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Abstract
We study the elastic properties of thermotropic smectic liquid crystals with focal conic domains
(FCDs). After the application of the controlled preshear at different temperatures, we
independently measure the shear modulus G ′ and the FCD size L. We find out that these
quantities are related by the scaling relation G ′ ≈ γeff/L, where γeff is the effective surface
tension of the FCDs. The experimentally obtained value of γeff shows the same scaling as the
effective surface tension of the layered systems

√
K B, where K and B are the bending modulus

and the layer compression modulus, respectively. The similarity of this scaling relation to that
of the surfactant onion phase suggests an universal rheological behavior of the layered systems
with defects.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The rheology of smectic liquid crystals is a long-standing
puzzle [1–3]. Although the theory predicts a liquid response
when the smectic layers are aligned parallel to the shear plane,
some experiments show that the system behaves as a solid
until a certain critical shear stress is exceeded [4–6]. This
means that even the oriented smectic liquid crystal behaves
as a yield stress fluid at very low stress. Such a peculiar
behavior can be attributed to the presence of defects such as
focal conic domains (FCDs) in the smectic layers, because
they act to hinder layer sliding in the low stress limit. Indeed
it was seen that the FCD density strongly correlates with
the viscoelastic properties [3, 4]. Previously we showed
that the yield stress remarkably decreases around the SmA–N
transition temperature and vanishes at the transition point [7].
These observations were attributed to the rapid increment
of FCD size because the transition is induced by a smectic
melting. It is known that the SmA–N transition of 8CB is very
close to the second-order one [8, 9]. In general, softening of
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the elasticity in the smectic close to the transition point can be
induced by defect unbinding [10].

Prior to our work, it was reported that defects of oily
streaks stabilized by colloidal particles reinforce the shear
modulus which increases with the defect density [11, 12]. For
the 8CB liquid crystal, it was shown that defects that are
artificially introduced by the aerosil gel network result in the
soft glassy nature of the smectic phase [13]. The shear modulus
of the smectic phase is strongly influenced by the line tension
of dislocations because it acts against the Peach–Koehler force
which drives the motion of dislocations. The balance between
these two forces determines the dislocation spacing which in
turn affects the elasticity of the smectic phase. When the
force exerted on the dislocations exceeds the line tension, the
system undergoes plastic deformation. Meyer et al proposed a
theory of smectic rheology associated with the motion of screw
dislocations in the plastic deformation region [14, 15]. Using
the Orowan relation [16], they predicted that the shear stress σ

and the shear rate γ̇ follows the scaling relation σ ∼ γ̇ 3/5 and
the dislocation spacing ξ decreases as ξ ∼ γ̇ −1/5. Hence the
smaller ξ results in the higher shear modulus.

On the other hand, it is known that the smectic phase
is occupied by FCDs under shear. In thermotropic smectic
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liquid crystals without any additives, the proliferation of
dislocation loops is induced by both equilibrium thermal
fluctuations and non-equilibrium shear flow [17, 18]. Horn and
Kleman investigated the origin of the elasticity of the smectic
phase by comparing the rheometry and the birefringence
measurements [4]. Based on the dimensional analysis, they
proposed a scaling relation for the yield stress σy such that
σy ∼ K/L2, where K is the bending modulus and L is
the FCD size. Although it is unknown how the dislocation
unbinding affects the FCD size, the strong correlation between
temperature and flow should be reflected in the shear modulus
through the change in the FCD size.

The aim of this study is to investigate the origin of
the elasticity in the smectic phase of a thermotropic liquid
crystal (8CB) by comparing the shear modulus and the FCD
size obtained from independent measurements. We discuss
the preshear and the temperature dependences of the shear
modulus, and relate it to the corresponding FCD size. The
measured shear modulus is attributed to the energy cost for
deformation of FCDs under shear. Thus their surface tension
which acts against the deformation plays an important role in
determining the shear modulus. The effective surface tension
of the FCD is given by γeff = √

K B, where B is the
compression modulus. Notice that γeff has the dimension of
energy per area. We demonstrate that the shear modulus is
inversely proportional to the FCD size with the coefficient
determined by the surface tension of FCDs. A notable analogy
with the elasticity of the surfactant onion phase will also be
discussed, thereby suggesting a universal rheological property
of the layered structures with defects.

