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The mechanism of the lower critical solution temperature (LCST) in thermoresponsive  
polymer solutions has been studied by means of a coarse-grained single polymer chain simu-
lation and a theoretical approach. The simulation model includes solvent explicitly and thus 
accounts for solvent interactions and entropy directly. The theoretical model consists of a 
single chain polymer in an implicit solvent where the effect of solvent is included through 
the intrapolymer solvophobic potential proposed by Kolomeisky and Widom. The results of 
this study indicate that the LCST behavior is determined 
by the competition between the mean energy difference 
between the bulk and bound solvent, and the entropy loss 
due to the bound solvent. At low temperatures, solvent mol-
ecules are bound to the polymer and the solvophobicity of 
the polymer is screened, resulting in a coiled state. At high 
temperatures the entropy loss due to bound solvent offsets 
the energy gain due to binding which causes the solvent mol-
ecules to unbind, leading to the collapse of the polymer chain 
to a globular state. Furthermore, the coarse-grained nature 
of these models indicates that mean interaction energies are 
sufficient to explain LCST in comparison to specific solvent 
structural arrangements.
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1. Introduction

Thermoresponsive polymers are an important class of 
materials which exhibit temperature-dependent struc-
tural changes and find application in drug delivery,[1,2] sur-
face modification,[3] and self-assembled structures.[4] Our 
interest lies in the family of thermoresponsive polymers 
that exhibit a lower critical solution temperature (LCST) 
in aqueous solutions. Along with the LCST, these polymers 
also exhibit a coil-to-globule transition at the single chain 
level. A well-known example of such thermoresponsive 
polymers is poly(N-isopropylacrylamide) (PNiPAM) which 
exhibits an LCST in water and an upper critical solution 
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temperature (UCST) in solvents such as methanol, ethanol, 
dimethyl sulfoxide, acetone.[5,6] There have been several 
experimental[7–9] and simulation[10–15] studies on the 
mechanism of the LCST behavior of PNiPAM in water. The 
tunability of the LCST for different applications has also 
been explored by studying its variation with additives such 
as salt,[16,17] surfactant,[18–20] cosolvents,[21–26] and by the 
change in macromolecular architecture such as branching 
and tacticity.[27,28]

The origin of LCST in thermoresponsive polymer 
solutions is an important question in the field of polymer 
science. To understand this phase transition, there 
have been several attempts, ranging from the mean-
field theory to atomistic molecular dynamic simula-
tions,[10–13,17] focusing on the LCST of PNiPAM-water 
system. A mean-field model was proposed by Okada and 
Tanka[29] who hypothesized that preferential interac-
tion among bound water molecules (cooperative hydra-
tion) controls the transition. The simulation results of  
Deshmukh et al.[13] indicate that the stability of bound 
water structure is the driving force for the transition. 
Though insightful, one should keep in mind that the 
results of these simulations are obtained for a particular 
polymer–solvent system, and these approaches require 
very specific interactions, extensive chemical details, or 
forcefield parameters. Schild et al.[30] have studied the 
LCST behavior of PNiPAM in water-alcohol mixtures using 
a combination of experiments and the three-component 
Flory-Huggins model. In their model, the interaction 
parameters have been partially taken from experimental 
data, and it does not give us a clear idea about the generic 
mechanisms that lead to this phenomena.

In the experimental studies, a rich diversity of material 
systems based on PNiPAM have been explored to obtain 
physical insights related to the effect of substituents, 
copolymers, solvents, and additives. From the view point 
of the mechanism, Ono and Shikata[9] have calculated the 
number of water molecules per monomer using high-fre-
quency dielectric relaxation measurements. Their results 
showed that the LCST is driven by the complete dehydra-
tion of the PNiPAM chains, showing the importance of 
bound water near the polymer. Bischofberger et al.[6,31] 
have performed turbidity and dynamic light scattering on 
the ternary system of PNiPAM, water, and alcohol. Their 
results indicate that the thermodynamic description of 
the solvent is more important than the specific descrip-
tion of local solvent structure.

