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Abstract – A model of an autonomous three-sphere microswimmer is proposed by implementing
a coupling effect between the two natural lengths of an elastic microswimmer. Such a coupling
mechanism is motivated by the previous models for synchronization phenomena in coupled os-
cillator systems. We numerically show that a microswimmer can acquire a nonzero steady state
velocity and a finite phase difference between the oscillations in the natural lengths. These velocity
and phase differences are almost independent of the initial phase difference. There is a finite range
of the coupling parameter for which a microswimmer can have an autonomous directed motion.
The stability of the phase difference is investigated both numerically and analytically in order to
determine its bifurcation structure.
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Introduction. – Microswimmers are small machines
that swim in a fluid and they are expected to be used
in microfluidics and microsystems [1]. Over the length
scale of microswimmers, the fluid forces acting on them
are dominated by the frictional viscous forces. By trans-
forming chemical energy into mechanical energy, however,
microswimmers change their shape and move efficiently
in viscous environments. According to Purcell’s scallop
theorem, reciprocal body motion cannot be used for loco-
motion in a Newtonian fluid [2,3]. As one of the simplest
models exhibiting nonreciprocal body motion, Najafi and
Golestanian proposed a three-sphere swimmer (NG swim-
mer) [4,5], in which three in-line spheres are linked by two
arms of varying length. In recent years, such a swimmer
has been experimentally realized by using colloidal beads
manipulated by optical tweezers [6], or ferromagnetic par-
ticles at an air-water interface [7,8].

Recently, some of the present authors have proposed
a generalized three-sphere microswimmer model in which
the spheres are connected by two harmonic springs, i.e., an
elastic microswimmer [9]. Compared with the NG swim-
mer, the main difference is that the natural length of each
spring (rather than the arm length) is assumed to undergo
a prescribed cyclic motion. A similar model was proposed
by other people [10–12]. We have analytically obtained the
average swimming velocity as a function of the frequency

of cyclic change in the natural length [9]. Using this model,
we have also discussed the hydrodynamic interaction be-
tween two elastic swimmers [13] and a thermally driven
elastic microswimmer [14–16].

In the above three-sphere microswimmer models, either
the arm lengths (NG swimmer) or the natural lengths of
the springs (elastic swimmer) are assumed to undergo a
prescribed cyclic motion. Such active motions can lead
to a net locomotion if the swimming strokes are nonrecip-
rocal. In these models, the average swimming velocity is
purely determined by the frequency and the phase differ-
ence of the prescribed motions [4,5,9,13].

On the other hand, it is beneficial for a microswimmer
if the swimming velocity is autonomously determined by
itself rather than being imposed externally. Moreover, a
sophisticated microswimmer requires a feedback control
system in order to regulate the switching between the
static and swimming states by tuning the system parame-
ters. For a macroscopic quadruped robot (not a swimmer),
it was demonstrated that the communication between legs
during movements is essential for interlimb coordination
in quadruped walking [17,18]. A similar mechanism is also
useful for the locomotion of a microswimmer.

In this letter, extending the mechanism of an elas-
tic swimmer [9], we propose a new type of three-sphere
swimmer which can autonomously determine its velocity.
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Fig. 1: An autonomous elastic microswimmer in a viscous fluid
characterized by the shear viscosity η. Three identical spheres
of radius a are connected by two harmonic springs character-
ized by the spring constant K. The time-dependent positions
of the spheres are denoted by x1, x2, and x3 which evolve in
time according to eq. (2). The time-dependent natural lengths
of the springs are denoted by "A and "B whose dynamics is
described by eqs. (5) and (6), respectively, whereas the corre-
sponding phases θA and θB obey eqs. (7) and (8), respectively.

In order to implement such a control mechanism, we in-
troduce a coupling between the two natural lengths of an
elastic microswimmer by using the interaction adopted in
the Kuramoto model for coupled oscillators [19–22]. Im-
portantly, the proposed microswimmer acquires a steady
state velocity and a finite phase difference in the long-time
limit without any external control. The steady state veloc-
ity can be mainly tuned by changing the coupling param-
eter in the model. Moreover, we investigate the condition
that a microswimmer can attain an autonomous locomo-
tion, and further perform a linear stability analysis of the
steady state.