In our previous study on the same system, we showed
that the two different types of layer orientation exist in the
dynamical phase diagram, i.e. SmAI and SmAII [7]. In
the SmAI region, both the parallel and the perpendicular
orientations of the smectic layers shown in figure 1 coexist
as originally suggested by Safinya et al [19]. On the other
hand, the SmAII phase is dominated by the perpendicular
orientation in which the layer normal points along the vorticity
direction [19, 20]. The SmAI phase transforms into the SmAII

phase upon increasing either shear stress or temperature. In
this paper, we are mostly concerned with the SmAI regime,
because the rheological property of the SmAII phase is simply
Newtonian due to the perpendicular orientation of the smectic
layers.

2. Experimental details

We used the thermotropic liquid crystal 4-n-octyl-4′-
cyanobiphenyl (8CB) in the smectic phase. The equilibrium
phase sequence and some physical properties of 8CB have
been studied in the literature [19, 20]. 8CB was obtained
from Synthon Chemicals GmbH & Co., Germany and was used
without further purification. Rheological measurements were
performed using the stress-controlled rheometer, Anton Paar
MCR-300, equipped with a truncated cone–plate geometry
whose diameter is 50 mm and the cone angle is 1◦. In
contrast to [4], no surface treatment has been performed in
our experiment. The absence of the homeotropic alignment

Figure 1. Schematic diagram of a smectic phase with perpendicular
(left) and parallel (right) orientations under shear flow. ∇v, v and n
correspond to the flow gradient, flow and vorticity directions,
respectively. The SmAI region includes both the perpendicular and
the parallel orientations, while only the perpendicular orientation
appears in the SmAII region [7].

of the smectic layers would easily induce the nucleation of
focal parabolas under shear flow. However, we have checked
that the reproducible results can be obtained by applying the
preshear even without any surface treatment. As we will
show in section 3, our preshearing causes a similar effect to
the anchoring treatment. Temperature was controlled within
0.02 K by a Peltier device attached to the rheometer. We
determined the SmA–N transition temperature TSN by the
dynamic viscoelastic measurement. From the condition that
the storage modulus vanishes, we identified it as TSN =
33.4 ◦C. This is in good agreement with the previously
reported value [19]. The samples were presheared before
the dynamic measurement at different shear stresses such that
the FCD density was well controlled. Each shear stress was
applied for 600 s, which is long enough to reach the steady
state.

Microscope observation under shear flow was performed
by using the Linkam CSS-450 shear cell which has a plate–
plate shear geometry attached onto the Olympus microscope,
BX-50, between the crossed polarizers. The gap size between
the two plates was fixed at 150 μm. The microscope pictures
were taken after applying the shear flow for 600 s with different
fixed shear rates.

3. Results

3.1. Scaling of shear modulus

For each applied shear stress, the dynamic modulus was
measured after the steady state shear rate was reached. The
measured steady state shear rate γ̇ as a function of the applied
shear stress σ is shown in figure 2. These data quantitatively
reproduce our previous rheological measurement [7]. Most
of the flow curves exhibit the shear thinning behavior. At
high temperatures such as 33.2 ◦C, a dynamical transition
from the shear thinning behavior to the Newtonian behavior
is observed for large applied shear stresses. We note that the
shear thinning and the Newtonian regimes correspond to the
SmAI and the SmAII phases, respectively, as mentioned before.
The data for 25 ◦C almost coincide with those obtained by
Horn and Kleman who performed a homeotropic anchoring
treatment [4]. This implies that our preshearing treatment
causes an analogous effect to the homeotropic anchoring
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Figure 2. Steady state shear rate γ̇ as a function of the applied shear
stress σ at different temperatures. The slope of the dotted line is
unity, showing the Newtonian behavior γ̇ ∼ σ .

treatment. Hereafter, we shall mainly discuss the shear
modulus of the SmAI phase.

Figure 3 shows the frequency dependence of the dynamic
storage modulus G ′ and the loss modulus G ′′ in the smectic
phase at different temperatures. As reported before [5], we
see that 8CB in the smectic phase generally shows a solid-
like behavior since G ′ > G ′′ for most of the frequencies
measured. The extremely slow viscoelastic relaxation at the
low frequency regime, indicative of the plastic behavior, can
be attributed to the presence of defect structures. Indeed,
Larson et al showed that the elimination of defects using large
amplitude oscillatory shear diminishes both G ′ and G ′′ [3].

At each temperature, the plateau value of G ′ becomes
larger as the preshear stress σ increases, while G ′′ does not
show any remarkable dependence on it. However, a further
increase of σ caused a reduction of G ′ and G ′′ as seen at
T = 31 and 33 ◦C in figure 3. The preshear dependence of
G ′ can be attributed to the variation in the defect density which
is regulated by the preshearing process [3, 4]. We also find that
the plateau value of G ′ decreases with increasing temperature.
In particular, G ′ becomes remarkably smaller close to the
Sm–N transition temperature TSN. Such a fall-off of G ′ by
increasing the temperature is analogous to the decrease of the
yield stress of the same smectic phase as reported in [7].