Given the multiplicity of systems that can exhibit LCST, it 
is highly pertinent to come up with a model that can exhibit 
LCST based on broad physical principles. An approach  
aimed at identifying the minimal model that exhibits 
LCST will help to understand the relative importance of 
different contributions. Generic polymer models[32–36] 
are suitable candidates for this kind of approach. The 

coarse-grained nature of these models allows us to quali-
tatively study the importance of the competition between 
entropy and internal energy without invoking to a spe-
cific polymer or solvent. In this paper, we develop generic 
polymer models with spherically symmetric solvent and 
monomeric beads for simulation and theoretical studies 
of a coil-to-globule transition. Our results indicate that 
the LCST depends on the competition between the mean 
interaction energy difference between the bulk and 
bound solvent, and entropy of bound solvent. We show 
that a coarse-grained representation of the solvent is suf-
ficient to exhibit an LCST behavior. This indicates that the 
mean interaction energy difference between the bound 
solvent and bulk solvent is more important in comparison 
to the structural arrangement of the bound solvent. An 
important point to note is that this work is aimed at a 
generic understanding of the LCST behavior in thermore-
sponsive polymers, which does not refer to any particular 
polymer.

The rest of the paper is organized as follows: in  
Section 2, we propose a polymer-solvent model for 
molecular dynamic simulation studies and introduce the  
solvophobic potential[37] used in the theoretical approach. 
Section 3 presents the simulation results and numerical 
calculations of the theoretical model. In Section 4, our 
findings will be summarized.

2. Models

In this section, we discuss our models used for the simu-
lation and theoretical studies. While simulations are 
carried out using a bead-spring model for polymers in 
a homogenous single component solvent, a phenomeno-
logical model is used for the theoretical analysis. Below we 
describe these models in detail.

2.1. Generic Polymer Model with Explicit Solvent

For the simulation studies, we model the polymer as a 
linear chain consisting of alternating solvophobic and 
amphiphilic beads (N total beads, N/2 solvophobic, and N/2 
amphiphilic beads). The motivation behind the presence 
of two different kinds of beads is to capture the behavior 
of the acrylamide family of thermoresponsive polymers 
in a generic manner (see Figure 1). The methylene units 
along the backbone are analogous to hydrophobic beads. 
The substituted methylene units, most generally will have 
both hydrophilic and hydrophobic groups, and therefore 
analogous to amphiphilic beads. We emphasize that the 
intention is to use a generic model, without relating to any 
specific polymer system.

The amphiphilic bead has attractive interactions 
with both the solvent and the solvophobic beads. The 
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interaction between the solvophobic bead and the sol-
vent is purely repulsive. The solvent can be introduced 
either by including it explicitly or by incorporating its 
effects implicitly within the interaction potentials. Since 
coarse-grained potentials are obtained by integrating out 
the internal degrees of freedom of the unit, they are tem-
perature dependent in general. When the scale of coarse 
graining is small, such a dependence is weak and can 
be neglected. However, when the solvent is implicit, the 
interaction potentials have a stronger dependence on the 
temperature, and the nature of this dependence has to be 
assumed a priori. To avoid a specifically assumed temper-
ature dependence of the interaction potentials, we explic-
itly incorporate the solvent. The potential energy for the 
system is given by Equation (1)
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where N is the number of beads in the polymer chain, 
as mentioned before. kb the force constant for the 
bonded interaction, bi the bond length between neigh-
boring beads, Nt the total number of beads in the system 
(polymer + solvent), bi0 the equilibrium bond length, 
and rij the distance between two nonbonded beads. The 
second term is the Shifted Lennard Jones (SLJ) potential 
with rc,ij being the cutoff distance at which the potential 
is truncated and shifted to zero. The above form of SLJ 
potential ensures that all the beads are spherically sym-
metric and have size σ. All the interaction parameters are 
kept independent of the temperature. We define dimen-
sionless quantities as r r /ij ij σ= , /ij ij ssε ε ε=− , k k /b

2
b ssσ ε= ,  

b b /i i0 0 σ= , T k T/B ssε= , P P/3
ssσ ε= , and t t m/( )ss

2ε σ= , 
where εss is the potential energy of interaction between 
two solvent beads. We fix the values to b 1i0 =  and k 200b =  
for all the simulations. The values of the other interaction 
parameters are listed in Table 1, where εAS, εAH, and εAA 
are the interaction energies of the amphiphilic bead with 

the solvent bead, the solvophobic bead, and the amphiph-
ilic bead, respectively.