Synchronization phenomena are widely observed in ac-
tive biological systems such as flagella and cilia [23,24].
In particular, synchronization of a pair of flagella in
Chlamydomonas was observed experimentally [25,26]. For
a three-sphere model of Chlamydomonas in which the
spheres representing the flagella move on circular trajec-
tories relative to the body sphere [27,28], the two flagella
can synchronize due to the local hydrodynamic friction
forces [27]. On the other hand, hydrodynamic interaction
between the flagella is indispensable for the net swimming.

Model of an autonomous microswimmer. – As
schematically shown in fig. 1, the present model consists of
three hard spheres of the same radius a connected by two
harmonic springs characterized by the spring constant K.
The total elastic energy is given by

E =
K

2
(x2 − x1 − !A)2 +

K

2
(x3 − x2 − !B)2, (1)

where xi(t) (i = 1, 2, 3) are the positions of the three
spheres in a one-dimensional coordinate system and we
assume x1 < x2 < x3 without loss of generality. In
the above, !A(t) and !B(t) are the natural lengths of the
springs and their dynamics will be explained later (see
eqs. (7) and (8)). Each sphere exerts a force on the vis-
cous fluid of shear viscosity η and experiences an opposite
force from it.

Denoting the velocity of each sphere by ẋi = dxi/dt
and the force acting on each sphere by fi, we can write

the equations of motion of each sphere as [9,13]

ẋi =
3

∑

j=1

Mijfj, (2)

where the three forces fi are given by

fi = −
∂E

∂xi
. (3)

Here the details of the hydrodynamic interactions are
taken into account through the mobility coefficients Mij .
Within Oseen’s approximation, which is justified when
the spheres are considerably far from each other (a "
|xi −xj|), the expressions for the mobility coefficients Mij

can be written as

Mij =















1

6πηa
, i = j,

1

4πη|xi − xj |
, i #= j.

(4)

The force-free condition, f1 +f2 +f3 = 0, is automatically
satisfied in the present model [9,13]. We define the center-
of-mass position of a microswimmer by X(t) = (x1 +x2 +
x3)/3 and the swimming velocity of the whole object by
V (t) = Ẋ(t).

Next, we consider that the two natural lengths of the
springs undergo the following cyclic changes in time [9,13]:

!A(t) = ! + d cos θA(t), (5)

!B(t) = ! + d cos θB(t), (6)

where ! is the constant natural length, d is the oscillation
amplitude, θA(t) and θB(t) are the time-dependent phases.
The most important aspect of our model is that θA(t)
and θB(t) are affected by the relative positions and the
velocities of the three spheres. We employ the following
time evolution equations for θA(t) and θB(t) which are
often used to describe synchronization phenomena [19]:

θ̇A = Ω + α sin[θA(t) − φA(t)], (7)

θ̇B = Ω + α sin[θB(t) − φB(t)], (8)

where Ω is the constant frequency, α is the coupling pa-
rameter describing the strength of synchronization, and
φA and φB are the mechanical phases as explained below.

To define the above mechanical phases for a three-sphere
model, it is convenient to introduce the following spring
lengths uA and uB with respect to !:

uA(t) = x2(t) − x1(t) − !, (9)

uB(t) = x3(t) − x2(t) − !. (10)

Obviously, these quantities are related to the sphere ve-
locities as u̇A = ẋ2 − ẋ1 and u̇B = ẋ3 − ẋ2. Then the
time-dependent mechanical phases φA and φB are intro-
duced by the relative positions and the velocities of the
spheres as

cosφA = uA/DA, sinφA = −u̇A/(ΩDA), (11)

cosφB = uB/DB, sin φB = −u̇B/(ΩDB), (12)
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Fig. 2: Dynamics of θA describing the phase of the natural
length (see eq. (5)) and φA describing the mechanical phase
(see eq. (11)). When θA > φA at t, as shown in the left figure,
and when α > 0 in eq. (7), the velocity θ̇A becomes larger at a
later time t + ∆t, as shown in the right figure. As a result, the
difference between θA and φA also increases at t+∆t. A similar
dynamics occurs also for θB and φB.

where DA(B) = [u2
A(B) + (u̇A(B)/Ω)2]1/2. Physically, the

mechanical phase φA(B) specifies the position in the phase
space of a micromachine spanned by uA(B) and u̇A(B) as
shown in fig. 2.

