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Adsorption Dynamics in Pickering Emulsions
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We investigate the adsorption dynamics of colloidal particles to a liquid/liquid interface.
Such an analysis is important in the formation of Pickering emulsions. Using a free energy
formulation that has been used for adsorption of surfactants, we obtain the time evolution
of the surface coverage and dynamic surface tension. We estimate the characteristic time
for adsorption, and show that it corresponds to a diffusion-limited adsorption case. The
asymptotic values of the surface coverage and surface tension with respect to their equilibrium
values is shown to decrease as t−1/2. We also show that the equilibrium equation of state
relating surface tension to surface coverage holds also in nonequilibrium situations.

§1. Introduction

Small particles such as lamp black or hydrophobic silica adsorb to an oil-water
interface and act as stabilizers of emulsions. Such emulsions are called “Pickering
emulsions”1) and have been used in various food and cosmetic products.2) For in-
stance, lipoprotein particles and fatty acid crystals stabilize the emulsion state in
mayonnaise or margarine. A modern application of Pickering emulsion is to use
them as templates of functional composite materials. For example, spherical emul-
sion droplets are used to produce micro-structured hollow spheres3) or ribosome-like
nano-capsules (“colloidsomes”).4) In addition to spherical droplets, the particles form
several self-assembling structures such as network structures or non-spherical aggre-
gates.5),6)

Pickering emulsions are not only useful but also interesting from the fundamen-
tal point of view. When a molecule exhibits a surface activity, it is convention-
ally believed that both hydrophobic and hydrophilic groups should exist in a single
molecule. However, this is not the case for a colloidal particle whose surface is chem-
ically uniform. The particles adsorb only when the relative wettability between the
particle and the two liquids balances each other.7),8) Moreover, colloidal particles can
adjust their position with respect to the interface in order to reduce the interfacial
energy.

One of the important aspects of Pickering emulsions resides in their nonequilib-
rium properties. This is the reason why it was a surprise when thermodynamically
stable Pickering emulsions have been reported recently.9) For example, the coales-
cence frequency of droplets is shown to depend on time and particle concentration.10)

Computer simulations of phase separation of a binary solvent containing nanopar-
ticles have been also performed.11) It was shown that colloidal particles with equal
affinity for two liquids form a bicontinuous interfacially jammed emulsion gel (“bi-
jel”).12) Soon after this study, microscopy study of Pickering emulsions revealed that
quenching into the demixed region leads to the formation of domains which are sta-
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ble due to a jammed, semisolid, multilayer of colloids.13),14) Recently, the kinetics of
nanoparticle self-assembly at liquid-liquid interfaces has been reported.15) They mea-
sured changes in the interfacial tension from the early to late stages of nanoparticle
adsorption.

In this paper, we discuss the adsorption dynamics of solid particles to liquid-
liquid interfaces. We use a theory that has been developed to describe the kinetics of
surfactant adsorption.16),17) This theory relies on a free energy formulation and has
been successful in explaining the observed dynamic interfacial tensions of surfactant
solutions. Our primary interest is to understand how the wettability (affinity) of
the colloidal particle with respect to the two liquids would affect the adsorption
dynamics. We discuss the characteristic time for the particle adsorption and will
show that it is a diffusion-limited process. We also calculate the dynamic surface
tension which will be compared with the recent experimental result of nanoparticle
adsorption.15) It will be argued that the equilibrium equation of state holds also in
nonequilibrium cases.

In the next section, we first define the wettability of a colloidal particle and
derive its adsorption energy. In §3, the free energy of the system is defined and
some equilibrium properties are derived including the adsorption isotherm. In §4,
we present the basic equations describing the adsorption kinetics. Section 5 gives
the results of the numerical calculation together with some discussions. Finally, we
shall conclude in §6.

§2. Wettability of a spherical particle

We start our discussion by considering a spherical particle of diameter a residing
at a flat interface between liquid 1 and liquid 2, as shown in Fig. 1(a). Let θ be the
contact angle defined in liquid 1, and σ1p, σ2p, σ12 be the 1-particle, 2-particle, 1-2
interfacial tensions, respectively. In this paper, we define the following dimensionless
quantity to characterize the wettability of the particle:

γ =
σ1p − σ2p

σ12
. (2.1)

Neglecting external forces and a finite thickness of the interface, the interfacial energy
attributed to the particle is A = σ1pS1p + σ2pS2p − σ12S12, where S1p and S2p are
the 1-particle and 2-particle contact areas, respectively, while S12 is the eliminated
area of the 1-2 interface due to the presence of the particle.7),18) These areas are
given by