Molecular dynamic simulations were performed in 
an NPT ensemble using the Nose-Hoover thermostat for 
different temperatures at a constant pressure P 0.002= . 
The trajectories were generated using the Velocity-
Verlet algorithm with a time-step t 0.004∆ = . The ratio 
of the number of polymer beads to the solvent beads 
was maintained at 0.04 for all simulations. Simula-
tions of N = 200 chain were performed at four different 
interactions; 1.4,1.7,1.8,2.0ASε =− . For each of these values, 
the temperature was varied from T 0.5=  to 0.7 with an 
interval of 0.05. Simulations were also performed for an  
N = 400 chain for 1.7ASε =−  at the temperatures ranging 
from T 0.5=  to 0.8 with an interval of 0.05. The 200 and 
400 bead systems were equilibrated for 1 × 108 steps, and 
the data were sampled after every 4 × 106 and 2 × 107 
steps, respectively. Four different initial configurations 
were used for averaging. All simulations were performed 
using open source molecular dynamics code LAMMPS.[38]

The simulation data were used for the calculation of 
different structural quantities. We calculated the radius 
of gyration, Rg, of the polymer to monitor the swelling of 
the polymer chain. The average Rg and standard deviation 
were calculated from the distribution obtained by sam-
pling 1000 simulation replicas. The standard deviation 
was plotted as the error bar. We define a dimensionless 
radius of gyration R R /g g σ=  given by Equation (2)
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where N = 200 and 400, rcm  and ri  are the dimensionless 
coordinates of the center of mass of the polymer chain 
and the ith bead, respectively.

The number of solvent beads, Ns, in the first solvation 
shell of the polymer was calculated to determine the 
bound solvent content. The solvent beads which were 
within a distance of r r / 1.5σ= =  from any of the poly-
meric beads were regarded to be part of the first solvation 
shell.

The effective interaction between the polymer beads 
was calculated using the potential of mean force UAH, 
which was calculated from the radial distribution func-
tion of the amphiphilic and solvophobic bead pairs using 
Equation (3)[39]
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Figure 1.  Ad hoc mapping of the acrylamide family of thermore-
sponsive polymers. R1 and R2 can be any arbitrary groups. The part 
of the monomer within the red box may have both hydrophilic 
and hydrophobic groups due to which it is modeled as an amphi-
philic bead.

Table 1.  Interaction parameters of the SLJ potential. Amphiphilic, 
solvophobic, and solvent are represented by A, H, and S, respectively.

ij AA HH SS AH HS AS

ijε− 1 1 1 1 1 1.4, 1.7, 1.8, 2.0

r ijc, 2.5 2.5 2.5 2.5 21/6 2.5
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U r
T

g r( ) ln ( )AH
AH= − 	 (3)

where U U /AH AH ssε=  is the dimensionless potential of 
mean force.

2.2. Solvophobic Potential by Kolomeisky and Widom

Our simulations indicate that the LCST is dependent 
on the entropy loss of the bound solvent, and the mean 
interaction energy difference between the bulk and the 
bound solvent (see Section 3.1). To obtain further insights 
related to the nature of the transition, scaling behavior, 
and the effect of chain flexibility, a theoretical approach 
is adopted where we consider the hydrophobic poten-
tial proposed by Kolomeisky and Widom (KW).[37] The 
KW model is spherically symmetric in nature and does 
not relate to a specific solvent or solute, which is in cor-
respondence with the modeling framework employed 
in our simulations. The KW model belongs to a class of 
implicit solvent models[40,41] which incorporate different 
interaction energies depending on the proximity of the 
solvent to a solute molecule. These models have been 
used for studying the solubility of small solutes in water. 
The KW model is one of the simplest among these models 
as it has only two solvent interaction energies; one for the 
bound state and another for the bulk state. These inter-
action energies are analogous to the monomer-solvent 
interaction energy (εAS), and solvent–solvent interaction 
energy (εSS) in our simulation model, respectively. Hence 
it can be seen that the model contains those contribu-
tions which have been emphasized in our simulation 
results.