The above equations complete our model for an au-
tonomous three-sphere microswimmer. In this letter, we
shall consider the case of α ≥ 0. Then the physical mean-
ing of eqs. (7) and (8) is that the phase θA (θB) for the
natural length and the mechanical phase φA (φB) tend to
be different due to the coupling term, as schematically
shown in fig. 2. Since the middle sphere is connected
to the other two spheres, our model contains a feedback
mechanism that regulates the dynamics of the two natu-
ral lengths !A and !B. Such a coupling effect in the spring
motions gives rise to a non-reciprocal body motion and re-
sults in an autonomous locomotion of the microswimmer.
Although α in eqs. (7) and (8) can be different, we shall
first stick to the symmetric case for the sake of simplicity.
In general, the other quantities such as K, !, and Ω can
also be asymmetric.

Let us define the time-dependent phase difference be-
tween the oscillations in the natural lengths by δ(t) =
θB(t) − θA(t). When α = 0, the present model reduces
to that of the original elastic microswimmer [9,13]. In
this limit, we have θA(t) = Ωt and θB(t) = Ωt + δ0, where
δ0 = δ(0) is the initial phase difference. According to Pur-
cell’s scallop theorem [2,3], an elastic microswimmer can
exhibit a directed motion when δ0 #= 0, ±π, i.e., a nonre-
ciprocal motion. Hence the initial phase difference δ0 and
the frequency Ω fully determines the average velocity of
locomotion when α = 0 [9,13].

When the coupling effect is present, however, we show
that a stable phase difference δ controls the dynamics of
a micromachine irrespective of its initial value δ0. More-
over, the transition to a nonreciprocal motion as well as
the average velocity can be precisely tuned by the cou-
pling parameter α and the velocity is not solely fixed
by the externally given frequency Ω as in the previous
models [4,5,9,13].

Fig. 3: The plots of dimensionless center-of-mass position X̂
of an autonomous three-sphere microswimmer as a function
of dimensionless time t̂ for Ω̂ = 0.1 when the initial phase
differences are (a) δ0 = −π/2 and (b) δ0 = −39π/40. In both
plots, the dimensionless coupling parameter is chosen as α̂ =
0.1 (black), 0.5 (red), and 2 (green).

For numerical simulations, it is convenient to introduce
a characteristic time scale defined by

τ =
6πηa

K
, (13)

which represents the spring relaxation time. Then we use
! to scale all the relevant lengths (such as xi, a, and d) and
employ τ to scale the quantities related to time (such as
Ω and α). All the dimensionless variables and parameters
are written with a hat such as x̂i = xi/!, Ω̂ = Ωτ , and
α̂ = ατ .

Simulation results. – First we have performed com-
puter simulations by numerically solving eq. (2) together
with eqs. (5)–(12) with the use of Euler’s method. The
parameters to characterize the swimmer size are chosen as
â = 0.01 and d̂ = 0.1, satisfying the conditions a, d " !.
Concerning the initial conditions, we put the three spheres
at x̂1(0) = −1, x̂2(0) = 0, and x̂3(0) = 1, whereas
the initial phase difference, δ0, is varied within the range
−π ≤ δ0 ≤ π. In the present work, we focus on the low-
frequency regime, Ω̂ < 1. The following simulation results
do not depend on the initial positions of the three spheres.