S1p =
πa2

2
(1 + cos θ), S2p =

πa2

2
(1 − cos θ), S12 =

πa2

4
sin2 θ. (2.2)

Then the total adsorption energy per particle is expressed as

A(θ, γ) =
πa2σ12

2

[
σ + γ cos θ − sin2 θ

2

]
, (2.3)

where σ = (σ1p + σ2p)/σ12.
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Fig. 1. (a) A spherical particle of diameter a adsorbed to a flat interface between liquid 1 and liquid

2. The contact angle taken in liquid 1 is denoted by θ. (b) Colloidal particles adsorbing at the

liquid/liquid interface. The particles are contained only in liquid 1 which occupies x > 0. Here

φ0 is the surface coverage, φ(x) the volume fraction at x, and φb the bulk volume fraction at

x → ∞.

The contact angle θ which gives the equilibrium position of the particle is de-
termined by minimizing A(θ, γ) with respect to θ. This leads to the conventional
Young’s equation:7)

θ = arccos(−γ). (2.4)

By substituting this relation into Eq. (2.3), the minimized interfacial energy or the
adsorption energy (as a function of γ) is given by18)

A(γ) =
πa2σ12

2

[
σ − 1

2
(1 + γ2)

]
, (2.5)

as long as |γ| < 1. In other cases, the particle prefers to stay either in liquid 1 when
γ < −1 or in liquid 2 when γ > 1.

§3. Adsorption isotherm

Next we discuss the equilibrium adsorption isotherm of the interface. As depicted
in Fig. 1(b), we assume that a flat interface between the two liquids spans the plane
x = 0, and the particles are contained only in liquid 1 which occupies x > 0. Liquid
1 is in contact with a bulk reservoir of particles where the particle volume fraction
and chemical potential are given by φb and μb, respectively.

The particle volume fraction in the bulk is denoted by φ(x), and its value at the
interface by φ0. Following Refs. 16) and 17), we start from the excess free energy
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per unit area written as

ΔΓ [φ(x)] =
∫ ∞

0
Δf [φ(x)] dx + f0(φ0), (3.1)

where Δf is the excess free energy per unit volume in the bulk, and f0 is the free
energy per unit area at the interface. The former is given by

Δf [φ(x)] =
1
a3

{
kBT [φ lnφ − φ − (φb lnφb − φb)]

+4π(a/2)2σ1p(φ − φb) − μb(φ − φb)
}
, (3.2)

where kB is the Boltzmann constant and T the temperature. The first contribution
is the entropy of mixing with respect to the bulk, and the second contribution comes
from the contact of the particles with liquid 1 (hence the surface tension σ1p). It
is assumed here that the bulk volume fraction φ(x) is much smaller than unity. On
the other hand, f0 in Eq. (3.1) has the form

f0(φ0) =
1
a2

{
kBT [φ0 lnφ0 + (1 − φ0) ln(1 − φ0)]

+A(γ)φ0 − B

2
φ2

0 − μ1φ0

}
. (3.3)

In the above, the terms in the square brackets is the full entropy of mixing since
φ0 � φ(x). Moreover A(γ) is the particle adsorption energy defined by Eq. (2.5),
and the term proportional to B describes the interactions between particles at the
interface. The overall particle interaction is attractive when B > 0. Finally, the
chemical potential is defined as μ1 ≡ μ(x → 0).

Variation of ΔΓ with respect to φ(x) leads to the chemical potential given by
μ(x) = kBT lnφ(x) + πa2σ1p. Hence we have μ1 = kBT lnφ1 + πa2σ1p, where φ1 ≡
φ(x → 0) is the particle volume fraction at the subsurface layer. Note that, in
equilibrium, we have φ(x) = φb for x > 0. On the other hand, minimization of
ΔΓ with respect to φ0 (hence μ0 = μ1, where μ0 is the chemical potential at the
interface) and the condition μ1 = μb gives the equilibrium adsorption isotherm

φ0,eq =
φb

φb + exp[−α(1 + γ)2 − βφ0,eq]
, (3.4)

where α ≡ π(a/2)2σ12/kBT and β ≡ B/kBT are dimensionless energy parameters.
This equation is called the Frumkin adsorption isotherm which reduces to the Lang-
muir adsorption isotherm when β = 0.19) In Fig. 2(a), we plot φ0,eq as a function
of φb for various values of β. The other parameters are chosen to be α = 10 and
γ = −0.5. When β < 4, the equilibrium surface coverage φ0,eq increases monoton-
ically. For β > 4, however, φ0,eq changes non-monotonically so that a two-phase
coexistence is implied.19) We have determined the vertical dashes lines by the con-
dition that φb minimizes the surface free energy of Eq. (3.3). Such a discontinuous
jump of the surface coverage in the presence of a lateral interaction is also predicted
for athermal polymer-nanoparticle blends near a substrate.20) In the following, we
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Fig. 2. (a) Equilibrium surface coverage φ0,eq as a function of the bulk volume fraction φb for

different values of β (adsorption isotherms). The other parameters are α = 10 and γ = −0.5.