In the KW model, solvent molecules form a 1D lattice 
with a nearest neighbor interaction, and each solvent 
molecule can exist in q different states denoted by 1, 2, ⋅⋅⋅q 
as shown in Figure 2. The interaction energy between the 
neighboring solvent molecules is w when both of them 
are in the state “1”, and u otherwise with u > w. Here 
the former and the latter cases are termed as the bound 
state (BS) and the unbound state (US), respectively. A sol-
vent molecule in the BS state can exist only in one state, 
whereas that in the US state in q − 1 states. Hence the 
entropy of a solvent molecule in the BS state vanishes, 
whereas that in the US state is given by kBln (q − 1). In 
other words, the BS state is energetically favorable (w < u), 
while the US state is entropically favorable. The energetic 
(ΔU) and entropic (ΔS) differences between the BS and 
US states are w − u and −kBln (q − 1), respectively. The 
competition between the BS and the US states can be 
conveniently described by a dimensionless parameter x 
defined as

x e q
c

1U T S k T( )/ B= = −∆ − ∆ 	 (4)

where

c e u w k T( )/ B= − 	 (5)

Since the number of states q is constant in the KW 
model, x is a monotonically increasing function of the 
temperature. Solute molecules are allowed to occupy only 
the interstitial sites between the solvent molecules in the 
BS state. Based on these assumptions, KW obtained the 
solvent mediated attraction potential φ(r) between two 
solute molecules (implicit solvent) for r > σ[37]
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and zsgn( )  is the sign function. Figure 3 shows the 
variation of φ/kBT as a function of �r r /σ=  for two dif-
ferent temperatures. The range of the solvent medi-
ated interaction becomes shorter when the tempera-
ture is increased. From the inset of Figure 3, it can be 
seen that the attraction becomes stronger for higher 
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Figure 2.  Schematic representation for the theoretical model. 
Black and blue beads represent monomer and solvent molecules, 
respectively. a) Single polymer chain in explicit solvent, b) single 
polymer chain in implicit solvent where the effect of solvent is 
incorporated in the monomer–monomer interaction potential 
φ(r), and c) φ(r) modeled by the solvophobic potential given by 
KW.[37] The potential assumes a 1D solvent lattice where each 
solvent molecule has q states. Neighboring solvent molecules 
exist in a bounded state (BS) when both are in the state “1” and 
in unbounded state (US) state otherwise. Solute can occupy inter-
stitial sites between bounded (BS) solvent molecules.
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temperature when �r  is small. Such a behavior indicates 
that the monomers tend to aggregate as the tempera-
ture is increased. The large value of q used by KW was 
justified in order to match the temperature dependence 
of the solubility of nonpolar solutes in water.[37] From 
Equation (6) it can be seen that the monomer–monomer 
potential is temperature dependent due to the implicit 
nature of solvent. An important point to note is that 
this temperature dependence is not ad hoc but a con-
sequence of the underlying solvent model summarized  
in Figure 2.

3. Results and Discussions

3.1. Simulation

Simulations on N = 200 chain were performed to explore 
the structural change of the polymer chain with the tem-
perature for different εAS values. This sweep across εAS 
values was performed to identify interesting regimes. 
Figure 4a shows the variation of Rg  with T  for different 

ASε− . The error bars are larger for the expanded state (higher 
εAS values) as the number of conformations are higher due 
to the absence of angular and dihedral interactions. How-
ever, the measured Rg  is distinctly larger for larger ASε−  
values, implying swelling as a result of stronger associa-
tion between the amphiphilic bead and the solvent. As a 
function of temperature, we observe that there are three 
different behaviors according to the value of ASε− ; (i) when 

1.4ASε =− , the polymer chain remains in a collapsed state 
and its Rg  shows a slight increasing trend with T  and the 
error bars are very small, (ii) when 2.0ASε =− , the polymer 
chain is in the large Rg state with large error bars at all the 
temperatures, and (iii) when 1.7ASε =−  and 1.8, Rg  shows a 
slight decrease with increase in temperature. Though this 
decrease of Rg with temperature for εAS = 1.7, 1.8 is very 
interesting, it is inconclusive and requires further probing 
due to the large value of error bars.