In fig. 3, we plot the dimensionless center-of-mass po-
sition X̂ as a function of time t̂ for different values of
the coupling parameter α̂ when (a) δ0 = −π/2 and
(b) δ0 = −39π/40, whereas the frequency is fixed to
Ω̂ = 0.1. Although X̂ also oscillates in time at much
smaller time scales, as shown later in fig. 4(a), one can ex-
tract an average steady state velocity V∞ in the long-time
limit by fitting with a straight line. We estimate such an
average velocity V∞ for each curve in fig. 3, and regard
it as an autonomously determined steady state velocity.
For α̂ = 0.1 (black), V∞ vanishes both in figs. 3(a) and
(b). For α̂ = 0.5 (red), on the other hand, V∞ is finite
in fig. 3(a) but vanishes in (b). In this case, the steady
state velocity depends on δ0. For α̂ = 2 (green), V∞ is the
same between figs. 3(a) and (b), showing that V∞ does
not depend on the initial phase difference δ0 although the
sign of V∞ can change as we show later in fig. 5(a).
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Fig. 4: The plots of (a) dimensionless center-of-mass position
difference ∆X̂ = X̂(t̂+∆t̂)−X̂(t̂) and (b) the phase difference
δ = θB − θA between the oscillations in the natural lengths as
a function of dimensionless time difference ∆t̂ measured from
t̂ = 199,900 when Ω̂ = 0.1 and δ0 = −π/2. In both plots, the
dimensionless coupling parameter is chosen as α̂ = 0.1 (black),
0.5 (red), and 2 (green). The average steady state velocity V∞

is obtained by fitting with a straight line, whereas the steady
state phase difference δ∞ is obtained by averaging over a cycle
in the oscillations of δ.

Fig. 5: The plots of (a) dimensionless stationary velocity V̂∞

and (b) stationary phase difference δ∞ as a function of the
initial phase difference δ0 (−π ≤ δ0 ≤ π) when Ω̂ = 0.1. In
both plots, the dimensionless coupling parameter is chosen as
α̂ = 0.1 (black), 0.5 (red), and 2 (green). Notice that, for each
color, there are multiple data points close to δ0 = ±π.

In figs. 4(a) and (b), the behaviors of the center-of-
mass position difference ∆X̂ = X̂(t̂ + ∆t̂) − X̂(t̂) and
the phase difference δ at much smaller time scales are
plotted, respectively, as a function of the time difference
0 ≤ ∆t̂ ≤ 100 measured after t̂ = 199,900. Since the other
parameters are δ0 = −π/2 and Ω̂ = 0.1, fig. 4(a) is the
magnification of fig. 3(a) in the long-time limit after the
steady state has been reached. It is important to note
that both ∆X̂ and δ exhibit oscillatory behaviors whose
period becomes smaller as α is increased. Such a change
in the period is consistent with a perturbation expansion
of eqs. (7) and (8) in terms of α, as we shall explain later.
In fig. 4(b), the phase difference δ oscillates around a con-
stant value that can be regarded as the steady state phase
difference δ∞. Here, we define δ∞ as the average over a
cycle in the oscillations of δ. Since there is always a well-
defined steady state for a given set of parameters, further

Fig. 6: The plots of (a) dimensionless stationary velocity |V̂∞|
and (b) stationary phase difference |δ∞| as a function of the
dimensionless coupling parameter α̂. In both plots, the dimen-
sionless frequency is chosen as Ω̂ = 0.05 (black), 0.1 (orange),
and 0.2 (blue), while δ0 = −π/2 is fixed. There is a lower crit-
ical value αc above which both |V∞| and |δ∞| become nonzero.
|V∞| and |δ∞| take maximum values at αm > αc, and they
vanish for large α.

simulations have been performed for different values of δ0

to investigate the behaviors of V∞ and δ∞ systematically.