For β > 4, φ0,eq changes discontinuously according to the dashed lines. (b) The equilibrium

interfacial energy f0,eq as a function of φ0.

shall mainly deal with the case of β < 4 for which the phase transition does not
occur. The case of β > 4 will be briefly discussed later in §5.

From Eqs. (3.3) and (3.4), the equilibrium interfacial energy becomes16),17)

f0,eq =
kBT

a2

[
ln(1 − φ0,eq) +

β

2
φ2

0,eq

]
. (3.5)

This provides the equilibrium equation of state relating the surface tension to the
surface coverage. Notice that Δf in Eq. (3.2) completely vanishes in equilibrium. In
Fig. 2(b), we show f0,eq as a function of φ0 for various values of β. As a result of
the competition between the entropy and interaction terms, the above equilibrium
surface energy decreases only slightly for small φ0, but drops off when φ0 → 1. We
also see that a maximum appears when β > 4.

§4. Adsorption dynamics

In order to discuss nonequilibrium situations, we follow the formulation that
has been developed for surfactant molecules.16),17),21) Assuming the proportionality
between the velocities and potential, we employ an ordinary diffusion equation in
the bulk:

∂φ

∂t
= D

∂2φ

∂x2
, (4.1)

where D is the diffusion constant of the colloidal particle. We further assume here
that the colloidal particles do not leave the interface toward liquid 2. Then the
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condition of the particle conservation at the subsurface layer can be written as

∂φ1

∂t
=

D

a

∂φ

∂x

∣∣∣∣
x=a

− ∂φ0

∂t
, (4.2)

where we have assumed that the subsurface layer exists at x = a.
By applying the Laplace transform to Eqs. (4.1) and (4.2), we recover the so-

called Ward-Tordai equation:22),23)

φ0(t) + φ1(t) =
1
a

√
D

π

[
2φb

√
t −

∫ t

0

φ1(τ)√
t − τ

dτ

]
+ 2φb, (4.3)

where we have used φ(x, t = 0) = φb for the initial condition. This equation describes
the time evolution of the surface plus subsurface volume fraction (φ0 + φ1) due to a
diffusive transport of colloidal particles from the bulk to the interface. The second
term in the brackets accounts for the desorption of the particles from the subsurface
layer. The dynamics at the interface itself is proportional to the variation of f0 with
respect to φ0. This gives the following equation:

∂φ0

∂t
=

D

a2
φ1

[
ln

φ1(1 − φ0)
φ0

+ α(1 + γ)2 + βφ0

]
. (4.4)

Equations (4.3) and (4.4) provide a complete set of equations to determine φ0(t)
and φ1(t) independently. Although the diffusivities at the interface can be different
from those inside the aqueous solution, the two diffusion constants D in the above
equations are assumed to be the same. Using the numerical scheme described in
Ref. 24), we calculate the full solution of the coupled equations numerically.

§5. Results and discussion

In this section, we present the results obtained from the numerical solutions
of Eqs. (4.3) and (4.4). Our primary interest is to understand how the particle
wettability parameter γ affects the adsorption kinetics. In Fig. 3(a), we have plotted
the time evolution of the particle volume fraction φ0(t) at the interface as a function
of the scaled time t̃ = Dt/a2 for various values of γ. The other parameters are
chosen to be φb = 10−2, α = 10, and β = 1. For all the cases, φ0(t) increases
monotonically with time approaching to the respective equilibrium values φ0,eq (see
Eq. (3.4)) which are indicated by the open circles on the right axis of Fig. 3(a). We
see that φ0(t) becomes larger when the value of γ is increased from −0.5 to 0. This
tendency is reasonable because the particles have more affinity to liquid 2 when γ is
made larger. In the intermediate time range, φ0 increases almost as t1/2 at least for
larger γ, which is consistent with the Ward-Tordai equation. In Fig. 3(b), we have
shown φ0,eq − φ0(t) as a function of t̃ in the large time region to see the asymptotic
adsorption behavior. We see here a clear power-law dependence obeying ∼ t−1/2.
The physical explanation of this behavior will be discussed soon after.

