equilibrium three-sphere micromachine with S1 ¼ S2 ¼ S3 ¼ 0:067 (black).
Case (iii): thermally asymmetric nonequilibrium two-sphere micromachine
with S1 ¼ 0 and S2 ¼ 0:133 (cyan). The dashed lines are the plots of
Eq. (15) with the respective parameters.
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hVi ¼ a

8KA‘
2

dQ3

dt

� �
0

� dQ1

dt

� �
0

� �
: ð26Þ

This relation indicates that the average velocity is determined
by the net heat flow between spheres 1 and 3.

Finally, we briefly comment on previous relevant works.
Using coupled Langevin equations, Dunkel and Zaid
investigated the interplay between the diffusive and self-
driven behaviors of an elastic three-sphere swimmer.17) In
this work, however, the temperature of the system was
assumed to be uniform. In addition, hydrodynamic simu-
lations of a self-thermophoretic Janus particle were reported
in Ref. 18 to reproduce the experimental result.19) Again, our
model differs from this model because thermal fluctuations
of internal degrees of freedom cause the locomotion of
an elastic micromachine. We also note from Eq. (19) that
hVi ≠ 0 for symmetric temperatures T1 ¼ T3 ≠ T2 as long as
the structural asymmetry exists.

In summary, we have shown that an elastic three-sphere
micromachine in a viscous fluid can acquire directional
motion because of thermal fluctuations when the spheres
have different temperatures. We have obtained an expression
for the average velocity that is related to the temperatures and
average heat flows. Such a mechanism for the locomotion of
micromachines is expected to play important roles in
nonequilibrium biological systems. In the future, we shall
generalize our calculation to the case in which the spheres
have different sizes.4) In such a calculation, one needs to take
into account higher-order contributions in a and uA, uB. It
would be interesting to investigate how these nonlinear
contributions affect the nonequilibrium dynamics of ther-
mally driven micromachines.
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