Fixing the frequency to Ω̂ = 0.1, we plot in figs. 5(a)
and (b) the steady state velocity V̂∞ and the phase dif-
ference δ∞, respectively, as a function of the initial phase
difference δ0 for the range −π ≤ δ0 ≤ π. Different col-
ors indicate different α̂ values as we have used in fig. 3. In
fig. 5(a), we see that V∞ either vanishes or takes a nonzero
constant value within a certain range of δ0. This means
that, under certain conditions, the proposed microswim-
mer can autonomously determine its steady state veloc-
ity as well as the phase difference. We also see that V̂∞

changes its sign at δ0 = 0 although the absolute value is
the same. The sign of V̂∞ and δ∞ also changes for α̂ = 0.5
(red) and 2 (green) when δ0 becomes close to ±π.

For α̂ = 0.5 (red) in fig. 5(a), the velocity V∞ tends
to vanish when the initial phase difference δ0 is close to
±π. In this situation, we see in fig. 5(b) that the steady
state phase difference approaches δ∞ = ±π, i.e., a recip-
rocal motion. When V∞ is finite in fig. 5(a) for α̂ = 0.5
(red) and 2 (green), on the other hand, the corresponding
phase difference is δ∞ #= 0, ±π, i.e., a nonreciprocal mo-
tion. These results are in accordance with Purcell’s scallop
theorem [2,3]. A more detailed discussion concerning the
stability of the phase difference will be given later in fig. 7.
When α̂ = 0.5, there are two stable fixed points; one with
finite V∞ and the other with vanishing V∞.

In figs. 6(a) and (b), we plot |V̂∞| and |δ∞|, respectively,
as a function of α̂ for different frequencies Ω̂ = 0.05, 0.1,
and 0.2. To make these plots, we have used δ0 = −π/2.
When Ω̂ = 0.1 (orange), for example, there is a finite crit-
ical value of α̂c ≈ 0.2 above which |V̂∞| and |δ∞| become
nonzero. For α̂ < α̂c, on the other hand, both |V̂∞| and
|δ∞| vanish. The existence of such a finite critical value
α̂c is a nontrivial outcome of the present model. When α̂
is very large, such as α̂ ≥ 12.5 for Ω̂ = 0.1, both |V̂∞| and
|δ∞| vanish again. Hence autonomous locomotion can be
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Fig. 7: The numerically obtained stability diagram in the plane
of the phase difference δ and the dimensionless coupling param-
eter α̂ when Ω̂ = 0.1. The orange circles indicate stable fixed
points where δ̇ = 0 holds. For α̂ > α̂c ≈ 0.2, the stable point
δ = 0 bifurcates into two stable fixed points. These nonzero
fixed points correspond to nonreciprocal motions (δ $= 0, ±π),
leading to a nonzero velocity V∞. There are other stable fixed
points at δ = ±π when 0.39 ≤ α̂ ≤ 1.58. For larger α̂, δ = 0
becomes stable again for α̂ ≥ 12.5. The dashed lines indicate
the numerically determined separatrices which are obtained by
comparing the initial phase difference δ0 and the stationary
phase difference δ∞.

achieved for a finite range of the coupling parameter α̂.
Such a behavior is common for other frequencies Ω̂.

Moreover, it is interesting to note that |V∞| takes max-
imum values such as at α̂m ≈ 5.0 when Ω̂ = 0.1. Hence
the present autonomous microswimmer can maximize its
velocity by tuning the coupling parameter α. Notice that
both α̂c and α̂m depend on the frequency Ω̂, and they are
not universal quantities. However, it is worth mentioning
that we find the relation α̂c/Ω̂ ≈ 2 for all Ω̂ chosen in our
simulations.

From these simulation results, one can discuss the sta-
bility of the relative phase difference δ. Comparing its
initial value δ0 and the steady state value δ∞, we can
identify the stable fixed points. Such a stability diagram
for Ω̂ = 0.1 is presented in fig. 7 in the plane of δ and α̂,
describing the bifurcation structure of the present model.
The orange circles indicate the stable fixed points where
δ̇ = 0 holds. In fig. 7 we have also plotted the numerically
determined separatrices by the dashed lines. These points
are obtained by comparing the initial phase difference δ0

and the stationary phase difference δ∞. Hence they are
not mathematically obtained rigorous unstable points.