In order to estimate a typical time which is necessary for the particles to ap-
proach the equilibrium state, we determined the points which satisfy the condition
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Fig. 3. (a) The time evolution of the surface coverage φ0 as a function of the scaled time t̃ = Dt/a2

for different values of γ. The other parameters are φb = 10−2, α = 10, and β = 1. The

open circles on the right axis indicate the respective equilibrium values φ0,eq. The open squares

are the points at which the condition d3(log φ0)/d(log t̃)3 = 0 is satisfied. (b) The asymptotic

behavior of φ0,eq − φ0 in the large time regions.

d3(log φ0)/d(log t̃)3 = 0 for each curve in Fig. 3(a). These points are marked by
open squares in the figure, and the corresponding characteristic time is denoted by
τ̃c. Needless to say, this is not the only possibility to define the characteristic time,
but other definitions would not alter the present result qualitatively. In Fig. 4, we
summarized the obtained τ̃c as a function of γ by open squares. The characteristic
time τ̃c increases as γ is made larger from −1, and it almost saturates when γ ≥ −0.3
for the present choice of the parameters.

It was argued before that there can be two limiting cases describing the rela-
tive time scales of the two processes, namely, the kinetics inside the bulk solution
described by Eq. (4.3) and the kinetics at the interface described by Eq. (4.4).16),17)

The first case is the diffusion-limited adsorption (DLA) which occurs when the dy-
namics inside the solution is much slower than the one at the interface. Here the
interface is in constant equilibrium with the adjacent solution. This means that, in
a DLA, the interface is always at the minimum of f0(φ0) although the free energy
curve changes with time. In this situation, the asymptotic time dependence of the
surface coverage is predicted to be25)

φ0,eq − φ0(t) ∼
√

τd/t. (5.1)

Here the characteristic time scale of diffusion is determined by

τd =
a2

D

(
φ0,eq

φb

)2

. (5.2)

The second case is the kinetically limited adsorption (KLA) which applies when
the dynamics at the interface is much slower. In a KLA, the shape of f0(φ0) does
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Fig. 4. The characteristic time τ̃c obtained from Fig. 3(a). The solid line represents the scaled

characteristic time of diffusion τ̃d = (φ0,eq/φb)2 as given by Eq. (5.2).

not change with time, but the surface coverage increases toward φ0,eq. Therefore
φ0 evolves with time according to Eq. (4.4), and its asymptotic behavior is given
by16),17)

φ0,eq − φ0(t) ∼ e−t/τk , (5.3)

with a different characteristic time

τk =
a2

D

(
φ0,eq

φb

)2

exp[−α(1 + γ)2 − βφ0,eq]. (5.4)

In general, KLA is realized when there is a potential barrier that might lead to
kinetic limitations.

Comparing Eqs. (5.2) and (5.4), we find that τd > τk holds when the lateral
interaction is attractive (β > 0). Hence we expect that colloidal particles without
any surface charge exhibit a DLA rather than a KLA. In Fig. 4, τd is represented
by a solid line. We see that the characteristic time τc obtained from the numerical
calculation (open squares) is well-described by the diffusive characteristic time τd.
We have also checked that τk is much smaller than τd in the present parameter choice.
In Fig. 3(b), we have shown that the asymptotic behavior of φ0,eq−φ0 obeys the t−1/2

behavior as described by Eq. (5.1). All these results indicate that the adsorption of
colloidal particles in Pickeirng emulsions is governed by a diffusion-limited process.

Since most of the experiments measure surface tension rather than surface cov-
erage, we next look at the dynamical surface tension of an interface adsorbed by
colloidal particles. We remind that the total excess free energy per unit area is given
by Eq. (3.1). For simplicity, we neglect here the contribution from the bulk solution
(the first term) which is considered to be relatively small. Hence we are left with
only the second term, i.e., the contribution from the interface. In Fig. 5(a), we show
the time evolution of f0(φ0) for various values of γ while the other parameters are
the same with those in Fig. 2. One typically sees a slow decrease in the beginning
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Fig. 5. (a) The time evolution of the surface energy f0 as a function of the scaled time t̃ for different

values of γ. The open circles on the right axis indicate the respective equilibrium values f0,eq.