To further explore these interesting trends, simulations 
were performed on a larger system (N = 400 chain). We 
choose εAS = 1.7 for N = 400 chain as it has the most sig-
nificant decrease in average Rg with temperature among 
the studied εAS values. From Figure 4b, we see that the 
size change with the temperature for the N = 400 chain 
is more prominent compared to that of the N = 200 chain, 
which is due to difference in scaling of Rg  with N for the 
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Figure 4.  Variation of Rg of polymer chain with T  for a) 200 bead polymer at different values of ASε− , the error bars for εAS = 1.4 are the size 
of the symbol. b) N = 400 chain at 1.7ASε =− .
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coiled and globular states.[42] In Figure 4b, Rg  decreases 
by 23% as the temperature is increased from T 0.55=  to 
0.75. Such trends have been observed in atomistic simu-
lations of PNiPAM-water system.[12,17,43] Unlike the first-
order LCST transition behavior observed in experimental 
studies of thermoresponsive polymer solutions,[8,44,45] the 
transition observed in Figure 4 b shows a gradual change 
in Rg  with T . It is known that the coil-to-globule transi-
tion is a first-order transition only in the case of rigid and 
semirigid chains.[46–48] Hence the continuous transition 
in our simulation is not surprising because the polymer 
chain used in the simulations is fully flexible due to the 
absence of the angular and dihedral interactions. This is 
further supported by the results of our theoretical model, 
where we observe that the coil-to-globule transition devi-
ates from a first order behavior with increase in chain 
flexibility (see Section 3.2). Based on the above observa-
tions, we consider that the behavior observed for 1.7ASε =−  
is akin to the LCST phenomenon in thermoresponsive 
polymers. Figure 5 shows representative snapshots of  
N = 400 chain at εAS = 1.7 for different temperatures, we can 
see that the polymer chain is in the coil-like state below 
T 0.6= , while it is the globule-like state above T 0.7= .

Hereafter we will be referring to 1.4ASε =− , 1.7ASε =−  and 
1.8, and 2.0ASε =−  as low, intermediate, and high values, 

respectively. To further understand the behavior in these 
three states, we examine the variation of the number of 
bound solvent beads, Ns, with the temperature. In Figure 6a, 
the number of bound solvent is found to be almost inde-
pendent of T  for low and high values of ASε− , whereas it 
decreases by increasing the temperature for intermediate 
values. In Figure 6b, we plot Ns for the N = 400 chain as a 
function of T , when εAS = 1.7. The decrease of Ns with the 
temperature is more prominent as compared with that of 
the N = 200 chain case. Moreover, Ns markedly decreases 
around T 0.65=  which coincides with the temperature 
around which Rg  also decreases (see Figure 4b). It should 
be stressed that the change in Rg  and Ns with the tempera-
ture is observed in our model with minimal interactions as 
in Equation (1). It is important to note that even when the 
interaction parameters are independent of the tempera-
ture, the temperature dependence of Rg  is induced by the 
bound solvent number Ns for a range of values of ASε− .

The above trends in the three different states can be 
rationalized by considering the different energy and 
entropic contributions in the model system. The attrac-
tion between the amphiphilic monomer and the solvent 
is energetically favorable since it is stronger than the  
solvent–solvent interaction (εAS > εSS), leading to a coil-like 
polymer conformation with many bound solvent beads. 
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Figure 5.  Representative snapshots of equilibrated N = 400 chain at εAS = 1.7 for different temperatures. Green and red beads represent 
solvophobic and amphiphilic units, respectively. a) �T 0.55= , b) �T 0.6= , c) �T 0.7=  and d) �T 0.8= . Solvent beads are not included for clarity.
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Figure 6.  Variation of Ns with T  at different values for a) N = 200 chain at different values of ASε− , b) N = 400 chain at ASε−  = 1.7.
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Whereas from the viewpoint of entropy, the solvent pre-
fers to be in the bulk state rather than the bound state. 
Another important contribution is the solvation of sol-
vophobic beads, which is unfavorable as the interaction 
between the solvophobic bead and the solvent is repul-
sive. The interplay of these contributions determines the 
different states of the polymer chain.