For α̂ < α̂c ≈ 0.2, the stable fixed points exist only at
δ = 0. As α̂ is increased, the stable point at δ = 0 bifur-
cates into two stable fixed points for α̂ > α̂c, whereas δ = 0
becomes unstable. The stable fixed points at nonzero δ
correspond to nonreciprocal motions, leading to finite V∞

and δ∞. When α̂ satisfies 0.39 ≤ α̂ ≤ 1.58, the two stable

fixed points at δ = ±π appear. These new fixed points re-
sult in a reciprocal motion, prohibiting the locomotion of
a microswimmer. For larger coupling parameter α̂ ≥ 12.5,
δ = 0 becomes stable again. Although such a stability
diagram depends on Ω̂, the general structure of the bifur-
cation diagram remains the same.

Linear stability analysis in the weak coupling

limit. – Although the equations of motion of our model
are highly nonlinear, we can analytically investigate the
linear stability of the phase difference δ when α̂ is small
enough. In other words, we consider the case α̂ < α̂c in
fig. 7, for which δ = 0 is the only stable point and a mi-
croswimmer exhibits a reciprocal motion. Here, we shall
express δ̇ in terms of δ and perform a stability analysis.
Starting from eq. (2), we first neglect hydrodynamic inter-
actions by considering the case a " !. Then the equations
of motion for uA and uB (see eqs. (9) and (10)) are ap-
proximated as

u̇A ≈
1

τ
[−2(uA − d cos θA) + (uB − d cos θB)], (14)

u̇B ≈
1

τ
[(uA − d cos θA) − 2(uB − d cos θB)] , (15)

where τ is the spring relaxation time introduced in
eq. (13).

When the coupling parameter α is small enough in
eqs. (7) and (8), one can assume that δ is almost constant
and the phases of the two natural lengths can be approx-
imated as θA(t) ≈ Ωt and θB(t) ≈ Ωt + δ. According to
ref. [9], the coupled linear equations in eqs. (14) and (15)
can be solved in the frequency domain. By performing the
inverse Fourier transform, we have

uA(t) ≈
d

9 + 10Ω̂2 + Ω̂4

×[(9 + 5Ω̂2) cos(Ωt) − 4Ω̂2 cos(Ωt + δ)

+(6Ω̂ + 2Ω̂3) sin(Ωt)

+(3Ω̂ − Ω̂3) sin(Ωt + δ)], (16)

uB(t) ≈
d

9 + 10Ω̂2 + Ω̂4

×[−4Ω̂2 cos(Ωt) + (9 + 5Ω̂2) cos(Ωt + δ)

+(3Ω̂ − Ω̂3) sin(Ωt)

+(6Ω̂ + 2Ω̂3) sin(Ωt + δ)], (17)

where Ω̂ = Ωτ as before and δ here is a constant.
The above results can be inserted into eqs. (11) and (12)

to obtain φA(t) and φB(t), respectively. Considering the
low-frequency limit, Ω̂ " 1, we expand φA and φB up to
the second order in Ω̂:

φA(t) ≈ Ωt −
2 + cos δ

3
Ω̂ −

(2 − cos δ) sin δ

9
Ω̂2, (18)

φB(t) ≈ Ωt + δ −
2 + cos δ

3
Ω̂ +

(2 − cos δ) sin δ

9
Ω̂2. (19)
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Fig. 8: The plot of δ̇/(2α) (see eq. (22)) as a function of δ
for different dimensionless frequencies Ω̂ = 0.05 (black), 0.1
(orange), and 0.2 (blue). Here δ = 0 corresponds to the sta-
ble fixed point, while δ = ±π are unstable ones. This re-
sult is in agreement with the stability diagram in fig. 7 when
α < αc.