Figure 4 presents the dependence of the plateau value of
the storage modulus G ′ at ω = 0.1 s−1 on the shear rate γ̇ and
the reduced temperature t = (TSN − T )/TSN. (In the analysis,
we used the absolute temperature so that TSN = 306.5 K.)
Adopting the result of figure 2, we use here the measured
steady state shear rate γ̇ for each applied preshear stress σ .
To obtain the scaling plot of figure 4, we first determined the
power law behavior G ′ ∼ γ̇ 0.2 for each fixed temperature.
Then we extracted the power law behavior of the scaled G ′ as a
function of t with an exponent of 0.7 so that all the data points

Figure 3. Dynamic storage modulus G ′ and loss modulus G ′′ as a
function of frequency ω at different temperatures. Filled and open
symbols correspond to G ′ and G ′′ , respectively. Different symbols
shown in the bottom panel represent the applied preshear stresses for
which the steady states are obtained.

fall onto a single straight line whose slope is unity. After these
procedures, we find the final scaling behavior G ′ ∼ γ̇ 0.2t0.7.
Notice that the slope of the dotted line in figure 4 is unity. The
data collapse is satisfactory except for those at high preshear
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Figure 4. Plot of the plateau shear modulus G ′ as a function of the
shear rate γ̇ and the reduced temperature t . Different symbols
correspond to different temperatures. The scaling variable is chosen
to be γ̇ 0.2t0.7 so that most of the data points fall onto a straight dotted
line whose slope is unity.

stresses where G ′ decreases. The data which do not follow
the scaling behavior indicate that they are close to the border
between the SmAI and SmAII phases. This result indicates
that the elasticity of the smectic phase is more enhanced as
the shear rate (or the preshear stress) is increased and/or the
temperature is reduced away from the transition temperature.
The fact that G ′ can be scaled by the combined variable γ̇ 0.2t0.7

means that both the shear rate and the proximity to the SN
transition temperature effectively have the same influence on
the elasticity of the smectic phase. For the onion phase in the
surfactant lamellar phase, the dependence of the yield stress on
the shear rate is also given by the power law behavior with the
same exponent of 0.2 in spite of the different structures [21].

3.2. Scaling of FCD size

Here we discuss the real-space observation of the smectic
textures under an optical microscope. Figure 5 presents
polarized microscope images obtained after applying preshear
at different temperatures for various fixed shear rates γ̇ . These
microscope images were obtained by observing the sample
along the flow gradient direction ∇v. In these images, the
flow direction v and the vorticity direction n correspond to
the longitudinal and the horizontal ones, respectively. These
pictures show that the FCDs occupy most of the observed
area. For each temperature, the FCDs are made smaller with
increasing γ̇ . If one further raises γ̇ , the FCDs become
too small to be observed under an optical microscope. For
example, FCDs are invisible in the image of T = 25 ◦C and
γ̇ = 200 s−1. We consider that the shrinkage of the FCDs
is related to the drop-off of G ′ at high preshear stresses in

Figure 5. Polarized microscope images of the smectic phase under
shear flow at different temperatures (T = 25, 31 and 33 ◦C) and shear
rates (γ̇ = 0.1, 1, 10, 20, 100 and 200 s−1). The flow is applied along
the longitudinal direction. The scale bar corresponds to 100 μm.

figure 3. Hence the annihilation of FCDs in the microscope
images and the deviation of G ′ from the dotted line in
figure 4 is a signal for the onset of the parallel-to-perpendicular
orientation transition. As for the temperature dependence, the
FCD size remarkably increases with increasing temperature
towards the transition temperature TSN = 33.4 ◦C. Such a
trend can be clearly seen by comparing the smectic textures
at γ̇ = 0.1 s−1 for different temperatures.

A typical example to extract the FCD size is presented in
figure 6 which is obtained at T = 25 ◦C when the shear rate is
γ̇ = 0.1 s−1. As shown in figure 6, the outlines of the FCDs
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Figure 6. Typical microscope image used to estimate the FCD size at
T = 25 ◦C and γ̇ = 0.1 s−1. The averaged diameter L of FCDs was
estimated by tracing each FCD with a red circle as shown in the
picture. The scale bar corresponds to 50 μm.

were traced with circles on the microscope images. Applying
the same procedure to several microscope images obtained
under the same condition, we extracted the averaged diameter
L for the given temperature and the shear rate. Although
the FCD size obeys the distribution of the random Apollonian
packing [22], we have extracted the averaged diameter L by
ignoring rather small FCDs. However, our result is essentially
independent of the way we evaluate the average FCD size,
besides some numerical factors.