Concerning intermediate ASε−  values, the large values of 
Rg  in the coil-like state (see Figure 4b) and large Ns at low 
temperatures (see Figure 6b) indicate that the attraction 
between the amphiphilic monomer and the solvent dom-
inates the entropy loss of the solvent. Hence it is favorable 
for the solvent to solvate the solvophobic beads despite 
the repulsive interaction between them. With increase in 
the temperature, the gain in the entropy due to unbinding 
of the solvent leads to a reduction in the bound solvent 
content, Ns. In the transition region (0.6 < T < 0.7), there 
is marked decrease of the bound solvent because the 
entropy gain of the solvent dominates over the amphi-
philic-solvent attraction. This change in the dominant  
contribution makes the solvation of solvophobic beads 
unfavorable, leading to an attraction between the poly-
meric beads. Such an attraction becomes stronger with 
the temperature, and drives the transition from the coil-
like state to the globule-like state. In Figure 7a, we plot 
the potential of mean force, UAH, between the amphi-
philic and the solvophobic beads as a function of the 
distance r . Here we see that the attraction between the 
polymeric beads increases with the temperature. At low 
temperature, the attraction between the polymeric beads 
is screened due to the presence of solvent beads. At high 
temperatures, the bound solvent beads unbind due to 
entropy gain which reduces the screening effect, leading 
to the collapse of the polymer. As shown in Figure 7b, the 
increase in the attraction between polymeric beads with 
temperature is not observed for low ASε−  values.

For low ASε−  values, both Rg  and Ns are small. This 
means that at these interaction strengths the entropic 

gain of the free solvent beads dominates over the 
interaction between the amphiphilic monomer and the 
solvent for all the temperatures. Hence the solvation of 
solvophobic beads is unfavorable in the entire tempera-
ture range. On the other hand, for high ASε−  values, both 
Rg  and Ns are large. This indicates that the attractive 
interaction is stronger than the entropy loss which leads 
to the binding of the solvent to the polymer. Hence, the 
solvation of the solvophobic beads is favored at all tem-
peratures despite the repulsive interaction between the 
solvophobic monomer and the solvent.

We find from our simulations that the transition from 
the coil-like state to the globule-like state depends on 
how much the solvophobic beads can be solvated. The 
solvation depends on the interplay between the entropy 
loss of the bound solvent, and the energetic difference 
between the bound and the bulk solvent. The bound  
solvent is energetically favored as the interaction between 
the amphiphilic monomer and the solvent is stronger 
than the solvent–solvent interaction. Therefore two kinds 
of beads having opposite interactions with the solvent are 
necessary to exhibit the LCST as long as the interaction 
parameters are independent of the temperature as in our 
case. Additionally in our simulation, we did not incorpo-
rate any specific chemical or structural details pertaining 
to the solvent or the polymer chain. Therefore we have 
demonstrated that the LCST behavior can be exhibited 
by a coarse-grained description of the polymer and the 
solvent even when the interaction parameters are inde-
pendent of the temperature.

3.2. Theoretical Description of the Coil-to-Globule 
Transition

To study the coil-to-globule transition in the theoretical 
framework, we adopt the phenomenological free energy 
expression for a polymer chain in an implicit solvent, 
which has been given by Grosberg and Kuznetsov.[46] We 
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choose the KW potential (see Section 2.2) to model the 
effective monomer–monomer interaction. The free energy 
expression for the system is as follows

F
k T

N B C1 1
B

2
2 3 3 6 6α

α α σ α σ
= + + +

	
(9)

where R N/( )gα σ=  characterizes the extent of the 
swelling, N the degree of polymerization, σ the diameter of 
the monomeric unit, B and C are the second and the third 
virial coefficients, respectively. The first and the second 
terms in the above free energy are the entropic contri-
butions with the coiled and the globular states given by  
α > 1 and α < 1, respectively. The third and the fourth terms 
represent the energy contributions from the two-body and 
the three-body interactions, respectively. In general, the 
second virial coefficient B is given by

B r r e2 d 1 r k T

0

2 ( )/ B∫π ( )= −
∞ −Φ 	 (10)

where Φ(r) is the monomer–monomer interaction poten-
tial. Here we assume that it has the following form

r r
r r( ) :

( ) :
σ

φ σ
Φ =

∞ <
>






	 (11)

where Φ(r) for r <σ corresponds to the (hard-core) excluded 
volume interaction, and φ(r) for r > σ (see Equation (6)) is 
the KW solvophobic potential. Substituting Equations (6) 
and (11) into Equation (10), we obtain the second virial 
coefficient B as