(b) The asymptotic behavior of f0 − f0,eq in the large time regions.

and a rapid drop followed by a slow relaxation toward the equilibrium. The decrease
of the surface energy becomes larger as the value of γ is approached from negative to
zero. Notice that the rapid drop of f0 occurs around t ≈ τc ≈ τd. To investigate the
long time asymptotic behavior, we present in Fig. 5(b) the difference f0(φ0) − f0,eq

for large t. This plot implies that the dynamic surface tension also decreases as
t−1/2 similar to the behavior of φ0(t) in Fig. 3(b). Such a power-law dependence is
characteristic for DLA and should be contrasted with an exponential decay expected
for KLA.

In the case of DLA, we mentioned that f0(φ0) is all the time at its minimum so
that μ0 = μ1 holds even if the free energy is dependent on time (μ1 	= μb). When
this is true, the surface energy can be further written as

f0[φ0(t)] =
kBT

a2

[
ln[1 − φ0(t)] +

β

2
[φ0(t)]2

]
, (5.5)

so that f0 is now a functional of φ0(t). This relation means that the equilibrium
equation of state as previously given by Eq. (3.5) also holds for nonequilibrium
situations.17) In order to check the validity of this argument, we have plotted in
Fig. 6 both Eqs. (3.3) and (5.5) by the solid and dashed lines, respectively. We
present here only the case of γ = 0 and the other parameters are the same as those
in Fig. 3. We can see that the two curves coincide almost perfectly for t ≥ τd. Hence
the extension of the equation of state to the nonequilibrium cases can be justified
for DLA in the long time limit.

In Refs. 16) and 17), it was pointed out that the adsorption of nonionic surfac-
tants is described by a DLA. This fact has been experimentally confirmed for various
types of nonionic surfactant which exhibit the asymptotic t−1/2 decrease of the dy-
namical surface tension. For salt-free ionic surfactants, however, the adsorption is
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Fig. 6. The solid line is the time evolution of the surface energy f0 as a function of the scaled time

t̃ for γ = 0 (as presented in Fig. 5). The dashed line is the time evolution of Eq. (5.5). Both

curves coincide in the large time region.

described by a KLA due to the electrostatic interaction. Interestingly, addition of salt
to an ionic surfactant solution recovers a DLA. For colloidal particles, it is natural
to expect that the adsorption deviates from a DLA when the particles are charged.

Recently, the adsorption dynamics of cadmium selenide nanoparticles at an
oil/water interface has been investigated.15) Using a pendant drop tensiometer, they
measured changes in the interfacial tension for the early and late stages. The ob-
served time dependence of the interfacial tension is very similar to that in Fig. 5(a),
and its asymptotic long time behavior is indeed described by the t−1/2 dependence
as in Eq. (5.1). Hence the experimental result can be described as a DLA.

Finally we shall briefly argue the case when the interaction parameter satisfies
β > 4 so that the phase transition occurs at the interface. In Fig. 7(a) and (b),
we present the time evolutions of φ0 and f0, respectively, for different values of β.
Other parameters are φb = 10−2, α = 10, and γ = −0.5. When β > 4, we observe a
steep increase of φ0 in the late stages. Corresponding to this behavior, the surface
energy f0 increases transiently and then drops off toward equilibrium value as shown
in Fig. 7(b). Such a unique time dependence of the surface energy is expected to be
observed in the experiment.

§6. Conclusion

In this paper, we have discussed the adsorption dynamics of colloidal particles
to liquid/liquid interfaces. We used a free energy formulation for the adsorption
which has been applied to surfactants. By solving the coupled equations including
the Ward-Tordai equation, we obtained the time evolution of the surface coverage
and dynamic surface tension. From the estimation of the characteristic time, we
showed that the adsorption process is a diffusion-limited one. In this situation, the
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Fig. 7. (a) The time evolution of the surface coverage φ0 as a function of t̃ for different values of

β. The other parameters are φb = 10−2, α = 10, and γ = −0.5. (b) The corresponding time

evolution of the surface energy f0 as a function of t̃.

asymptotic time dependencies of the surface coverage and surface tension close to
their equilibrium values obey the t−1/2 law. Our result is in agreement with a recent
experiment using nanoparticles. We also showed that the equilibrium equation of
state relating the surface tension to the surface coverage also holds for nonequilibrium
situations.

Several extensions of the present work are under progress. For example, we are
investigating the adsorption of two different types of colloidal particles characterized
by different values of γ. One might also consider the case in which the adsorption
occurs from both liquids. In this case, we allow the particles to leave the interface
toward the other liquid.
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