In figure 7, we summarize the shear rate and the
temperature dependence of the average FCD size. Here the
upper and lower limits of the error bars correspond to the
maximum and minimum size of the FCD, respectively. Our
analysis revealed that L obeys the power law behaviors on the
shear rate γ̇ as L ∼ γ̇ −0.2, and on the reduced temperature t as
L ∼ t−0.5. Hence the average FCD size can be well scaled
by the combined variable γ̇ −0.2t−0.5 as verified in figure 7.
Here the data collapse onto a single line of slope unity is
clearly demonstrated so that we can deduce the scaling relation
L ∼ γ̇ −0.2t−0.5. To the best of our knowledge, there is
no model which describes the shear rate dependence of the
FCD size. However, it is worthwhile to point out that a
similar scaling relation ξ ∼ γ̇ −1/5 was predicted between
the defect spacing ξ and the shear rate γ̇ as mentioned in
section 1 [14, 15]. Generally, FCDs can form strings connected
by edge dislocations [23], while a dislocation loop consists of
pairs of screw and edge dislocations. Although the topological
relation between FCDs and dislocation loops is unknown, the
same exponent of 0.2 may arise provided that the scale of edge
dislocations regulates the FCD size.

Regarding the temperature dependence, the following
discussions are in order. According to the defect model of the
SmA–N transition proposed by Helfrich [24], smectic layers
are destroyed by a proliferation of dislocation loops as the
transition point is approached from below. He predicted that
the average size of the dislocation loops diverges at the SmA–
N transition point as ξ ∼ t−0.5. Such a melting behavior of the

Figure 7. Plot of the FCD size L as a function of the shear rate γ̇ and
the reduced temperature t . Different symbols correspond to different
temperatures. The scaling variable is chosen to be γ̇ −0.2t−0.5 so that
all the data points fall onto a straight dotted line whose slope is unity.

smectic order was experimentally confirmed in the vicinity of
the smectic–cholesteric transition for a chiral system [25]. If
we assume that there exists only one characteristic length scale
close to the critical temperature [18], ξ should be proportional
to the FCD size L, and hence the obtained relation L ∼ t−0.5

is reasonable.

3.3. Origin of elasticity

By conducting independent measurements, we have experi-
mentally obtained the scaling relation for the shear modulus
as G ′ ∼ γ̇ 0.2t0.7 and that for the average FCD size as L ∼
γ̇ −0.2t−0.5. These two relations strongly lead us to suggest
that G ′ is inversely proportional to L, although this seems
to be not completely correct because of the slight difference
in the temperature exponents (0.7 versus 0.5). However, this
inconsistency can be resolved if the proportionality coefficient
would also depend on the temperature. We show below that
this is indeed the case.

If we assume that the relation G ′ ∼ 1/L holds, the
proportionality coefficient on the right-hand side should have
the dimension of surface tension, i.e. energy per area. De
Gennes pointed out that the layered system such as the smectic
phase or lamellar phase indeed exhibits surface tension [18].
According to [18, 26, 27], the effective surface tension of the
layered system is given by γeff = √

K B, where K and B
are the bending modulus and the compression modulus of the
smectic phase, respectively. We then propose the following
relation:

G ′ = C

√
K B

L
, (1)

where C is a dimensionless numerical coefficient. From the
previous experimental papers, it is known that K for 8CB is
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almost constant, K = (5.2 ± 0.3) × 10−12 N [28], while B
depends on the temperature close to TSN, obeying the power
law relation B = (7.5×107)t0.4±0.03 Pa [8]. With this relation,
B vanishes at the transition point (t = 0) because the SmA–
N transition is associated with the disruption of the layered
structures.

In order to check the validity of (1), we compare the
values of G ′L obtained from our experiment and γeff = √

K B
estimated from the literature. By taking into account the
prefactors in our previous scaling relations, we obtain G ′L =
(4.56 × 10−3)t0.2 N m−1. On the other hand, the above values
from the literature yield

√
K B = (1.97 × 10−2)t0.2 N m−1.