B Q
Q L L L

2
3

1 3 1
1

1
ln

2
ln

2
ln

3

2 3
πσ

( ) ( )
= + +

−






− +






















	 (12)

where L = (1 − S)/(1 + S).
Hereafter we use the dimensionless quantities such 

as the temperature T k T u w/( )B
� = − , the distance r r/� σ= ,  

the solvent mediated interaction potential u w/( )�φ φ= − , 
and the second virial coefficient B B3 /2 3� πσ= . In Figure 8,  
we plot �B  as a function of �T  for different q-values. We 
observe that �B  remains almost unity for low tempera-
tures and then decreases rapidly for higher temperatures. 
This means that the monomer–monomer interaction is 
repulsive for lower temperatures, while it is attractive for 
higher temperatures. Moreover, the temperature corre-
sponding to the sharp drop from the positive (repulsive) 
to the negative (attractive) �B-values decreases when q is 
increased for a fixed u − w value. The significance of this 
observation will be discussed later.

In order to find the equilibrium polymer conformation, 
we minimize Equation (9) with respect to α, and obtain 
the equation

�
�

NB C 05
3α α π

α
− − − = 	 (13)

where C C3 / 6� σ=  is the nondimensional third virial coef-
ficient which is related to the rigidity of the polymer 
chain and has contributions from the three-body interac-
tions such as angular interactions. We numerically solve 
the above equation to obtain α for different values of �B  
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at fixed values of q, N and �C . In Figure 9, we show the 
variation of the swelling parameter α with the tempera-
ture �T  for different values of the third virial coefficient 
�C  when q = 5 × 105. We see that the polymer chain under-

goes a transition from the coiled state to the globular 
state with increase in the temperature.

For low temperatures, the polymer chain is in the 
coiled state and hence large α. In this case, the first and 
the third terms in Equation (13) are dominant because  
N is also large. Then Equation (13) reduces to

�NB 05α π− ≈ 	 (14)

and we obtain Rg ∼N3/5 corresponding to the scaling of a 
polymer chain in a good solvent. When the temperature 
is high, on the other hand, the polymer is in the globular 
state and α becomes small. Then the third and the fourth 
terms dominate in Equation (13)

�
�

NB C 03π
α

+ ≈ 	 (15)

This gives the scaling Rg ∼ N1/3 corresponding to a 
polymer chain in a poor solvent.

In order to understand this coil-to-globule transition 
in terms of the dominant interactions, let us consider the 
free energy difference of a solvent molecule between the 
BS and US states

F F F U U T S S( )BS US BS US BS US∆ = − = − − − 	 (16)

where UBS (UUS) and SBS (SUS) are the energy and the 
entropy of the BS (US) state, respectively. Using the model 
parameters defined in Section 2.2, the above quantity can 
be expressed as

F u w k T q k T x( ) ln( 1) lnB B∆ = − − + − = 	 (17)

where x is defined before in Equation (4). From  
Equation (17) and since u > w, we find ΔF < 0 for x < 1 
(lower temperatures), leading to the BS state being more 
favorable. Given the implicit nature of the solvent in the 
theoretical treatment, the large value of α for lower tem-
peratures in Figure 9 is an indication of the large amount 
of the bound solvent. For x > 1 (higher temperatures), on 
the other hand, the US state is more favorable and the 
amount of the unbound solvent increases. In this case, 
the attraction between the monomeric units is induced. 
This is seen in Figure 8 for the larger negative value of the 
second virial coefficient �B. These solvent induced inter-
actions drive the transition from the coiled state to the 
globular state. The phase transition temperature T* deter-
mined by the condition ΔF = 0 is given by Equation (18)

T u w
k qln( 1)B

= −
−

∗ 	 (18)

As observed in Section 2.2, T* decreases as q is increased 
when u −w is fixed.

We further observe in Figure 9 that the nature of the 
transition changes from a discontinuous transition to a 
continuous one by increase in the third virial coefficient �C .  
It is known that the third virial coefficient is larger for 
flexible chains.[46,47] This shows that the nature of tran-
sition deviates from a first-order behavior with increase 
in the flexibility of the chain. Another important point 
is that the above argument does not include any details 
regarding the structure of the solvent and/or polymer 
which indicates that the structural details of the bound 
solvent are not necessary for the thermoresponsive 
behavior to manifest.