Then we substitute these expressions into eqs. (7) and (8)
to obtain

θ̇A ≈ Ω + α sin

[

2 + cos δ

3
Ω̂ +

(2 − cos δ) sin δ

9
Ω̂2

]

, (20)

θ̇B ≈ Ω + α sin

[

2 + cos δ

3
Ω̂ −

(2 − cos δ) sin δ

9
Ω̂2

]

, (21)

where we have used the approximations θA(t) ≈ Ωt and
θB(t) ≈ Ωt + δ. The stability of δ can be discussed in
terms of δ̇ = θ̇B − θ̇A that is given by

δ̇

2α
≈ sin

[

(−2 + cos δ) sin δ

9
Ω̂2

]

cos

[

2 + cos δ

3
Ω̂

]

. (22)

In fig. 8, we plot δ̇/(2α) as a function of δ for Ω̂ = 0.05,
0.1, and 0.2. We first note that eq. (22) is an odd function
of δ. Since δ̇ > 0 for δ < 0 and δ̇ < 0 for δ > 0, we
find that δ = 0 is a stable fixed point. This result is
in accordance with the stability diagram in fig. 7 when
α < αc. The slope at δ = 0 becomes steeper as Ω̂ is
increased. We also see that δ = ±π are the unstable fixed
points.

Up to the first order in Ω̂, we see in eqs. (18) and (19)
that the mechanical phases φA and φB are delayed with
respect to those of the natural length θA and θB, respec-
tively. Thus, the time evolutions of θA and θB are accel-
erated by the second terms in eqs. (20) and (21) that are
controlled by α. Hence, as α is increased, the oscillation
frequencies of ∆X̂ and δ become larger than the origi-
nal spring frequency Ω. Such a change of the oscillation
frequency was shown in fig. 4(b).

Within the present approximation, however, we cannot
analytically predict the critical value αc nor the stable

fixed points at nonzero δ for α > αc. The difficulty
arises because eqs. (16) and (17) are correct only for small
α. Moreover, hydrodynamic interactions, which are ne-
glected in the above analysis, need to be further taken into
account to fully discuss the bifurcation structure of the
model.

It is worth mentioning, however, that the stability of the
phase difference δ can be determined even in the absence
of hydrodynamic interactions as we have discussed in this
section. For a three-sphere model of Chlamydomonas, it
was shown that hydrodynamic interactions contribute lit-
tle to synchronization [27]. In the present model as well as
in the previous models [4,5,9,13], hydrodynamic interac-
tions play an essential role for the locomotion of a three-
sphere microswimmer.

Summary and discussion. – In this letter, we have
proposed a model of an autonomous three-sphere mi-
croswimmer by considering a coupling effect between the
two natural lengths of an elastic microswimmer [9]. Our
model is motivated by the previous models for synchro-
nization phenomena in coupled oscillator systems [19–22].
Performing numerical simulations, we have shown that a
microswimmer can acquire a nonzero steady state velocity
V∞ that is almost independent of the initial phase differ-
ence δ0 (see fig. 5(a)). The corresponding phase differ-
ence δ∞ between the oscillations in the natural lengths
becomes also finite (see fig. 5(b)), which is consistent with
Purcell’s scallop theorem for microswimmers in a viscous
fluid [2,3].

We have explored in detail the dependencies of V∞ and
δ∞ on the coupling parameter α and the frequency Ω.
We find that both |V∞| and |δ∞| take nonzero values for
α > αc, and they also show maximum values at αm (fig. 6).
There is a finite range of α for which a microswimmer can
have an autonomous directed motion. We have also ana-
lyzed the stability of the phase difference δ by constructing
a stability diagram (fig. 7). This result has been analyti-
cally confirmed in the limit of small α (fig. 8).

In the present work, we have discussed the case when
the frequency Ω is small enough, i.e., Ω̂ < 1. When Ω
is made larger, the difference between θA(B) (phases of
the natural lengths) and φA(B) (mechanical phases) be-
comes also larger. In the original elastic microswimmer
without any coupling effect, it was shown that the av-
erage velocity decreases with increasing frequency in the
high-frequency limit due to the intrinsic spring relaxation
dynamics [9,13]. Such a reduction of the velocity in the
high-frequency regime also occurs for a three-sphere mi-
croswimmer moving in a viscoelastic medium [29–31]. Our
future numerical and analytical studies include not only
the high-frequency behavior of the model but also the case
of α < 0.
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