Hence (1) is totally valid in terms of the scaling with respect to
both γ̇ and t . Moreover, the dimensionless numerical factor
can be determined to be C = 0.456/1.97 ≈ 0.23. The
consistency of (1) demonstrates that the physical origin of the
elasticity in the smectic phase is due to the effective surface
tension γeff of the FCDs. This is the main claim of the present
paper.

Princen et al showed experimentally that the physical
origin of the shear modulus and the yield stress in emulsions
can be commonly attributed to the surface tension, although
the volume fraction dependences of the shear modulus and
the yield stress are different from each other [29, 30]. The
fact that the above prefactor C is smaller compared to
that of monodispersed emulsions can be attributed to the
polydispersity of the FCD size [29, 30].

4. Discussion

We first discuss the generality of (1). In fact, essentially the
same relation was proposed for the shear-induced onion phase
in surfactant solutions [31]. They experimentally found that
the shear modulus of the onion phase follows the relation
G ′ = C0 + C1

√
K B/L. Here the first constant term C0

reflects the residual strain due to the disordered arrangement
of the onion structure. The second term is the stored
energy per unit volume and the quantity

√
K B corresponds

to the effective surface tension of a single onion under small
deformation [26, 27]. Hence they concluded that the elasticity
of the onion phase originates in the energetic penalty associated
with the onion deformation. The later experimental work
reported that C0 tends to vanish for the disordered onion
systems, while the prefactor C1 varies from 0.4 to 1.2 for
different surfactants [32]. These results are in accord with our
result for the smectic phase with FCDs.

It is well known that the structure of FCDs is classified
into two types; one is the toroidally deformed FCD (FCD-
I) commonly observed in the thermotropic smectics and the
other is the onion type (FCD-II) seen in the lyotropic liquid
crystals [2]. In spite of the topological difference between
the two types, our result suggests that the energy cost for the
deformation is determined by

√
K B both for FCD-I and FCD-

II. Both in the smectic phase and the surfactant onion phase, the
main source of the elasticity seems to be the effective surface
tension. Therefore the rheological response of these systems
is generally described by the scaling relation of (1), which is
universal.

As mentioned before, Horn and Kleman suggested a
scaling relation σy ∼ K/L2 for the yield stress of the smectic
phase with FCDs [4]. This relation was also used in our
previous paper in order to estimate the FCD size close to
the transition temperature [7]. (A similar relation also holds
even for the elasticity due to the line defects when K and
L are replaced by the line tension and the defect spacing,
respectively, because the elasticity of the defect network is
proportional to the yield stress [11, 12].) We emphasize
that our result (1) differs from it. We now speculate that
the elasticity of the layered structures with FCDs should be
properly accounted for by both K and B . In particular, the
layer compression modulus B reflects the overall interactions
between the adjacent layers.

It should be noted that the maximum size of the FCD at
γ̇ = 0.1 s−1 and T = 33 ◦C is about 100 μm, which is smaller
than the gap size 150 μm of the plate–plate cell. Hence we
consider that the effect of the gap size on the FCD size is
almost negligible. For the viscoelastic measurement in which
the gap size changes from 50 to 436 μm, the FCDs at higher
temperatures and lower shear rates would be compressed close
to the center of the cone. However, the volume of such a
compressed FCD region is negligibly small compared with
the total volume of the sample. We thus believe that the gap
size effect on the FCD size will not produce any significant
influence on the shear modulus.

In our analysis, we have used the experimentally observed
scaling B ∼ t0.4 [8]. However, the real critical behavior of B
requires a more careful discussion because it was reported later
that B does not necessarily vanish at the transition point [9].
This result supports well the Nelson–Toner model of the SmA–
N transition with full anisotropy [10]. In our experiment, the
temperature is not very close to the critical temperature so that
the above relation is practically useful. On the other hand, a
caution is required when we use this relation beyond the critical
region at low temperature.

5. Conclusion

In summary, we have studied the viscoelastic properties of
thermotropic smectic liquid crystals with FCDs. By measuring
the shear modulus G ′ and the FCD size L independently, we
have found the scaling relations G ′ ∼ γ̇ 0.2t0.7 and L ∼
γ̇ −0.2t−0.5. The product G ′L ∼ t0.2 scales in the same
manner as the effective surface tension γeff = √

K B ∼ t0.2.
Our experimental finding suggests that the shear modulus is
inversely proportional to the FCD size and the proportionality
coefficient is set by the effective surface tension γeff. Hence
we conclude that the physical origin of the elasticity in the
smectic phase is attributed to the effective surface tension of
the FCD. The similarity of the rheological response between
the smectic phase and the surfactant onion phase points toward
the universal behavior of the layered systems under non-
equilibrium conditions.
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