4. Conclusions

In this paper, we have tried to understand the single chain 
coil-to-globule transition of a thermoresponsive polymer 
through simulation and theoretical approaches. In the sim-
ulations, the model comprises of a single polymer chain in 
an explicit solvent with temperature independent interac-
tion parameters. The solvent is explicitly included to avoid 
any ad hoc dependence of the interaction potentials on 
temperature. To obtain further insights, we have adopted 
a theoretical framework with only those interactions that 
have been emphasized in our simulation studies. The 
theoretical model describes a single chain in an implicit 
solvent where the effect of solvent is included into the 
monomer-monomer interaction potential. For the inter-
action between the monomers, we have used the solvo-
phobic potential proposed by Kolomeisky and Widom.[37] 
The temperature dependence of the solvophobic potential 
is not ad-hoc in nature and arises due to the underlying 
solvent model.

Our simulations indicate that the LCST is dependent 
on the competition between the two contributions, 
namely, the entropy loss of the bound solvent and the 
mean energy difference between the bound and the 
bulk solvent. This hypothesis is supported by our theo-
retical calculations. The former favors the globular state 
of the polymer chain, whereas the latter prefers the coiled 
state. At low temperatures, solvent molecules bind to the 
polymer chain rather than to reside in the bulk because 
the bound state is energetically favorable, and the coiled 
state is obtained. At high temperatures, on the other 
hand, the entropy loss of the bound state is more domi-
nant than its energetic gain and the solvent molecules 
tend to leave the polymer. Such a competition of the inter-
actions induces a solvent driven attraction between the 
polymeric beads leading to the collapse of the polymer 
chain. These findings are supported by the experimental 
studies of Bischofberger et al. who showed that the LCST 
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is dependent on the mean energy difference between the 
bound and bulk solvent.[6,31]

Another common feature between the simulation and 
the theory is that both of them have spherically sym-
metric solvent and monomeric beads. This indicates 
that the structural arrangement of the solvent molecules 
around the polymer chain is not a necessary component 
to be considered explicitly for the coil-to-globule tran-
sition. In other words, a coarse-grained description of 
the solvent is sufficient to reproduce the LCST behavior, 
this observation is in agreement with the experimental 
results of Bischofberger et al.,[6,31] where they show that 
a coarse-grained representation of the solvent is suffi-
cient to explain the LCST and its variation with different 
alcohols.

In our simulations studies, it is shown that the LCST is 
dependent on the amphiphilic-solvent attraction and sol-
vation of the solvophobic beads. This indicates that in the 
case of temperature-independent interaction parameters, 
two different kinds of beads with opposite interaction 
with the solvent are required in the monomeric unit 
to exhibit LCST. In the theoretical model, the solvent is 
implicit and the variation of solvent effects with tempera-
ture is included in the monomer-monomer interaction 
due to which one kind of bead is sufficient to exhibit LCST. 
A mixture of PNiPAM and water exhibits a first-order 
phase transition at 32 °C.[7,8] In our theoretical argument, 
we showed that the order of the transition changes from a 
first-order (discontinuous) to a second-order (continuous) 
with the increase in the chain flexibility (or the third 
virial coefficient). The reason why we observe only the  
continuous coil-to-globule transition in our simulation is 
because we did not take into account any angular inter-
actions to deal with the chain flexibility. The effect of 
angular and dihedral interactions on the nature of the 
coil-to-globule transition needs to be explored further.

The results of our model are applicable to cross-linked 
thermoresponsive polymers as the lengths of the seg-
ments between successive cross-links are usually very 
long. Also, it is known that the degree of cross linking 
only affects the extent of swelling and does not change 
the LCST.[49] Another interesting feature of our model is 
that the variation in behavior with temperature for dif-
ferent ASε−  values (see Figure 4a) is analogous to different 
polymers in the family of poly(N,N-alkyl alkyl acryla-
mide). Low ASε−  values are similar to polymers with bulky 
side groups such as poly(N-butyl acrylamide) which are 
always insoluble in water. On the other hand, high ASε−  
values are similar to polymers such as polyacrylamide 
which are always soluble in water. This indicates that 
our coarse-grained model is able to explain the LCST 
behavior for different systems in the poly(N,N-alkyl,alkyl 
acrylamide) family of polymers. Furthermore, the model 
can also be utilized to study the variation of LCST due to 

factors such as co-solvents and additives by examining 
their effect on the two dominant physical interactions 
namely, the entropy loss of the bound solvent and the 
mean energy difference between the bound and the 
bulk solvent. This aspect will be addressed in our future 
studies.
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